Identification problems in graphs Bounds and complexity

Florent Foucaud

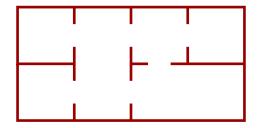
joint work with:

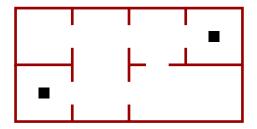
Mike Henning, Christian Löwenstein, Thomas Sasse and George Mertzios, Reza Naserasr, Aline Parreau, Petru Valicov

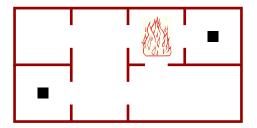
LIMOS, January 2015

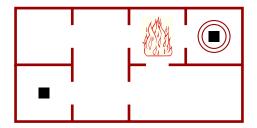
Part I: bounds for location-domination

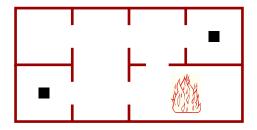
Fire detection in a building



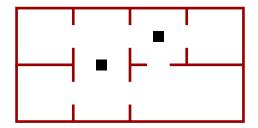




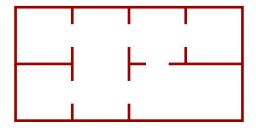




- Detector can detect fire in its room and its neighborhood (through a door).
- Each room must contain a detector or have one in an adjacent room.

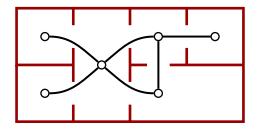


- Detector can detect fire in its room and its neighborhood (through a door).
- Each room must contain a detector or have one in an adjacent room.



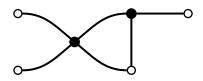
• Graph G = (V, E). Vertices: rooms.

Edges: between any two rooms connected by a door

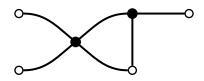


• Graph G = (V, E). Vertices: rooms.

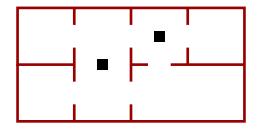
Edges: between any two rooms connected by a door

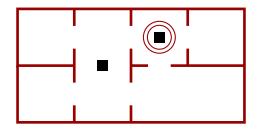


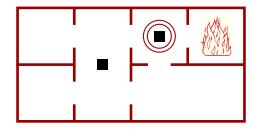
- Graph G = (V, E). Vertices: rooms. Edges: between any two rooms connected by a door
- Set of detectors = dominating set $D \subseteq V$: $\forall u \in V, N[u] \cap D \neq \emptyset$

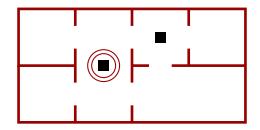


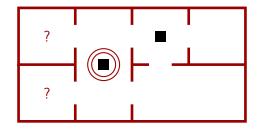
- Graph G = (V, E). Vertices: rooms. Edges: between any two rooms connected by a door
- Set of detectors = dominating set $D \subseteq V$: $\forall u \in V, N[u] \cap D \neq \emptyset$
- Domination number $\gamma(G)$: smallest size of a dominating set of G



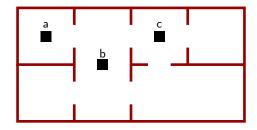


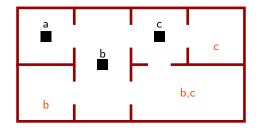




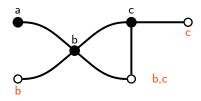


To locate the fire, we need more detectors.



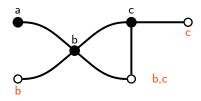


In each room with no detector, set of dominating detectors is distinct.



Peter Slater, 1980's. Locating-dominating set D: subset of vertices of G = (V, E) which is:

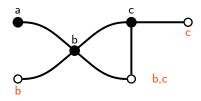
- dominating : $\forall u \in V, N[u] \cap D \neq \emptyset$,
- locating : $\forall u, v \in V \setminus D, N[u] \cap D \neq N[v] \cap D.$



Peter Slater, 1980's. Locating-dominating set D: subset of vertices of G = (V, E) which is:

- dominating : $\forall u \in V, N[u] \cap D \neq \emptyset$,
- locating : $\forall u, v \in V \setminus D, N[u] \cap D \neq N[v] \cap D$.

 $\gamma_L(G)$: location-domination number of G, minimum size of a locating-dominating set of G.

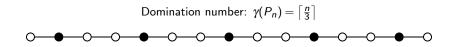


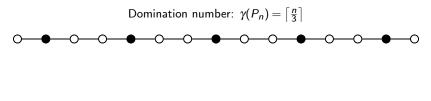
Peter Slater, 1980's. Locating-dominating set D: subset of vertices of G = (V, E) which is:

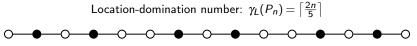
- dominating : $\forall u \in V, N[u] \cap D \neq \emptyset$,
- locating : $\forall u, v \in V \setminus D, N[u] \cap D \neq N[v] \cap D.$

 $\gamma_L(G)$: location-domination number of G, minimum size of a locating-dominating set of G.

Remark: $\gamma(G) \leq \gamma_L(G)$







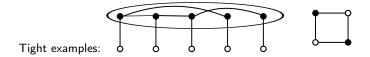
Upper bounds on the location-domination number

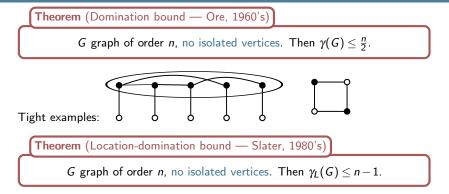
Theorem (Domination bound — Ore, 1960's)

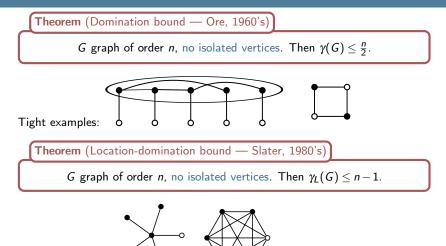
G graph of order *n*, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.

Theorem (Domination bound — Ore, 1960's)

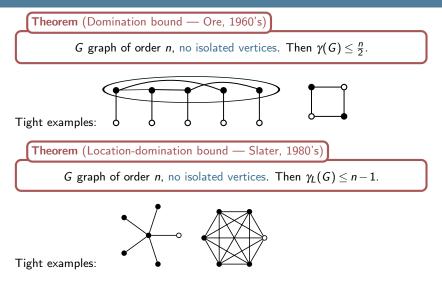
G graph of order *n*, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.







Tight examples:



Remark: tight examples contain many twin-vertices!!

Upper bound - a conjecture

Theorem (Domination bound — Ore, 1960's)

G graph of order *n*, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound — Slater, 1980's)

G graph of order *n*, no isolated vertices. Then $\gamma_L(G) \leq n-1$.

Upper bound - a conjecture

Theorem (Domination bound — Ore, 1960's)

G graph of order n, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound — Slater, 1980's)

G graph of order *n*, no isolated vertices. Then $\gamma_L(G) \leq n-1$.

Conjecture (Garijo, González & Márquez, 2014)

G graph of order *n*, no isolated vertices, no twins. Then $\gamma_L(G) \leq \frac{n}{2}$.

Theorem (Domination bound — Ore, 1960's)

G graph of order n, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.

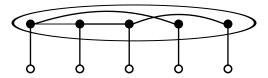
Theorem (Location-domination bound — Slater, 1980's)

G graph of order *n*, no isolated vertices. Then $\gamma_L(G) \leq n-1$.

Conjecture (Garijo, González & Márquez, 2014)

G graph of order *n*, no isolated vertices, no twins. Then $\gamma_L(G) \leq \frac{n}{2}$.

If true, tight: 1. domination-extremal graphs



Upper bound - a conjecture

Theorem (Domination bound — Ore, 1960's)

G graph of order n, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.

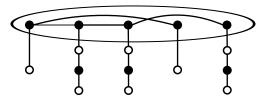
Theorem (Location-domination bound — Slater, 1980's)

G graph of order *n*, no isolated vertices. Then $\gamma_L(G) \leq n-1$.

Conjecture (Garijo, González & Márquez, 2014)

G graph of order *n*, no isolated vertices, no twins. Then $\gamma_L(G) \leq \frac{n}{2}$.

If true, tight: 2. a similar construction



Upper bound - a conjecture

Theorem (Domination bound — Ore, 1960's)

G graph of order *n*, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.

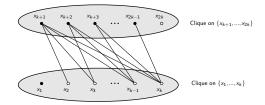
Theorem (Location-domination bound — Slater, 1980's)

G graph of order *n*, no isolated vertices. Then $\gamma_L(G) \leq n-1$.

Conjecture (Garijo, González & Márquez, 2014)

G graph of order *n*, no isolated vertices, no twins. Then $\gamma_L(G) \leq \frac{n}{2}$.

If true, tight: 3. a family with domination number 2



Conjecture (Garijo, González & Márquez, 2014)

G graph of order *n*, no isolated vertices, no twins. Then $\gamma_L(G) \leq \frac{n}{2}$.

Theorem (Garijo, González & Márquez, 2014)

Conjecture true if G has no 4-cycles, or if G is bipartite.

Conjecture (Garijo, González & Márquez, 2014)

G graph of order *n*, no isolated vertices, no twins. Then $\gamma_L(G) \leq \frac{n}{2}$.

Theorem (Garijo, González & Márquez, 2014)

Conjecture true if G has no 4-cycles, or if G is bipartite.

Proof ideas:

- no 4-cycles: use a maximum matching
- bipartite: every vertex cover is a locating-dominating set

```
Conjecture (Garijo, González & Márquez, 2014)
```

G graph of order *n*, no isolated vertices, no twins. Then $\gamma_L(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2014+)

Conjecture true if G is split graph or complement of bipartite graph.

Theorem (F., Henning, 2014+)

Conjecture true if *G* is: • cubic graph • line graph

Split graph: clique + independent set

```
Cubic graph: all degrees equal to 3
```

Line graph: Intersection graph of the edges of a graph

G graph of order *n*, no isolated vertices, no twins. Then $\gamma_L(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2014+)

Conjecture true if G is split graph or complement of bipartite graph.

Theorem (F., Henning, 2014+)

Conjecture true if *G* is: • cubic graph • line graph

Remark: Nontrivial proofs using very different techniques! \rightarrow Conjecture seems difficult.

Conjecture (Garijo, González & Márquez, 2014)

G graph of order *n*, no isolated vertices, no twins. Then $\gamma_L(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2014+)

G graph of order *n*, no isolated vertices, no twins. Then $\gamma_L(G) \leq \frac{2}{3}n$.

Lower bounds on the location-domination number

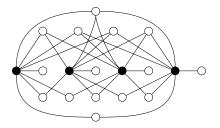
Theorem (Slater, 1980's)

G graph of order n, $\gamma_L(G) = k$. Then $n \leq 2^k + k - 1$, i.e. $\gamma_L(G) = \Omega(\log n)$.

Theorem (Slater, 1980's)

G graph of order n, $\gamma_L(G) = k$. Then $n \leq 2^k + k - 1$, i.e. $\gamma_L(G) = \Omega(\log n)$.

Tight example (k = 4):



G graph of order n, $\gamma_L(G) = k$. Then $n \leq 2^k + k - 1$, i.e. $\gamma_L(G) = \Omega(\log n)$.

Theorem (Slater, 1980's)

G tree of order n, $\gamma_L(G) = k$. Then $n \leq 3k - 1$, i.e. $\gamma_L(G) \geq \frac{n+1}{3}$.

Theorem (Rall & Slater, 1980's)

G planar graph, order n, $\gamma_L(G) = k$. Then $n \leq 7k - 10$, i.e. $\gamma_L(G) \geq \frac{n+10}{7}$.

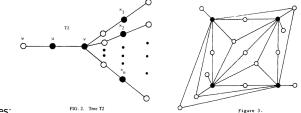
G graph of order n, $\gamma_L(G) = k$. Then $n \leq 2^k + k - 1$, i.e. $\gamma_L(G) = \Omega(\log n)$.

Theorem (Slater, 1980's)

G tree of order n, $\gamma_L(G) = k$. Then $n \leq 3k-1$, i.e. $\gamma_L(G) \geq \frac{n+1}{3}$.

Theorem (Rall & Slater, 1980's)

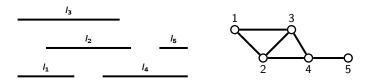
G planar graph, order n, $\gamma_L(G) = k$. Then $n \leq 7k - 10$, i.e. $\gamma_L(G) \geq \frac{n+10}{7}$.



Tight examples:

Definition - Interval graph

Intersection graph of intervals of the real line.



Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Then
$$n \leq \frac{k(k+3)}{2}$$
, i.e. $\gamma_L(G) = \Omega(\sqrt{n})$.

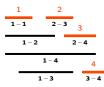
Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Then
$$n \leq \frac{k(k+3)}{2}$$
, i.e. $\gamma_L(G) = \Omega(\sqrt{n})$.

- Locating-dominating D of size k.
- Define zones using the right points of intervals in D.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

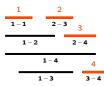
Then
$$n \leq \frac{k(k+3)}{2}$$
, i.e. $\gamma_L(G) = \Omega(\sqrt{n})$.



- Locating-dominating D of size k.
- Define zones using the right points of intervals in *D*.
- Each vertex intersects a consecutive set of intervals of *D* when ordered by left points.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Then
$$n \leq \frac{k(k+3)}{2}$$
, i.e. $\gamma_L(G) = \Omega(\sqrt{n})$.



- Locating-dominating D of size k.
- Define zones using the right points of intervals in D.
- Each vertex intersects a consecutive set of intervals of *D* when ordered by left points.

$$\rightarrow n \leq \sum_{i=1}^{k} (k-i) + k = \frac{k(k+3)}{2}$$

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

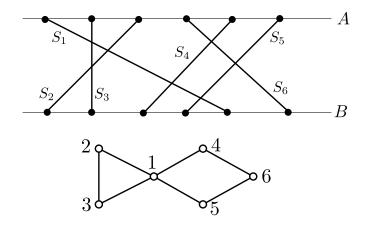
G interval graph of order n,
$$\gamma_L(G) = k$$
.

Then
$$n \leq \frac{k(k+3)}{2}$$
, i.e. $\gamma_L(G) = \Omega(\sqrt{n})$.

Tight:

Definition - Permutation graph

Given two parallel lines A and B: intersection graph of segments joining A and B.



Lower bound for permutation graphs

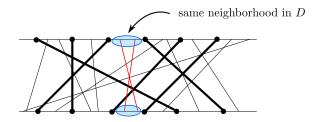
Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

G permutation graph of order n, $\gamma_L(G) = k$. Then $n \le k^2 + k - 2$, i.e. $\gamma_L(G) = \Omega(\sqrt{n})$.

Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

G permutation graph of order n,
$$\gamma_L(G) = k$$
.
Then $n \le k^2 + k - 2$, i.e. $\gamma_L(G) = \Omega(\sqrt{n})$.



- Locating-sominating set *D* of size *k*: *k*+1 "top zones" and *k*+1 "bottom zones"
- Only one segment in $V \setminus D$ for one pair of zones

$$\rightarrow n \leq (k+1)^2 + k$$

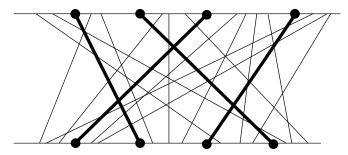
• Careful counting for the precise bound

Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

G permutation graph of order n, $\gamma_L(G) = k$. Then $n \le k^2 + k - 2$, i.e. $\gamma_L(G) = \Omega(\sqrt{n})$.

Tight:



Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Let G be a graph on n vertices, $\gamma_L(G) = k$.

- If G is unit interval, then $n \leq 3k 1$.
- If G is *bipartite* permutation, then $n \leq 3k + 2$.
- If G is a cograph, then $n \leq 3k$.

Set $X \subseteq V(G)$ is shattered:

for every subset $S \subseteq X$, there is a vertex v with $N[v] \cap X = S$

V-C dimension of G: maximum size of a shattered set in G

Set $X \subseteq V(G)$ is shattered:

for every subset $S \subseteq X$, there is a vertex v with $N[v] \cap X = S$

V-C dimension of G: maximum size of a shattered set in G

Theorem (Bousquet, Lagoutte, Li, Parreau, Thomassé, 2014+)

G graph of order n, $\gamma_L(G) = k$, V-C dimension $\leq d$. Then $n = O(k^d)$.

 \rightarrow interval graphs (d = 2), line graphs (d = 4), permutation graphs (d = 3), unit disk graphs (d = 3), planar graphs (d = 4)...

Set $X \subseteq V(G)$ is shattered:

for every subset $S \subseteq X$, there is a vertex v with $N[v] \cap X = S$

V-C dimension of G: maximum size of a shattered set in G

Theorem (Bousquet, Lagoutte, Li, Parreau, Thomassé, 2014+)

G graph of order n, $\gamma_L(G) = k$, V-C dimension $\leq d$. Then $n = O(k^d)$.

 \rightarrow interval graphs (d = 2), line graphs (d = 4), permutation graphs (d = 3), unit disk graphs (d = 3), planar graphs (d = 4)...

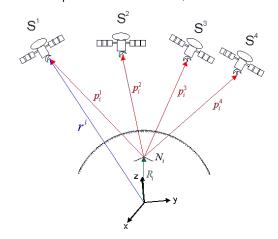
But better bounds exist:

- planar: $n \le 7k 10$ (Slater & Rall, 1984)
- line: $n \leq \frac{8}{9}k^2$ (F., Gravier, Naserasr, Parreau, Valicov, 2013)
- permutation: $n \le O(k^2)$ (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Part II: metric dimension, bounds

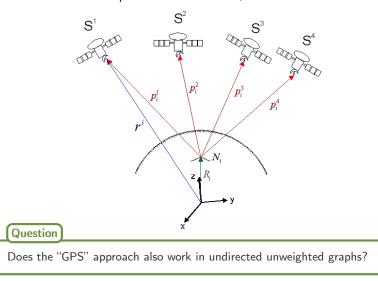
Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS: need to know the exact position of 4 satellites + distance to them



Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS: need to know the exact position of 4 satellites + distance to them



Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

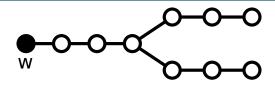
Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

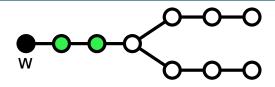
 $R \subseteq V(G)$ resolving set of G:



Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:



Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

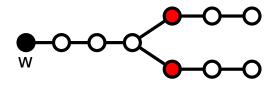
Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

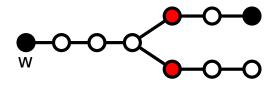
 $R \subseteq V(G)$ resolving set of G:



Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

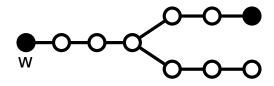
 $R \subseteq V(G)$ resolving set of G:



Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

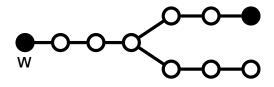


Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

 $\forall u \neq v \text{ in } V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.



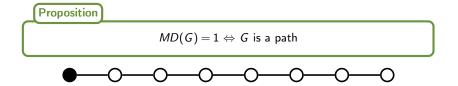
MD(G): metric dimension of G, minimum size of a resolving set of G.

Remark

- Any locating-dominating set is a resolving set, hence $MD(G) \leq \gamma_L(G)$.
- A locating-dominating set can be seen as a "distance-1-resolving set".

Remark

- Any locating-dominating set is a resolving set, hence $MD(G) \leq \gamma_L(G)$.
- A locating-dominating set can be seen as a "distance-1-resolving set".



Theorem (Khuller, Raghavachari & Rosenfeld, 2002)

G of order n, diameter D, MD(G) = k. Then $n \leq D^k + k$.

(diameter: maximum distance between two vertices)

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)

G of order n, diameter D, MD(G) = k. Then $n \leq D^k + k$.

(diameter: maximum distance between two vertices)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

G permutation graph or interval graph of order *n*, MD(G) = k, diameter *D*. Then $n = O(Dk^2)$ i.e. $k = \Omega(\sqrt{\frac{n}{D}})$.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)

G of order n, diameter D, MD(G) = k. Then $n \leq D^k + k$.

(diameter: maximum distance between two vertices)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

G permutation graph or interval graph of order *n*, MD(G) = k, diameter *D*. Then $n = O(Dk^2)$ i.e. $k = \Omega(\sqrt{\frac{n}{D}})$.

 \rightarrow Proofs are similar as for locating-dominating sets.

 \rightarrow Bounds are tight (up to constant factors).

Part III: Complexity and algorithms

INPUT: Graph *G*, integer *k*. **QUESTION:** Is there a locating-dominating set of *G* of size *k*?

- polynomial for graphs of bounded cliquewidth via MSOL (Courcelle)
- NP-complete for:
 - bipartite (Charon, Hudry, Lobstein, 2003)
 - planar bipartite unit disk (Müller & Sereni, 2009)
 - planar arbitrary girth (Auger, 2010)
 - planar bipartite subcubic (F. 2013)
 - co-bipartite, split (F. 2013)
 - line (F., Gravier, Naserasr, Parreau, Valicov, 2013)

INPUT: Graph *G*, integer *k*. **QUESTION:** Is there a locating-dominating set of *G* of size *k*?

- $O(\log \Delta)$ -approximable (SET COVER)
- constant *c*-approximation for:
 - planar, c = 7 (Slater, Rall, 1984)
 - line, c = 4 (F., Gravier, Naserasr, Parreau, Valicov, 2013)
 - interval, c = 2 (Bousquet, Lagoutte, Li, Parreau, Thomassé, 2014+)
 - unit interval, PTAS
- hard to approximate within $o(\log n)$ for:
 - general graphs (Laifenfeld, Trachtenberg + Suomela 2007)
 - bipartite, split, co-bipartite (F. 2013)
- APX-hard for:
 - line (F., Gravier, Naserasr, Parreau, Valicov, 2013)
 - subcubic bipartite (F. 2013)

INPUT: Graph *G*, integer *k*. **QUESTION:** Is there a locating-dominating set of *G* of size *k*?

• Trivially FPT for parameter k because $n \le 2^k + k - 1$: whole graph is kernel! $\longrightarrow n^{O(k)} = 2^{k^{O(k)}}$ -time brute-force algorithm Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

Reduction from 3-DIMENSIONAL MATCHING:

- INPUT: A, B, C sets and $\mathscr{T} \subset A \times B \times C$ triples
- QUESTION: is there a perfect 3-dimensional matching $M \subset T$, i.e., each element of $A \cup B \cup C$ appears exactly once in M?

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

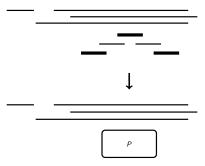
Reduction from 3-DIMENSIONAL MATCHING:

- INPUT: A, B, C sets and $\mathscr{T} \subset A \times B \times C$ triples
- QUESTION: is there a perfect 3-dimensional matching $M \subset T$, i.e., each element of $A \cup B \cup C$ appears exactly once in M?

Main idea: an interval can separate pairs of intervals far away from each other (without affecting what lies in between)

Dominating gadget: ensure all intervals are dominated and most, separated.

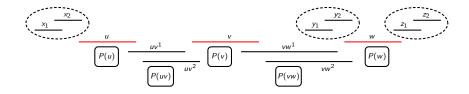
Dominating gadget: ensure all intervals are dominated and most, separated.



Complexity - transmitters

Transmitter gadget: to separate $\{uv^1, uv^2\}$ and $\{vw^1, vw^2\}$, either:

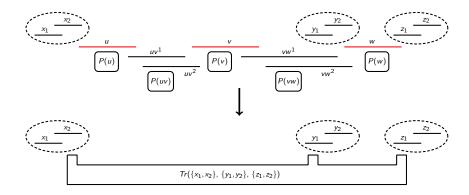
- 1. take only v into solution, or
- 2. take both u, w and separate pairs $\{x_1, x_2\}, \{y_1, y_2\}, \{z_1, z_2\}$ "for free".



Complexity - transmitters

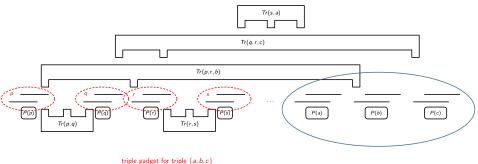
Transmitter gadget: to separate $\{uv^1, uv^2\}$ and $\{vw^1, vw^2\}$, either:

- 1. take only v into solution, or
- 2. take both u, w and separate pairs $\{x_1, x_2\}, \{y_1, y_2\}, \{z_1, z_2\}$ "for free".



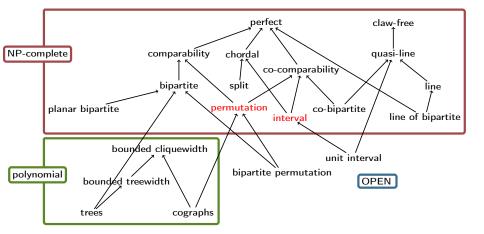
3DM instance on 3n elements, *m* triples.

 \exists 3-dimensional matching $\iff \gamma_L(G) \le 94m + 10n$



three element gadgets for a, b and c

Complexity of LOCATING-DOMINATING SET



INPUT: Graph *G*, integer *k*. **QUESTION:** Is there a resolving set of *G* of size *k*?

- polynomial for:
 - trees (simple algorithm, Slater 1975)
 - outerplanar (Díaz, van Leeuwen, Pottonen, Serna, 2012)
 - bounded cyclomatic number (Epstein, Levin, Woeginger, 2012)
 - cographs (Epstein, Levin, Woeginger, 2012)
- NP-complete for:
 - general graphs (Garey & Johnson 1979)
 - planar (Díaz, van Leeuwen, Pottonen, Serna, 2012)
 - bipartite, co-bipartite, line, split (Epstein, Levin, Woeginger, 2012)
 - Gabriel unit disk (Hoffmann & Wanke 2012)

INPUT: Graph G, integer k. **QUESTION:** Is there a resolving set of G of size k?

- $O(\log n)$ -approximable (SET COVER)
- hard to approximate within $o(\log n)$ for:
 - general graphs (Beerliova et al., 2006)
 - bipartite subcubic (Hartung & Nichterlein, 2013)

INPUT: Graph *G*, integer *k*. **QUESTION:** Is there a resolving set of *G* of size *k*?

W[2]-hard for parameter k, even for bipartite subcubic graphs (Hartung & Nichterlein, 2013) \rightarrow probably no f(k)poly(n)-time (FPT) algorithm

G graph of diameter 2. S resolving set of G.

ightarrow Every vertex in $V(G) \setminus S$ is distiguished by its neighborhood within S

G graph of diameter 2. S resolving set of G.

 \rightarrow Every vertex in $V(G) \setminus S$ is distiguished by its neighborhood within S

Almost a locating-dominating set

G graph of diameter 2. S resolving set of G.

 \rightarrow Every vertex in $V(G) \setminus S$ is distiguished by its neighborhood within S

Almost a locating-dominating set

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

G graph of diameter 2. S resolving set of G.

 \rightarrow Every vertex in $V(G) \setminus S$ is distiguished by its neighborhood within S

Almost a locating-dominating set

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

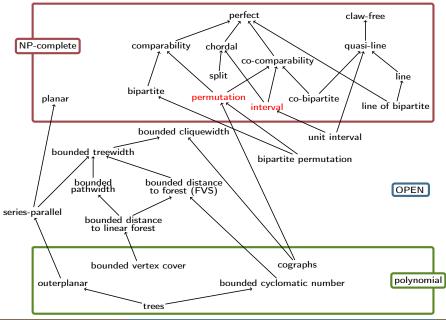
Reduction from LOCATING-DOMINATING SET to METRIC DIMENSION:

 $MD(G') = \gamma_L(G) + 2$

Corollary (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

METRIC DIMENSION is NP-complete for graphs that are both interval and permutation (and have diameter 2).

Complexity of METRIC DIMENSION



Florent Foucaud

Recall: METRIC DIMENSION W[2]-hard even for subcubic bipartite graphs \rightarrow probably no f(k)poly(n)-time algorithm

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

METRIC DIMENSION can be solved in time $2^{O(k^4)}n$ on interval graphs.

Recall: METRIC DIMENSION W[2]-hard even for subcubic bipartite graphs \rightarrow probably no f(k)poly(n)-time algorithm

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

METRIC DIMENSION can be solved in time $2^{O(k^4)}n$ on interval graphs.

Ideas:

- use dynamic programming on a path-decomposition of G^4 .
- each bag has size $O(k^2)$.
- it suffices to separate vertices at distance 2
- "transmission" lemma for separation constraints

ONE MORE SLIDE

Open problems

- Solve the conjecture: $\gamma_L(G) \leq \frac{n}{2}$ if G twin-free?
- \bullet Investigate bounds for other "geometric" graphs, for MD and γ_L
- Complexity of LOCATING-DOMINATING SET, METRIC DIMENSION on unit interval graphs
- Complexity of METRIC DIMENSION for bounded treewidth
- Parameterized complexity of METRIC DIMENSION: planar graphs, chordal graphs, permutation graphs...

Open problems

- Solve the conjecture: $\gamma_L(G) \leq \frac{n}{2}$ if G twin-free?
- \bullet Investigate bounds for other "geometric" graphs, for MD and γ_L
- Complexity of LOCATING-DOMINATING SET, METRIC DIMENSION on unit interval graphs
- Complexity of METRIC DIMENSION for bounded treewidth
- Parameterized complexity of METRIC DIMENSION: planar graphs, chordal graphs, permutation graphs...

THANKS FOR YOUR ATTENTION

