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Fire detection in a building
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@ Detector can detect fire in its room and its neighborhood (through a door).
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@ Each room must contain a detector or have one in an adjacent room.
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Fire detection in a building

RO

@ Detector can detect fire in its room and its neighborhood (through a door).

@ Each room must contain a detector or have one in an adjacent room.
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Modelization with a graph
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e Graph G =(V,E). Vertices: rooms.
Edges: between any two rooms connected by a door
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Modelization with a graph

e Graph G =(V,E). Vertices: rooms.
Edges: between any two rooms connected by a door

@ Set of detectors = dominating set D C V: Vue V N[ulnD #0

@ Domination number y(G): smallest size of a dominating set of G
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Back to the building
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Back to the building
@

|.|__I_

Where is the fire ?
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Back to the building

Florent Foucaud

?

@ —

Where is the fire ?

To locate the fire, we need more detectors.

Identification problems in graphs
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Locating the fire
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Locating the fire
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b,c

In each room with no detector, set of dominating detectors is distinct.
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Locating the fire

b,c

Peter Slater, 1980's. Locating-dominating set D:
subset of vertices of G = (V/, E) which is:

e dominating : Yue V,N[ulND # 0,
@ locating : Yu,v € V\D,N[u]nD # N[v]ND.
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Locating the fire
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Peter Slater, 1980's. Locating-dominating set D:
subset of vertices of G = (V/, E) which is:

e dominating : Yue V,N[ulND # 0,
@ locating : Yu,v € V\D,N[u]nD # N[v]ND.

7.(G): location-domination number of G,
minimum size of a locating-dominating set of G.
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Locating the fire

b,c

Peter Slater, 1980's. Locating-dominating set D:
subset of vertices of G = (V/, E) which is:

e dominating : Yue V,N[ulND # 0,
@ locating : Yu,v € V\D,N[u]nD # N[v]ND.

7.(G): location-domination number of G,
minimum size of a locating-dominating set of G.

Remark: y(G) < 7.(G)
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Examples: paths

Domination number: Y(Pp) = [§]

O—8—OC—"T70C—"8O0C—0C—"08—O0C—"0C—"8—O0—0C—=8——0
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Examples: paths

Domination number: Y(Pp) = [§]

O—8—OC—"T70C—"8O0C—0C—"08—O0C—"0C—"8—O0—0C—=8——0

Location-domination number: y; (Pp) = [%W

o0—®ee—GC—"0——0O0—10C—"e 00— 0O0—0C—e—0—8—oO0
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Upper bounds on the location-domination number
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Theorem (Domination bound — Ore, 1960’5)]

G graph of order n, no isolated vertices. Then ¥(G) < 3.
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n

G graph of order n, no isolated vertices. Then ¥(G) < 3.

Tight examples: I i

Theorem (Location-domination bound — Slater, 1980’ s)

G graph of order n, no isolated vertices. Then 7 (G) <n—1.
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Theorem (Domination bound — Ore, 1960’5)]

n

G graph of order n, no isolated vertices. Then ¥(G) < 3.

Tight examples: I i

Theorem (Location-domination bound — Slater, 1980’ s)

G graph of order n, no isolated vertices. Then 7 (G) <n—1.

Tight examples: E %

Remark: tight examples contain many twin-vertices!!
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Upper bound - a conjecture

Theorem (Domination bound — Ore, 1960’5)]

G graph of order n, no isolated vertices. Then ¥(G) < 3.

Theorem (Location-domination bound — Slater, 1980’5)]

G graph of order n, no isolated vertices. Then 7 (G) <n—1.
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Theorem (Location-domination bound — Slater, 1980’5)]
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Conjecture (Garijo, Gonzalez & Marquez, 2014)]
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G graph of order n, no isolated vertices. Then 7 (G) <n—1.

Conjecture (Garijo, Gonzalez & Marquez, 2014)]

G graph of order n, no isolated vertices, no twins. Then 7, (G) < 3.

If true, tight: 1. domination-extremal graphs

!
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Upper bound - a conjecture

Theorem (Domination bound — Ore, 1960’5)]

G graph of order n, no isolated vertices. Then ¥(G) < 3.

Theorem (Location-domination bound — Slater, 1980’5)]

G graph of order n, no isolated vertices. Then 7 (G) <n—1.

Conjecture (Garijo, Gonzalez & Marquez, 2014)]

G graph of order n, no isolated vertices, no twins. Then 7, (G) < 3.

If true, tight: 2. a similar construction

}
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Upper bound - a conjecture

Theorem (Domination bound — Ore, 1960’5)]

G graph of order n, no isolated vertices. Then ¥(G) < 3.

Theorem (Location-domination bound — Slater, 1980’5)]

G graph of order n, no isolated vertices. Then 7 (G) <n—1.

Conjecture (Garijo, Gonzalez & Marquez, 2014)]

G graph of order n, no isolated vertices, no twins. Then 7, (G) < 3.

If true, tight: 3. a family with domination number 2

Clique on {xj 1. X2k}

Clique on {x1...,xk}
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Upper bound - a conjecture

Conjecture (Garijo, Gonzalez & Marquez, 2014)]

G graph of order n, no isolated vertices, no twins. Then 7, (G) < 7.

Theorem (Garijo, Gonzalez & Marquez, 2014)]

Conjecture true if G has no 4-cycles, or if G is bipartite.
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Upper bound - a conjecture

Conjecture (Garijo, Gonzalez & Marquez, 2014)]

G graph of order n, no isolated vertices, no twins. Then 7, (G) < 7.

Theorem (Garijo, Gonzalez & Marquez, 2014)]

Conjecture true if G has no 4-cycles, or if G is bipartite.

Proof ideas:
e no 4-cycles: use a maximum matching

e bipartite: every vertex cover is a locating-dominating set
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Upper bound - a conjecture

Conjecture (Garijo, Gonzalez & Marquez, 2014)]

G graph of order n, no isolated vertices, no twins. Then 7, (G) < 7.

Theorem (F., Henning, Léwenstein, Sasse, 2014+)]

Conjecture true if G is split graph or complement of bipartite graph.

Theorem (F., Henning, 2014+)]

Conjecture true if G is: e cubic graph
e line graph

Split graph: clique + independent set
Cubic graph: all degrees equal to 3

Line graph: Intersection graph of the edges of a graph
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Upper bound - a conjecture

Conjecture (Garijo, Gonzalez & Marquez, 2014)]

G graph of order n, no isolated vertices, no twins. Then 7, (G) < 7.

Theorem (F., Henning, Léwenstein, Sasse, 2014+)]

Conjecture true if G is split graph or complement of bipartite graph.

Theorem (F., Henning, 2014+)]

Conjecture true if G is: e cubic graph
e line graph

Remark: Nontrivial proofs using very different techniques!
— Conjecture seems difficult.
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Upper bound - a conjecture

Conjecture (Garijo, Gonzalez & Marquez, 2014)]

n

G graph of order n, no isolated vertices, no twins. Then 7, (G) < 7.
Theorem (F., Henning, Ldwenstein, Sasse, 2014+)]
G graph of order n, no isolated vertices, no twins. Then y.(G) < % n.

Florent Foucaud
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Lower bounds on the location-domination number
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Theorem (Slater, 1980’5)]

G graph of order n, ¥ (G) = k. Then n <2k +k—1,ie y.(G)=Q(logn).
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Theorem (Slater, 1980'5)]

G graph of order n, ¥ (G) = k. Then n <2k +k—1,ie y.(G)=Q(logn).

Tight example (k =4):
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Theorem (Slater, 1980’5)]

G graph of order n, ¥ (G) = k. Then n <2k +k—1,ie y.(G)=Q(logn).

Theorem (Slater, 1980'5)]

G tree of order n, ¥ (G) = k. Then n<3k—1, i.e. 7 (G)> %1

Theorem (Rall & Slater, 1980'5)]

G planar graph, order n, ¥, (G) = k. Then n <7k —10, i.e. 7.(G) > %10
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Lower bounds

Theorem (Slater, 1980'5)]

G graph of order n, ¥ (G) = k. Then n <2k +k—1,ie y.(G)=Q(logn).

Theorem (Slater, 1980'5)]

G tree of order n, ¥ (G) = k. Then n<3k—1, i.e. 7 (G)> %1

Theorem (Rall & Slater, 1980'5)]

G planar graph, order n, ¥, (G) = k. Then n <7k —10, i.e. 7.(G) > %10

Tight examples: FIo-2 T Figure 3.
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Interval graphs

Definition - Interval graph]

Intersection graph of intervals of the real line.

I3
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

G interval graph of order n, ¥, (G) = k.

Then n < XE53) e y(G) = Q(v/n).

Florent Foucaud Identification problems in graphs 14 / 38



Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

G interval graph of order n, ¥, (G) = k.

Then n < XE53) e y(G) = Q(v/n).

o Locating-dominating D of size k.

@ Define zones using the right points of intervals in D.
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

G interval graph of order n, ¥, (G) = k.
Then n < XE53) e y(G) = Q(v/n).

1 2
— —
1-1 2-3
3
— —
1-2 2-4
1-4 4
—
1-3 3-4

o Locating-dominating D of size k.
@ Define zones using the right points of intervals in D.

o Each vertex intersects a consecutive set of intervals of D when ordered by
left points.
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

G interval graph of order n, ¥, (G) = k.
Then n < XE53) e y(G) = Q(v/n).

1 2
— —
1-1 2-3
3
—
1-2 2-4
1-4 4
—
1-3 3-4

o Locating-dominating D of size k.
@ Define zones using the right points of intervals in D.

o Each vertex intersects a consecutive set of intervals of D when ordered by
left points.

— <Yk (k—i)+k=4EB)
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

G interval graph of order n, ¥, (G) = k.

Then n < XE53) e y(G) = Q(v/n).

Tight:
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Permutation graphs

Definition - Permutation graph]

Given two parallel lines A and B:
intersection graph of segments joining A and B.

3 5
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Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

G permutation graph of order n, ¥, (G) = k.
Then n < k? + k-2, i.e. 7.(G)=Q(/n).
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Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

G permutation graph of order n, ¥, (G) = k.
Then n < k? + k-2, i.e. 7.(G)=Q(/n).

/ same neighborhood in D
SINL L
4 '

(>
A

< "%’
> 4' D
1!4»1‘\\

@ Locating-sominating set D of size k: k+1 “top zones" and k+ 1 “bottom
zones'

@ Only one segment in V' \ D for one pair of zones
= n<(k+1)2+k
o Careful counting for the precise bound
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Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

G permutation graph of order n, ¥, (G) = k.
Then n < k? + k-2, i.e. 7.(G)=Q(/n).

Tight:
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Bounds for subclasses of interval /permutation

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

Let G be a graph on n vertices, 7, (G) = k.

o If G is unit interval, then n <3k —1.
o If G is bipartite permutation, then n <3k +2.

e If G is a cograph, then n <3k.
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Vapnis-Chervonenkis dimension

Set X C V(G) is shattered:
for every subset S C X, there is a vertex v with N[v]nX =5

V-C dimension of G: maximum size of a shattered set in G
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Vapnis-Chervonenkis dimension

Set X C V(G) is shattered:
for every subset S C X, there is a vertex v with N[v]nX =5

V-C dimension of G: maximum size of a shattered set in G

Theorem (Bousquet, Lagoutte, Li, Parreau, Thomassé, 2014+)]

G graph of order n, 7, (G) = k, V-C dimension < d. Then n= O(k9).

— interval graphs (d =2), line graphs (d = 4), permutation graphs (d = 3),
unit disk graphs (d = 3), planar graphs (d = 4)...
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Vapnis-Chervonenkis dimension

Set X C V(G) is shattered:
for every subset S C X, there is a vertex v with N[v]nX =5

V-C dimension of G: maximum size of a shattered set in G

Theorem (Bousquet, Lagoutte, Li, Parreau, Thomassé, 2014+)]

G graph of order n, 7, (G) = k, V-C dimension < d. Then n= O(k9).

— interval graphs (d = 2), line graphs (d = 4), permutation graphs (d = 3),
unit disk graphs (d = 3), planar graphs (d = 4)...

But better bounds exist:

@ planar: n <7k —10 (Slater & Rall, 1984)
o line: n< %kz (F., Gravier, Naserasr, Parreau, Valicov, 2013)

@ permutation: n < O(k2) (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
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Part Il: metric dimension, bounds
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Determination of Position in 3D euclidean space

GPS/GLONASS//Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them
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Determination of Position in 3D euclidean space

GPS/GLONASS//Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them

Question

Does the “"GPS" approach also work in undirected unweighted graphs?
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Metric dimension

Now, w € V(G) distinguishes {u, v} if dist(w,u) # dist(w, v)

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)]

R C V(G) resolving set of G:
Vu# v in V(G), there exists w € R that distinguishes {u,v}.
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Metric dimension

Now, w € V(G) distinguishes {u, v} if dist(w,u) # dist(w, v)
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Metric dimension

Now, w € V(G) distinguishes {u, v} if dist(w,u) # dist(w, v)

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)]

R C V(G) resolving set of G:
Vu# v in V(G), there exists w € R that distinguishes {u,v}.

MD(G): metric dimension of G, minimum size of a resolving set of G.
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Remark

e Any locating-dominating set is a resolving set, hence MD(G) < v, (G).

e A locating-dominating set can be seen as a “distance-1-resolving set”.
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Remark

e Any locating-dominating set is a resolving set, hence MD(G) < v, (G).

e A locating-dominating set can be seen as a “distance-1-resolving set”.

Proposition

MD(G) =1« G is a path

¢—C0—"TO—"C—"0O—C0O—CO—-0
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Bounds with diameter

Example of path: no bound n < f(MD(G)) possible.
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Bounds with diameter

Example of path: no bound n < f(MD(G)) possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)]

G of order n, diameter D, MD(G) = k. Then n < DK 4 k.

(diameter: maximum distance between two vertices)
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Bounds with diameter

Example of path: no bound n < f(MD(G)) possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)]

G of order n, diameter D, MD(G) = k. Then n < DK 4 k.

(diameter: maximum distance between two vertices)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

G permutation graph or interval graph of order n, MD(G) = k,
diameter D. Then n= O(Dk?) i.e. k=Q(\/B).
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Bounds with diameter

Example of path: no bound n < f(MD(G)) possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)]

G of order n, diameter D, MD(G) = k. Then n < DK 4 k.

(diameter: maximum distance between two vertices)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

G permutation graph or interval graph of order n, MD(G) = k,
diameter D. Then n= O(Dk?) i.e. k=Q(\/B).

— Proofs are similar as for locating-dominating sets.

— Bounds are tight (up to constant factors).
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Part Ill: Complexity and algorithms
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LOCATING-DOMINATING SET
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Complexity of LOCATING-DOMINATING SET

LOCATING-DOMINATING SET)

INPUT: Graph G, integer k.
QUESTION: Is there a locating-dominating set of G of size k7

e polynomial for graphs of bounded cliquewidth via MSOL (Courcelle)

e NP-complete for:
@ bipartite (Charon, Hudry, Lobstein, 2003)
planar bipartite unit disk (Miiller & Sereni, 2009)
planar arbitrary girth (Auger, 2010)
planar bipartite subcubic (F. 2013)
co-bipartite, split (F. 2013)
line (F., Gravier, Naserasr, Parreau, Valicov, 2013)
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Complexity of LOCATING-DOMINATING SET

LOCATING-DOMINATING SET)

INPUT: Graph G, integer k.
QUESTION: Is there a locating-dominating set of G of size k7

e O(log A)-approximable (SET COVER)

e constant c-approximation for:
@ planar, ¢ =7 (Slater, Rall, 1984)
o line, c =4 (F., Gravier, Naserasr, Parreau, Valicov, 2013)
@ interval, c =2 (Bousquet, Lagoutte, Li, Parreau, Thomassé, 2014+)
@ unit interval, PTAS

e hard to approximate within o(logn) for:
o general graphs (Laifenfeld, Trachtenberg + Suomela 2007)
@ bipartite, split, co-bipartite (F. 2013)

o APX-hard for:

o line (F., Gravier, Naserasr, Parreau, Valicov, 2013)
@ subcubic bipartite (F. 2013)
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Complexity of LOCATING-DOMINATING SET

LOCATING-DOMINATING SET)

INPUT: Graph G, integer k.
QUESTION: Is there a locating-dominating set of G of size k7

e Trivially FPT for parameter k because n < 2K + k—1: whole graph is kernell

O(k) — kO

—n '_time brute-force algorithm
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Complexity - Interval and permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

LOCATING-DOMINATING SET is NP-complete for graphs that are both
interval and permutation.
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Complexity - Interval and permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

LOCATING-DOMINATING SET is NP-complete for graphs that are both
interval and permutation.

Reduction from 3-DIMENSIONAL MATCHING:
@ INPUT: A, B, C sets and 7 C Ax Bx C triples

@ QUESTION: is there a perfect 3-dimensional matching M C T, i.e., each element
of AUBU C appears exactly once in M?
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LOCATING-DOMINATING SET is NP-complete for graphs that are both
interval and permutation.

Reduction from 3-DIMENSIONAL MATCHING:
@ INPUT: A, B, C sets and 7 C Ax Bx C triples

@ QUESTION: is there a perfect 3-dimensional matching M C T, i.e., each element
of AUBU C appears exactly once in M?

Main idea: an interval can separate pairs of intervals far away from each other
(without affecting what lies in between)
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Complexity - gadgets

Dominating gadget: ensure all intervals are dominated and most, separated.
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Complexity - transmitters

Transmitter gadget: to separate {uv!,uv?} and {vwl,vw?}, either:
1. take only v into solution, or

2. take both u,w — and separate pairs {x1,x2}, {y1,¥2}, {z1,22} "for free".
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Complexity - reduction

3DM instance on 3n elements, m triples.

3 3-dimensional matching <= 7, (G) < 94m+10n

triple gadget for triple {a,b,c}
three element gadgets for a,b and ¢
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Complexity of LOCATING-DOMINATING SET
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METRIC DIMENSION
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Complexity of METRIC DIMENSION

METRIC DIMENSION)

INPUT: Graph G, integer k.
QUESTION: Is there a resolving set of G of size k?

e polynomial for:
o trees (simple algorithm, Slater 1975)
@ outerplanar (Diaz, van Leeuwen, Pottonen, Serna, 2012)
@ bounded cyclomatic number (Epstein, Levin, Woeginger, 2012)
@ cographs (Epstein, Levin, Woeginger, 2012)

e NP-complete for:
o general graphs (Garey & Johnson 1979)
@ planar (Diaz, van Leeuwen, Pottonen, Serna, 2012)
@ bipartite, co-bipartite, line, split (Epstein, Levin, Woeginger, 2012)
@ Gabriel unit disk (Hoffmann & Wanke 2012)
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Complexity of METRIC DIMENSION

METRIC DIMENSION)

INPUT: Graph G, integer k.
QUESTION: Is there a resolving set of G of size k?

e O(log n)-approximable (SET COVER)

e hard to approximate within o(logn) for:
o general graphs (Beerliova et al., 2006)
@ bipartite subcubic (Hartung & Nichterlein, 2013)
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Complexity of METRIC DIMENSION

METRIC DIMENSION)

INPUT: Graph G, integer k.
QUESTION: Is there a resolving set of G of size k?

W(2]-hard for parameter k, even for bipartite subcubic graphs
(Hartung & Nichterlein, 2013)
— probably no f(k)poly(n)-time (FPT) algorithm
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Interval and permutation graphs

G graph of diameter 2. S resolving set of G.
— Every vertex in V(G)\ S is distiguished by its neighborhood within S
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Interval and permutation graphs

G graph of diameter 2. S resolving set of G.
— Every vertex in V(G)\ S is distiguished by its neighborhood within S

Almost a locating-dominating set

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

LOCATING-DOMINATING SET is NP-complete for graphs that are both
interval and permutation.

Reduction from LOCATING-DOMINATING SET to METRIC DIMENSION:

MD(G") = %(G)+2

Corollary (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

METRIC DIMENSION is NP-complete for graphs that are both interval and
permutation (and have diameter 2).
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Complexity of METRIC DIMENSION
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An FPT algorithm for METRIC DIMENSION on interval graphs

Recall: METRIC DIMENSION W/[2]-hard even for subcubic bipartite graphs
— probably no f(k)poly(n)-time algorithm

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

METRIC DIMENSION can be solved in time 20(k*) p on interval graphs.
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An FPT algorithm for METRIC DIMENSION on interval graphs

Recall: METRIC DIMENSION W/[2]-hard even for subcubic bipartite graphs
— probably no f(k)poly(n)-time algorithm

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

METRIC DIMENSION can be solved in time 20(k*) p on interval graphs.

Ideas:
e use dynamic programming on a path-decomposition of G*.

e each bag has size O(k?).
e it suffices to separate vertices at distance 2

e “transmission” lemma for separation constraints
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ONE MORE SLIDE
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Open problems

Solve the conjecture: 7, (G) < 5 if G twin-free?

Investigate bounds for other “geometric” graphs, for MD and 7y,
Complexity of LOCATING-DOMINATING SET, METRIC DIMENSION on

unit interval graphs
Complexity of METRIC DIMENSION for bounded treewidth

Parameterized complexity of METRIC DIMENSION: planar graphs,
chordal graphs, permutation graphs...
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THANKS FOR YOUR ATTENTION
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