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Part I: bounds for location-domination
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Fire detection in a building

Detector can detect fire in its room and its neighborhood (through a door).

Each room must contain a detector or have one in an adjacent room.
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Modelization with a graph

Graph G = (V ,E). Vertices: rooms.
Edges: between any two rooms connected by a door

Set of detectors = dominating set D ⊆ V : ∀u ∈ V ,N[u]∩D 6= /0

Domination number γ(G): smallest size of a dominating set of G
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Where is the fire ?

To locate the fire, we need more detectors.
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Locating the fire
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Locating the fire
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In each room with no detector, set of dominating detectors is distinct.
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Locating the fire
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Peter Slater, 1980’s. Locating-dominating set D:
subset of vertices of G = (V ,E) which is:

dominating : ∀u ∈ V ,N[u]∩D 6= /0,

locating : ∀u,v ∈ V \D,N[u]∩D 6= N[v ]∩D.
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minimum size of a locating-dominating set of G .
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Locating the fire
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Peter Slater, 1980’s. Locating-dominating set D:
subset of vertices of G = (V ,E) which is:

dominating : ∀u ∈ V ,N[u]∩D 6= /0,

locating : ∀u,v ∈ V \D,N[u]∩D 6= N[v ]∩D.

γL(G): location-domination number of G ,
minimum size of a locating-dominating set of G .

Remark: γ(G)≤ γL(G)
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Examples: paths

Domination number: γ(Pn) =
⌈n

3
⌉
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Examples: paths

Domination number: γ(Pn) =
⌈n

3
⌉

Location-domination number: γL(Pn) =
⌈ 2n

5
⌉
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Upper bounds on the location-domination number
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Upper bounds

G graph of order n, no isolated vertices. Then γ(G)≤ n
2 .

Theorem (Domination bound — Ore, 1960’s)
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Upper bounds

G graph of order n, no isolated vertices. Then γ(G)≤ n
2 .

Theorem (Domination bound — Ore, 1960’s)

Tight examples:

G graph of order n, no isolated vertices. Then γL(G)≤ n−1.

Theorem (Location-domination bound — Slater, 1980’s)

Tight examples:

Remark: tight examples contain many twin-vertices!!
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Upper bound - a conjecture

G graph of order n, no isolated vertices. Then γ(G)≤ n
2 .

Theorem (Domination bound — Ore, 1960’s)

G graph of order n, no isolated vertices. Then γL(G)≤ n−1.

Theorem (Location-domination bound — Slater, 1980’s)
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If true, tight: 1. domination-extremal graphs
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G graph of order n, no isolated vertices. Then γ(G)≤ n
2 .

Theorem (Domination bound — Ore, 1960’s)

G graph of order n, no isolated vertices. Then γL(G)≤ n−1.

Theorem (Location-domination bound — Slater, 1980’s)

G graph of order n, no isolated vertices, no twins. Then γL(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014)

If true, tight: 3. a family with domination number 2

Clique on {xk+1, ...,x2k}

Clique on {x1, ...,xk}

xk+1 xk+2 xk+3 ...
x2k−1 x2k

x1 x2 x3

...
xk−1 xk
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Upper bound - a conjecture

G graph of order n, no isolated vertices, no twins. Then γL(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014)

Conjecture true if G has no 4-cycles, or if G is bipartite.

Theorem (Garijo, González & Márquez, 2014)
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Upper bound - a conjecture

G graph of order n, no isolated vertices, no twins. Then γL(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014)

Conjecture true if G has no 4-cycles, or if G is bipartite.

Theorem (Garijo, González & Márquez, 2014)

Proof ideas:

• no 4-cycles: use a maximum matching

• bipartite: every vertex cover is a locating-dominating set
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Upper bound - a conjecture

G graph of order n, no isolated vertices, no twins. Then γL(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014)

Conjecture true if G is split graph or complement of bipartite graph.

Theorem (F., Henning, Löwenstein, Sasse, 2014+)

Conjecture true if G is: • cubic graph
• line graph

Theorem (F., Henning, 2014+)

Split graph: clique + independent set

Cubic graph: all degrees equal to 3

Line graph: Intersection graph of the edges of a graph
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Upper bound - a conjecture

G graph of order n, no isolated vertices, no twins. Then γL(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014)

Conjecture true if G is split graph or complement of bipartite graph.

Theorem (F., Henning, Löwenstein, Sasse, 2014+)

Conjecture true if G is: • cubic graph
• line graph

Theorem (F., Henning, 2014+)

Remark: Nontrivial proofs using very different techniques!
→ Conjecture seems difficult.
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Upper bound - a conjecture

G graph of order n, no isolated vertices, no twins. Then γL(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then γL(G)≤ 2
3n.

Theorem (F., Henning, Löwenstein, Sasse, 2014+)
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Lower bounds on the location-domination number
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Lower bounds

G graph of order n, γL(G) = k. Then n ≤ 2k +k−1, i.e. γL(G) = Ω(logn).

Theorem (Slater, 1980’s)
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Lower bounds

G graph of order n, γL(G) = k. Then n ≤ 2k +k−1, i.e. γL(G) = Ω(logn).

Theorem (Slater, 1980’s)

Tight example (k = 4):
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Lower bounds

G graph of order n, γL(G) = k. Then n ≤ 2k +k−1, i.e. γL(G) = Ω(logn).

Theorem (Slater, 1980’s)

G tree of order n, γL(G) = k. Then n ≤ 3k−1, i.e. γL(G)≥ n+1
3 .

Theorem (Slater, 1980’s)

G planar graph, order n, γL(G) = k. Then n ≤ 7k−10, i.e. γL(G)≥ n+10
7 .

Theorem (Rall & Slater, 1980’s)
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Interval graphs

Intersection graph of intervals of the real line.

Definition - Interval graph

I1 I4

I2 I5

I3
1

2

3

4 5
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Lower bound for interval graphs

G interval graph of order n, γL(G) = k.

Then n ≤ k(k+3)
2 , i.e. γL(G) = Ω(

√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
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Lower bound for interval graphs

G interval graph of order n, γL(G) = k.

Then n ≤ k(k+3)
2 , i.e. γL(G) = Ω(

√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

1 2

3

4

1−1 2−3

1−2 2−4

1−4

1−3 3−4

Locating-dominating D of size k.

Define zones using the right points of intervals in D.

Each vertex intersects a consecutive set of intervals of D when ordered by
left points.

→ n ≤ ∑
k
i=1(k− i) +k = k(k+3)

2 .
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Lower bound for interval graphs

G interval graph of order n, γL(G) = k.

Then n ≤ k(k+3)
2 , i.e. γL(G) = Ω(

√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Tight:
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Permutation graphs

Given two parallel lines A and B:
intersection graph of segments joining A and B.

Definition - Permutation graph
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Lower bound for permutation graphs

G permutation graph of order n, γL(G) = k.
Then n ≤ k2 +k−2, i.e. γL(G) = Ω(

√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Locating-sominating set D of size k: k +1 “top zones” and k +1 “bottom
zones”

Only one segment in V \D for one pair of zones

→ n ≤ (k +1)2 +k

Careful counting for the precise bound

Tight:
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Bounds for subclasses of interval/permutation

Let G be a graph on n vertices, γL(G) = k.

If G is unit interval, then n ≤ 3k−1.

If G is bipartite permutation, then n ≤ 3k +2.

If G is a cograph, then n ≤ 3k.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
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Vapnis-Chervonenkis dimension

Set X ⊆ V (G) is shattered:
for every subset S ⊆ X , there is a vertex v with N[v ]∩X = S

V-C dimension of G : maximum size of a shattered set in G

G graph of order n, γL(G) = k, V-C dimension ≤ d . Then n = O(kd ).

Theorem (Bousquet, Lagoutte, Li, Parreau, Thomassé, 2014+)

→ interval graphs (d = 2), line graphs (d = 4), permutation graphs (d = 3),
unit disk graphs (d = 3), planar graphs (d = 4)...

But better bounds exist:

planar: n ≤ 7k−10 (Slater & Rall, 1984)

line: n ≤ 8
9k2 (F., Gravier, Naserasr, Parreau, Valicov, 2013)

permutation: n ≤O(k2) (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
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Part II: metric dimension, bounds
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Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them

Does the “GPS” approach also work in undirected unweighted graphs?

Question
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Metric dimension

Now, w ∈ V (G) distinguishes {u,v} if dist(w ,u) 6= dist(w ,v)

R ⊆ V (G) resolving set of G :

∀u 6= v in V (G), there exists w ∈ R that distinguishes {u,v}.

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)
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Metric dimension

Now, w ∈ V (G) distinguishes {u,v} if dist(w ,u) 6= dist(w ,v)

R ⊆ V (G) resolving set of G :

∀u 6= v in V (G), there exists w ∈ R that distinguishes {u,v}.

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

w

MD(G): metric dimension of G , minimum size of a resolving set of G .
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Remarks

• Any locating-dominating set is a resolving set, hence MD(G)≤ γL(G).

• A locating-dominating set can be seen as a “distance-1-resolving set”.

Remark

MD(G) = 1 ⇔ G is a path

Proposition
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Bounds with diameter

Example of path: no bound n ≤ f (MD(G)) possible.

G of order n, diameter D, MD(G) = k. Then n ≤Dk +k.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)

(diameter: maximum distance between two vertices)

G permutation graph or interval graph of order n, MD(G) = k,
diameter D. Then n = O(Dk2) i.e. k = Ω

(√ n
D
)
.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

→ Proofs are similar as for locating-dominating sets.

→ Bounds are tight (up to constant factors).
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Part III: Complexity and algorithms
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LOCATING-DOMINATING SET
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Complexity of LOCATING-DOMINATING SET

INPUT: Graph G , integer k.
QUESTION: Is there a locating-dominating set of G of size k?

LOCATING-DOMINATING SET

• polynomial for graphs of bounded cliquewidth via MSOL (Courcelle)

• NP-complete for:
bipartite (Charon, Hudry, Lobstein, 2003)
planar bipartite unit disk (Müller & Sereni, 2009)
planar arbitrary girth (Auger, 2010)
planar bipartite subcubic (F. 2013)
co-bipartite, split (F. 2013)
line (F., Gravier, Naserasr, Parreau, Valicov, 2013)
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Complexity of LOCATING-DOMINATING SET

INPUT: Graph G , integer k.
QUESTION: Is there a locating-dominating set of G of size k?

LOCATING-DOMINATING SET

• O(log∆)-approximable (SET COVER)

• constant c-approximation for:
planar, c = 7 (Slater, Rall, 1984)
line, c = 4 (F., Gravier, Naserasr, Parreau, Valicov, 2013)
interval, c = 2 (Bousquet, Lagoutte, Li, Parreau, Thomassé, 2014+)
unit interval, PTAS

• hard to approximate within o(logn) for:
general graphs (Laifenfeld, Trachtenberg + Suomela 2007)
bipartite, split, co-bipartite (F. 2013)

• APX-hard for:
line (F., Gravier, Naserasr, Parreau, Valicov, 2013)
subcubic bipartite (F. 2013)
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Complexity of LOCATING-DOMINATING SET

INPUT: Graph G , integer k.
QUESTION: Is there a locating-dominating set of G of size k?

LOCATING-DOMINATING SET

• Trivially FPT for parameter k because n ≤ 2k +k−1: whole graph is kernel!

−→ nO(k) = 2kO(k)
-time brute-force algorithm
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Complexity - Interval and permutation graphs

LOCATING-DOMINATING SET is NP-complete for graphs that are both
interval and permutation.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Reduction from 3-DIMENSIONAL MATCHING:
INPUT: A, B, C sets and T ⊂ A×B×C triples

QUESTION: is there a perfect 3-dimensional matching M ⊂T , i.e., each element
of A∪B ∪C appears exactly once in M?

Main idea: an interval can separate pairs of intervals far away from each other
(without affecting what lies in between)
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Complexity - gadgets

Dominating gadget: ensure all intervals are dominated and most, separated.

P
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Complexity - transmitters

Transmitter gadget: to separate {uv1,uv2} and {vw1,vw2}, either:
1. take only v into solution, or
2. take both u,w — and separate pairs {x1,x2}, {y1,y2}, {z1,z2} “for free”.

x1

x2

u
uv1

uv2

v

y1

y2

vw1

vw2

w

z1

z2

P(u)

P(uv)

P(v)

P(vw)

P(w)

x1

x2
y1

y2
z1

z2

Tr({x1,x2}, {y1,y2}, {z1,z2})
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Complexity - reduction

3DM instance on 3n elements, m triples.

∃ 3-dimensional matching ⇐⇒ γL(G)≤ 94m +10n

. . .

P(p) P(q) P(r) P(s) P(a) P(b) P(c)

Tr(p,q) Tr(r ,s)

Tr(p, r ,b)

Tr(q, r ,c)

Tr(s,a)

three element gadgets for a,b and c
triple gadget for triple {a,b,c}

p q r s

Florent Foucaud Identification problems in graphs 30 / 38



Complexity of LOCATING-DOMINATING SET

trees cographs

bounded cliquewidth

bounded treewidth

unit interval

permutation

bipartite permutation

interval
co-bipartite

line of bipartite

bipartite

planar bipartite

split

co-comparability

quasi-line

line

comparability chordal

claw-freeperfect

polynomial

NP-complete

OPEN
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METRIC DIMENSION
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Complexity of METRIC DIMENSION

INPUT: Graph G , integer k.
QUESTION: Is there a resolving set of G of size k?

METRIC DIMENSION

• polynomial for:
trees (simple algorithm, Slater 1975)
outerplanar (Díaz, van Leeuwen, Pottonen, Serna, 2012)
bounded cyclomatic number (Epstein, Levin, Woeginger, 2012)
cographs (Epstein, Levin, Woeginger, 2012)

• NP-complete for:
general graphs (Garey & Johnson 1979)
planar (Díaz, van Leeuwen, Pottonen, Serna, 2012)
bipartite, co-bipartite, line, split (Epstein, Levin, Woeginger, 2012)
Gabriel unit disk (Hoffmann & Wanke 2012)
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Complexity of METRIC DIMENSION

INPUT: Graph G , integer k.
QUESTION: Is there a resolving set of G of size k?

METRIC DIMENSION

• O(logn)-approximable (SET COVER)

• hard to approximate within o(logn) for:
general graphs (Beerliova et al., 2006)
bipartite subcubic (Hartung & Nichterlein, 2013)
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Complexity of METRIC DIMENSION

INPUT: Graph G , integer k.
QUESTION: Is there a resolving set of G of size k?

METRIC DIMENSION

W[2]-hard for parameter k, even for bipartite subcubic graphs
(Hartung & Nichterlein, 2013)

−→ probably no f (k)poly(n)-time (FPT) algorithm
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Interval and permutation graphs

G graph of diameter 2. S resolving set of G .

→ Every vertex in V (G)\S is distiguished by its neighborhood within S

Almost a locating-dominating set

LOCATING-DOMINATING SET is NP-complete for graphs that are both
interval and permutation.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Reduction from LOCATING-DOMINATING SET to METRIC DIMENSION:

MD(G ′) = γL(G )+2
G

METRIC DIMENSION is NP-complete for graphs that are both interval and
permutation (and have diameter 2).

Corollary (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
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Complexity of METRIC DIMENSION

trees

outerplanar

cographs

bounded cliquewidth

bounded treewidth

bounded
pathwidth

series-parallel

bounded distance
to forest (FVS)

bounded cyclomatic number

bounded distance
to linear forest

bounded vertex cover

unit interval

permutation

bipartite permutation

interval
co-bipartite

line of bipartite

bipartite
planar

split

co-comparability

quasi-line

line

comparability chordal

claw-freeperfect

polynomial

NP-complete

OPEN
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An FPT algorithm for METRIC DIMENSION on interval graphs

Recall: METRIC DIMENSION W[2]-hard even for subcubic bipartite graphs
−→ probably no f (k)poly(n)-time algorithm

METRIC DIMENSION can be solved in time 2O(k4)n on interval graphs.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Ideas:
• use dynamic programming on a path-decomposition of G4.

• each bag has size O(k2).

• it suffices to separate vertices at distance 2

• “transmission” lemma for separation constraints
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ONE MORE SLIDE
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Open problems

Solve the conjecture: γL(G)≤ n
2 if G twin-free?

Investigate bounds for other “geometric” graphs, for MD and γL

Complexity of LOCATING-DOMINATING SET, METRIC DIMENSION on
unit interval graphs

Complexity of METRIC DIMENSION for bounded treewidth

Parameterized complexity of METRIC DIMENSION: planar graphs,
chordal graphs, permutation graphs...

THANKS FOR YOUR ATTENTION

Florent Foucaud Identification problems in graphs 38 / 38



Open problems

Solve the conjecture: γL(G)≤ n
2 if G twin-free?

Investigate bounds for other “geometric” graphs, for MD and γL

Complexity of LOCATING-DOMINATING SET, METRIC DIMENSION on
unit interval graphs

Complexity of METRIC DIMENSION for bounded treewidth

Parameterized complexity of METRIC DIMENSION: planar graphs,
chordal graphs, permutation graphs...

THANKS FOR YOUR ATTENTION

Florent Foucaud Identification problems in graphs 38 / 38


	LD-sets
	Intro
	Upper bounds
	Lower bounds

	Metric dimension
	LD and MD
	Bounds using diameter

	Complexity
	LD-sets
	MD
	MD FPT interval

	Conclusion

