Identification problems in graphs

Bounds and complexity

Florent Foucaud
joint work with:
Mike Henning, Christian Löwenstein, Thomas Sasse and
George Mertzios, Reza Naserasr, Aline Parreau, Petru Valicov

LIMOS, January 2015

Part I: bounds for location-domination

Fire detection in a building

Fire detection in a building

- Detector can detect fire in its room and its neighborhood (through a door).

Fire detection in a building

- Detector can detect fire in its room and its neighborhood (through a door).

Fire detection in a building

- Detector can detect fire in its room and its neighborhood (through a door).

Fire detection in a building

- Detector can detect fire in its room and its neighborhood (through a door).

Fire detection in a building

- Detector can detect fire in its room and its neighborhood (through a door).
- Each room must contain a detector or have one in an adjacent room.

Fire detection in a building

- Detector can detect fire in its room and its neighborhood (through a door).
- Each room must contain a detector or have one in an adjacent room.

Modelization with a graph

- Graph $G=(V, E)$. Vertices: rooms.

Edges: between any two rooms connected by a door

Modelization with a graph

- Graph $G=(V, E)$. Vertices: rooms.

Edges: between any two rooms connected by a door

Modelization with a graph

- Graph $G=(V, E)$. Vertices: rooms.

Edges: between any two rooms connected by a door

- Set of detectors $=$ dominating set $D \subseteq V: \forall u \in V, N[u] \cap D \neq \emptyset$

Modelization with a graph

- Graph $G=(V, E)$. Vertices: rooms.

Edges: between any two rooms connected by a door

- Set of detectors $=\operatorname{dominating~set~} D \subseteq V: \forall u \in V, N[u] \cap D \neq \emptyset$
- Domination number $\gamma(G)$: smallest size of a dominating set of G

Back to the building

Back to the building

Where is the fire?

Back to the building

Where is the fire?

Back to the building

Where is the fire?

Back to the building

Where is the fire ?
To locate the fire, we need more detectors.

Locating the fire

In each room with no detector, set of dominating detectors is distinct.

Peter Slater, 1980's. Locating-dominating set D : subset of vertices of $G=(V, E)$ which is:

- dominating : $\forall u \in V, N[u] \cap D \neq \emptyset$,
- locating : $\forall u, v \in V \backslash D, N[u] \cap D \neq N[v] \cap D$.

Peter Slater, 1980's. Locating-dominating set D :
subset of vertices of $G=(V, E)$ which is:

- dominating : $\forall u \in V, N[u] \cap D \neq \emptyset$,
- locating : $\forall u, v \in V \backslash D, N[u] \cap D \neq N[v] \cap D$.
$\gamma_{L}(G)$: location-domination number of G, minimum size of a locating-dominating set of G.

Peter Slater, 1980's. Locating-dominating set D :
subset of vertices of $G=(V, E)$ which is:

- dominating : $\forall u \in V, N[u] \cap D \neq \emptyset$,
- locating : $\forall u, v \in V \backslash D, N[u] \cap D \neq N[v] \cap D$.
$\gamma_{L}(G)$: location-domination number of G, minimum size of a locating-dominating set of G.

$$
\text { Remark: } \gamma(G) \leq \gamma_{L}(G)
$$

Examples: paths

Examples: paths

Location-domination number: $\gamma_{L}\left(P_{n}\right)=\left\lceil\frac{2 n}{5}\right\rceil$

Upper bounds on the location-domination number

Upper bounds

Theorem (Domination bound - Ore, 1960's)
G graph of order n, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.

Upper bounds

Theorem (Domination bound - Ore, 1960's)
G graph of order n, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.

Tight examples:

Upper bounds

Theorem (Domination bound - Ore, 1960's)
G graph of order n, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.

Tight examples:

Theorem (Location-domination bound - Slater, 1980's)
G graph of order n, no isolated vertices. Then $\gamma_{L}(G) \leq n-1$.

Upper bounds

Theorem (Domination bound - Ore, 1960's)

G graph of order n, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.

Tight examples:

Theorem (Location-domination bound - Slater, 1980's)

G graph of order n, no isolated vertices. Then $\gamma_{L}(G) \leq n-1$.

Tight examples:

Upper bounds

Theorem (Domination bound - Ore, 1960's)

G graph of order n, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.

Tight examples:

Theorem (Location-domination bound - Slater, 1980's)

G graph of order n, no isolated vertices. Then $\gamma_{L}(G) \leq n-1$.

Tight examples:

Remark: tight examples contain many twin-vertices!!

Upper bound - a conjecture

Theorem (Domination bound - Ore, 1960's)
G graph of order n, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound - Slater, 1980's)
G graph of order n, no isolated vertices. Then $\gamma_{L}(G) \leq n-1$.

Upper bound - a conjecture

Theorem (Domination bound - Ore, 1960's)
G graph of order n, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound - Slater, 1980's)
G graph of order n, no isolated vertices. Then $\gamma_{L}(G) \leq n-1$.

Conjecture (Garijo, González \& Márquez, 2014)
G graph of order n, no isolated vertices, no twins. Then $\gamma_{L}(G) \leq \frac{n}{2}$.

Upper bound - a conjecture

Theorem (Domination bound - Ore, 1960's)

G graph of order n, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound - Slater, 1980's)

G graph of order n, no isolated vertices. Then $\gamma_{L}(G) \leq n-1$.
Conjecture (Garijo, González \& Márquez, 2014)
G graph of order n, no isolated vertices, no twins. Then $\gamma_{L}(G) \leq \frac{n}{2}$.
If true, tight: 1. domination-extremal graphs

Upper bound - a conjecture

Theorem (Domination bound - Ore, 1960's)

G graph of order n, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound - Slater, 1980's)

G graph of order n, no isolated vertices. Then $\gamma_{L}(G) \leq n-1$.
Conjecture (Garijo, González \& Márquez, 2014)
G graph of order n, no isolated vertices, no twins. Then $\gamma_{L}(G) \leq \frac{n}{2}$.
If true, tight: 2. a similar construction

Upper bound - a conjecture

Theorem (Domination bound - Ore, 1960's)

G graph of order n, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound - Slater, 1980's)

G graph of order n, no isolated vertices. Then $\gamma_{L}(G) \leq n-1$.

Conjecture (Garijo, González \& Márquez, 2014)
G graph of order n, no isolated vertices, no twins. Then $\gamma_{L}(G) \leq \frac{n}{2}$.
If true, tight: 3. a family with domination number 2

Upper bound - a conjecture

Conjecture (Garijo, González \& Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $\gamma_{L}(G) \leq \frac{n}{2}$.
Theorem (Garijo, González \& Márquez, 2014)
Conjecture true if G has no 4-cycles, or if G is bipartite.

Upper bound - a conjecture

Conjecture (Garijo, González \& Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $\gamma_{L}(G) \leq \frac{n}{2}$.

Theorem (Garijo, González \& Márquez, 2014)
Conjecture true if G has no 4 -cycles, or if G is bipartite.

Proof ideas:

- no 4-cycles: use a maximum matching
- bipartite: every vertex cover is a locating-dominating set

Upper bound - a conjecture

Conjecture (Garijo, González \& Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $\gamma_{L}(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2014+)
Conjecture true if G is split graph or complement of bipartite graph.

Theorem (F., Henning, 2014+)
Conjecture true if G is: • cubic graph

- line graph

Split graph: clique + independent set
Cubic graph: all degrees equal to 3
Line graph: Intersection graph of the edges of a graph

Upper bound - a conjecture

Conjecture (Garijo, González \& Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $\gamma_{L}(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2014+)
Conjecture true if G is split graph or complement of bipartite graph.

Theorem (F., Henning, 2014+)
Conjecture true if G is: • cubic graph

- line graph

Remark: Nontrivial proofs using very different techniques!
\rightarrow Conjecture seems difficult.

Upper bound - a conjecture

Conjecture (Garijo, González \& Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $\gamma_{L}(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2014+)
G graph of order n, no isolated vertices, no twins. Then $\gamma_{L}(G) \leq \frac{2}{3} n$.

Lower bounds on the location-domination number

Theorem (Slater, 1980's)
G graph of order $n, \gamma_{L}(G)=k$. Then $n \leq 2^{k}+k-1$, i.e. $\gamma_{L}(G)=\Omega(\log n)$.

Lower bounds

Theorem (Slater, 1980's)
G graph of order $n, \gamma_{L}(G)=k$. Then $n \leq 2^{k}+k-1$, i.e. $\gamma_{L}(G)=\Omega(\log n)$.

Tight example $(k=4)$:

Lower bounds

Theorem (Slater, 1980's)
G graph of order $n, \gamma_{L}(G)=k$. Then $n \leq 2^{k}+k-1$, i.e. $\gamma_{L}(G)=\Omega(\log n)$.
Theorem (Slater, 1980's)

$$
G \text { tree of order } n, \gamma_{L}(G)=k \text {. Then } n \leq 3 k-1 \text {, i.e. } \gamma_{L}(G) \geq \frac{n+1}{3} \text {. }
$$

Theorem (Rall \& Slater, 1980's)
G planar graph, order $n, \gamma_{L}(G)=k$. Then $n \leq 7 k-10$, i.e. $\gamma_{L}(G) \geq \frac{n+10}{7}$.

Lower bounds

Theorem (Slater, 1980's)
G graph of order $n, \gamma_{L}(G)=k$. Then $n \leq 2^{k}+k-1$, i.e. $\gamma_{L}(G)=\Omega(\log n)$.

Theorem (Slater, 1980's)

$$
G \text { tree of order } n, \gamma_{L}(G)=k \text {. Then } n \leq 3 k-1 \text {, i.e. } \gamma_{L}(G) \geq \frac{n+1}{3} \text {. }
$$

Theorem (Rall \& Slater, 1980's)

G planar graph, order $n, \gamma_{L}(G)=k$. Then $n \leq 7 k-10$, i.e. $\gamma_{L}(G) \geq \frac{n+10}{7}$.

Tight examples:

Interval graphs

Definition - Interval graph

Intersection graph of intervals of the real line.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
G interval graph of order $n, \gamma_{L}(G)=k$.
Then $n \leq \frac{k(k+3)}{2}$, i.e. $\gamma_{L}(G)=\Omega(\sqrt{n})$.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

G interval graph of order $n, \gamma_{L}(G)=k$.

$$
\text { Then } n \leq \frac{k(k+3)}{2} \text {, i.e. } \gamma_{L}(G)=\Omega(\sqrt{n}) \text {. }
$$

- Locating-dominating D of size k.
- Define zones using the right points of intervals in D.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

G interval graph of order $n, \gamma_{L}(G)=k$.

$$
\text { Then } n \leq \frac{k(k+3)}{2} \text {, i.e. } \gamma_{L}(G)=\Omega(\sqrt{n}) \text {. }
$$

- Locating-dominating D of size k.
- Define zones using the right points of intervals in D.
- Each vertex intersects a consecutive set of intervals of D when ordered by left points.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

G interval graph of order $n, \gamma_{L}(G)=k$.

$$
\text { Then } n \leq \frac{k(k+3)}{2} \text {, i.e. } \gamma_{L}(G)=\Omega(\sqrt{n}) \text {. }
$$

- Locating-dominating D of size k.
- Define zones using the right points of intervals in D.
- Each vertex intersects a consecutive set of intervals of D when ordered by left points.

$$
\rightarrow n \leq \sum_{i=1}^{k}(k-i)+k=\frac{k(k+3)}{2} .
$$

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
G interval graph of order $n, \gamma_{L}(G)=k$.
Then $n \leq \frac{k(k+3)}{2}$, i.e. $\gamma_{L}(G)=\Omega(\sqrt{n})$.

Tight:

Permutation graphs

Definition - Permutation graph

Given two parallel lines A and B : intersection graph of segments joining A and B.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
G permutation graph of order $n, \gamma_{L}(G)=k$.
Then $n \leq k^{2}+k-2$, i.e. $\gamma_{L}(G)=\Omega(\sqrt{n})$.

Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
G permutation graph of order $n, \gamma_{L}(G)=k$.
Then $n \leq k^{2}+k-2$, i.e. $\gamma_{L}(G)=\Omega(\sqrt{n})$.

- Locating-sominating set D of size $k: k+1$ "top zones" and $k+1$ "bottom zones"
- Only one segment in $V \backslash D$ for one pair of zones

$$
\rightarrow n \leq(k+1)^{2}+k
$$

- Careful counting for the precise bound

Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
G permutation graph of order $n, \gamma_{L}(G)=k$.
Then $n \leq k^{2}+k-2$, i.e. $\gamma_{L}(G)=\Omega(\sqrt{n})$.

Tight:

Bounds for subclasses of interval/permutation

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
Let G be a graph on n vertices, $\gamma_{L}(G)=k$.

- If G is unit interval, then $n \leq 3 k-1$.
- If G is bipartite permutation, then $n \leq 3 k+2$.
- If G is a cograph, then $n \leq 3 k$.

Vapnis-Chervonenkis dimension

Set $X \subseteq V(G)$ is shattered:
for every subset $S \subseteq X$, there is a vertex v with $N[v] \cap X=S$
V-C dimension of G : maximum size of a shattered set in G

Vapnis-Chervonenkis dimension

Set $X \subseteq V(G)$ is shattered:
for every subset $S \subseteq X$, there is a vertex v with $N[v] \cap X=S$
V-C dimension of G : maximum size of a shattered set in G

Theorem (Bousquet, Lagoutte, Li, Parreau, Thomassé, 2014+)
G graph of order $n, \gamma_{L}(G)=k, \mathrm{~V}-\mathrm{C}$ dimension $\leq d$. Then $n=O\left(k^{d}\right)$.
\rightarrow interval graphs $(d=2)$, line graphs $(d=4)$, permutation graphs $(d=3)$, unit disk graphs $(d=3)$, planar graphs $(d=4) \ldots$

Vapnis-Chervonenkis dimension

Set $X \subseteq V(G)$ is shattered:
for every subset $S \subseteq X$, there is a vertex v with $N[v] \cap X=S$
V-C dimension of G : maximum size of a shattered set in G

Theorem (Bousquet, Lagoutte, Li, Parreau, Thomassé, 2014+)
G graph of order $n, \gamma_{L}(G)=k, \mathrm{~V}-\mathrm{C}$ dimension $\leq d$. Then $n=O\left(k^{d}\right)$.
\rightarrow interval graphs $(d=2)$, line graphs $(d=4)$, permutation graphs $(d=3)$, unit disk graphs $(d=3)$, planar graphs $(d=4) \ldots$

But better bounds exist:

- planar: $n \leq 7 k-10$ (Slater \& Rall, 1984)
- line: $n \leq \frac{8}{9} k^{2}$ (F., Gravier, Naserasr, Parreau, Valicov, 2013)
- permutation: $n \leq O\left(k^{2}\right)$ (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Part II: metric dimension, bounds

Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them

Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them

Question

Does the "GPS" approach also work in undirected unweighted graphs?

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

$M D(G)$: metric dimension of G, minimum size of a resolving set of G.

Remarks

Remark

- Any locating-dominating set is a resolving set, hence $M D(G) \leq \gamma_{L}(G)$.
- A locating-dominating set can be seen as a "distance-1-resolving set".

Remarks

Remark

- Any locating-dominating set is a resolving set, hence $M D(G) \leq \gamma_{L}(G)$.
- A locating-dominating set can be seen as a "distance-1-resolving set".

Proposition

$$
M D(G)=1 \Leftrightarrow G \text { is a path }
$$

Bounds with diameter

Example of path: no bound $n \leq f(M D(G))$ possible.

Bounds with diameter

Example of path: no bound $n \leq f(M D(G))$ possible.
Theorem (Khuller, Raghavachari \& Rosenfeld, 2002)
G of order n, diameter $D, M D(G)=k$. Then $n \leq D^{k}+k$.
(diameter: maximum distance between two vertices)

Bounds with diameter

Example of path: no bound $n \leq f(M D(G))$ possible.
Theorem (Khuller, Raghavachari \& Rosenfeld, 2002)
G of order n, diameter $D, M D(G)=k$. Then $n \leq D^{k}+k$.
(diameter: maximum distance between two vertices)
Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
G permutation graph or interval graph of order $n, M D(G)=k$, diameter D. Then $n=O\left(D k^{2}\right)$ i.e. $k=\Omega\left(\sqrt{\frac{n}{D}}\right)$.

Bounds with diameter

Example of path: no bound $n \leq f(M D(G))$ possible.
Theorem (Khuller, Raghavachari \& Rosenfeld, 2002)
G of order n, diameter $D, M D(G)=k$. Then $n \leq D^{k}+k$.
(diameter: maximum distance between two vertices)
Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
G permutation graph or interval graph of order $n, M D(G)=k$, diameter D. Then $n=O\left(D k^{2}\right)$ i.e. $k=\Omega\left(\sqrt{\frac{n}{D}}\right)$.
\rightarrow Proofs are similar as for locating-dominating sets.
\rightarrow Bounds are tight (up to constant factors).

Part III: Complexity and algorithms

LOCATING-DOMINATING SET

Complexity of LOCATING-DOMINATING SET

LOCATING-DOMINATING SET

INPUT: Graph G, integer k.
QUESTION: Is there a locating-dominating set of G of size k ?

- polynomial for graphs of bounded cliquewidth via MSOL (Courcelle)
- NP-complete for:
- bipartite (Charon, Hudry, Lobstein, 2003)
- planar bipartite unit disk (Müller \& Sereni, 2009)
- planar arbitrary girth (Auger, 2010)
- planar bipartite subcubic (F. 2013)
- co-bipartite, split (F. 2013)
- line (F., Gravier, Naserasr, Parreau, Valicov, 2013)

Complexity of LOCATING-DOMINATING SET

LOCATING-DOMINATING SET

INPUT: Graph G, integer k.
QUESTION: Is there a locating-dominating set of G of size k ?

- $O(\log \Delta)$-approximable (SET COVER)
- constant c-approximation for:
- planar, $c=7$ (Slater, Rall, 1984)
- line, $c=4$ (F., Gravier, Naserasr, Parreau, Valicov, 2013)
- interval, $c=2$ (Bousquet, Lagoutte, Li, Parreau, Thomassé, 2014+)
- unit interval, PTAS
- hard to approximate within $o(\log n)$ for:
- general graphs (Laifenfeld, Trachtenberg + Suomela 2007)
- bipartite, split, co-bipartite (F. 2013)
- APX-hard for:
- line (F., Gravier, Naserasr, Parreau, Valicov, 2013)
- subcubic bipartite (F. 2013)

Complexity of LOCATING-DOMINATING SET

LOCATING-DOMINATING SET
INPUT: Graph G, integer k.
QUESTION: Is there a locating-dominating set of G of size k ?

- Trivially FPT for parameter k because $n \leq 2^{k}+k-1$: whole graph is kernel! $\longrightarrow n^{O(k)}=2^{k^{(0(k)}}$-time brute-force algorithm

Complexity - Interval and permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

Complexity - Interval and permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

Reduction from 3-DIMENSIONAL MATCHING:

- INPUT: A, B, C sets and $\mathscr{T} \subset A \times B \times C$ triples
- QUESTION: is there a perfect 3-dimensional matching $M \subset T$, i.e., each element of $A \cup B \cup C$ appears exactly once in M ?

Complexity - Interval and permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

Reduction from 3-DIMENSIONAL MATCHING:

- INPUT: A, B, C sets and $\mathscr{T} \subset A \times B \times C$ triples
- QUESTION: is there a perfect 3-dimensional matching $M \subset T$, i.e., each element of $A \cup B \cup C$ appears exactly once in M ?

Main idea: an interval can separate pairs of intervals far away from each other (without affecting what lies in between)

Complexity - gadgets

Dominating gadget: ensure all intervals are dominated and most, separated.

Complexity - gadgets

Dominating gadget: ensure all intervals are dominated and most, separated.

Complexity - transmitters

Transmitter gadget: to separate $\left\{u v^{1}, u v^{2}\right\}$ and $\left\{v w^{1}, v w^{2}\right\}$, either:

1. take only v into solution, or
2. take both u, w - and separate pairs $\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\},\left\{z_{1}, z_{2}\right\}$ "for free".

Complexity - transmitters

Transmitter gadget: to separate $\left\{u v^{1}, u v^{2}\right\}$ and $\left\{v w^{1}, v w^{2}\right\}$, either:

1. take only v into solution, or
2. take both u, w - and separate pairs $\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\},\left\{z_{1}, z_{2}\right\}$ "for free".

Complexity - reduction

3DM instance on $3 n$ elements, m triples.

$$
\exists \text { 3-dimensional matching } \Longleftrightarrow \gamma_{L}(G) \leq 94 m+10 n
$$

triple gadget for triple $\{a, b, c\}$

three element gadgets for a, b and c

Complexity of LOCATING-DOMINATING SET

METRIC DIMENSION

Complexity of METRIC DIMENSION

METRIC DIMENSION

INPUT: Graph G, integer k.
QUESTION: Is there a resolving set of G of size k ?

- polynomial for:
- trees (simple algorithm, Slater 1975)
- outerplanar (Díaz, van Leeuwen, Pottonen, Serna, 2012)
- bounded cyclomatic number (Epstein, Levin, Woeginger, 2012)
- cographs (Epstein, Levin, Woeginger, 2012)
- NP-complete for:
- general graphs (Garey \& Johnson 1979)
- planar (Díaz, van Leeuwen, Pottonen, Serna, 2012)
- bipartite, co-bipartite, line, split (Epstein, Levin, Woeginger, 2012)
- Gabriel unit disk (Hoffmann \& Wanke 2012)

Complexity of METRIC DIMENSION

METRIC DIMENSION

INPUT: Graph G, integer k.
QUESTION: Is there a resolving set of G of size k ?

- $O(\log n)$-approximable (SET COVER)
- hard to approximate within $o(\log n)$ for:
- general graphs (Beerliova et al., 2006)
- bipartite subcubic (Hartung \& Nichterlein, 2013)

Complexity of METRIC DIMENSION

METRIC DIMENSION

INPUT: Graph G, integer k.
QUESTION: Is there a resolving set of G of size k ?

W[2]-hard for parameter k, even for bipartite subcubic graphs
(Hartung \& Nichterlein, 2013)
\longrightarrow probably no $f(k)$ poly (n)-time (FPT) algorithm

Interval and permutation graphs

G graph of diameter 2 . S resolving set of G.
\rightarrow Every vertex in $V(G) \backslash S$ is distiguished by its neighborhood within S

Interval and permutation graphs

G graph of diameter 2 . S resolving set of G.
\rightarrow Every vertex in $V(G) \backslash S$ is distiguished by its neighborhood within S
Almost a locating-dominating set

Interval and permutation graphs

G graph of diameter 2. S resolving set of G.
\rightarrow Every vertex in $V(G) \backslash S$ is distiguished by its neighborhood within S
Almost a locating-dominating set

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

Interval and permutation graphs

G graph of diameter 2 . S resolving set of G.
\rightarrow Every vertex in $V(G) \backslash S$ is distiguished by its neighborhood within S
Almost a locating-dominating set

```
Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
```

LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

Reduction from LOCATING-DOMINATING SET to METRIC DIMENSION:

$$
M D\left(G^{\prime}\right)=\gamma_{L}(G)+2
$$

Corollary (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
METRIC DIMENSION is NP-complete for graphs that are both interval and permutation (and have diameter 2).

Complexity of METRIC DIMENSION

An FPT algorithm for METRIC DIMENSION on interval graphs

Recall: METRIC DIMENSION W[2]-hard even for subcubic bipartite graphs \longrightarrow probably no $f(k)$ poly (n)-time algorithm

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
METRIC DIMENSION can be solved in time $2^{O\left(k^{4}\right)} n$ on interval graphs.

An FPT algorithm for METRIC DIMENSION on interval graphs

Recall: METRIC DIMENSION W[2]-hard even for subcubic bipartite graphs \longrightarrow probably no $f(k)$ poly (n)-time algorithm

```
Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
```

METRIC DIMENSION can be solved in time $2^{O\left(k^{4}\right)} n$ on interval graphs.

Ideas:

- use dynamic programming on a path-decomposition of G^{4}.
- each bag has size $O\left(k^{2}\right)$.
- it suffices to separate vertices at distance 2
- "transmission" lemma for separation constraints

ONE MORE SLIDE

Open problems

- Solve the conjecture: $\gamma_{L}(G) \leq \frac{n}{2}$ if G twin-free?
- Investigate bounds for other "geometric" graphs, for MD and γ_{L}
- Complexity of LOCATING-DOMINATING SET, METRIC DIMENSION on unit interval graphs
- Complexity of METRIC DIMENSION for bounded treewidth
- Parameterized complexity of METRIC DIMENSION: planar graphs, chordal graphs, permutation graphs...

Open problems

- Solve the conjecture: $\gamma_{L}(G) \leq \frac{n}{2}$ if G twin-free?
- Investigate bounds for other "geometric" graphs, for MD and γ_{L}
- Complexity of LOCATING-DOMINATING SET, METRIC DIMENSION on unit interval graphs
- Complexity of METRIC DIMENSION for bounded treewidth
- Parameterized complexity of METRIC DIMENSION: planar graphs, chordal graphs, permutation graphs...

THANKS FOR YOUR ATTENTION

