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Locating a burglar in a museum

Graph G = (V ,E). V : vertices (rooms), E ⊆ V × V : edges (doors)

How many detectors do we need?
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Identifying codes: definition

Let N[u] be the set of vertices v s.t. d(u, v) ≤ 1

Subset C of V such that:
C is a dominating set in G : ∀u ∈ V , N[u] ∩ C 6= ∅, and

C is a separating code in G : ∀u 6= v of V , N[u] ∩ C 6= N[v ] ∩ C

Equivalently: (N[u]∆N[v ]) ∩ C 6= ∅ (covering symmetric differences)

Definition - Identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998)
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γ ID(G): minimum cardinality of an identifying code of G

Notation - Identifying code number
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Identifying codes: definition

Let N[u] be the set of vertices v s.t. d(u, v) ≤ 1

Subset C of V such that:
C is a dominating set in G : ∀u ∈ V , N[u] ∩ C 6= ∅, and

C is a separating code in G : ∀u 6= v of V , N[u] ∩ C 6= N[v ] ∩ C
Equivalently: (N[u]∆N[v ]) ∩ C 6= ∅ (covering symmetric differences)

Definition - Identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998)

C is an identifying code IFF:
C is a dominating set in G

∀u 6= v of V with dG (u, v) ≤ 2, (N[u]∆N[v ]) ∩ C 6= ∅

Proposition
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Identifiable graphs

N[u]: set of vertices v s.t. d(u, v) ≤ 1

Not all graphs have an identifying code!

Twins = pair u, v such that N[u] = N[v ].

A graph is identifiable iff it is twin-free (i.e. it has no twins).

Remark
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The test cover problem

Identifying codes can be seen as a special case of the test cover problem
(a.k.a. test collection problem).

Remark

Example on board.
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Bounds not related to ∆(G )

Let G be an identifiable graph on n vertices with at least one edge, then

dlog2(n + 1)e ≤ γ ID(G) ≤ n − 1

Theorem (lower bound: Karpovsky, Chakrabarty, Levitin, 1998
upper bound: Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)
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A class of graphs called A

V (Ak) = {x1, ..., x2k}.
xi connected to xj iff |j − i | ≤ k − 1

Note: A1 = K2; for k ≥ 2, Ak = Pk−1
2k

Definition - Graph Ak

xk+1 xk+2 xk+3

...
x2k−1 x2k

x1 x2 x3

...
xk−1 xk

Clique on {xk+1, ..., x2k}

Clique on {x1, ..., xk}
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A class of graphs called A - examples

A1 = K2 A2 = P4

A3 = P2
6 A4 = P3

8
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A characterization

(A, ./): closure of graphs of A with respect to ./ (complete join).

Definition - Join and its closure

Let G be an identifiable graph on n vertices. Then:

γ ID(G) = n − 1 ⇔ G ∈ {K1,n−1} ∪ (A, ./) ∪ (A, ./) ./ K1 and G 6= K2.

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

All these graphs have maximum degree n − 1 or n − 2!

Observation
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A conjecture

Let G be an identifiable graph with maximum degree ∆ and n vertices, then

2n
∆+2
≤ γ ID(G)

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

Let G be a connected nontrivial identifiable graph on n vertices and of
maximum degree ∆. Then:

γ ID(G) ≤ n − n
∆

+ c (for some constant c).

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

The conjecture is true for ∆ = 2 (with c = 3/2).
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Extremal examples

Let G be a connected nontrivial identifiable graph on n vertices and of
maximum degree ∆. Then:

γ ID(G) ≤ n − n
∆

+ c (for some constant c).

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

Also: Sierpiński graphs
(see A. Parreau, S. Gravier, M. Kovše, M. Mollard and J. Moncel, 2011+)
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Extremal examples

Let G be a connected nontrivial identifiable graph on n vertices and of
maximum degree ∆. Then:

γ ID(G) ≤ n − n
∆

+ c (for some constant c).

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

Can we prove that γ ID(G) ≤ n − n
Θ(∆)

?

Question
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Forced vertices

u, v such that N[v ]	 N[u] = {x}

Then x ∈ C , forced by uv .

x u v

...

Note: if G regular, no forced vertices.
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First bounds

Let G be a connected identifiable graph of maximum degree ∆. Then

γ ID(G) ≤ n − n
Θ(∆5)

If G is ∆-regular, γ ID(G) ≤ n − n
Θ(∆3)

Theorem (F., Guerrini, Kovse, Naserasr, Parreau, Valicov, 2011)

Proof idea:

Let I be a distance 4-independent set of G . If for all x ∈ I , x is not forced,
V − I is also an identifying code.

Proposition

For each vertex x of G , there exists a non forced vertex y in N[x ].

Lemma (Bertrand, Hudry, 2001)

Take a (maximal) 6-independent set I . Find the set I ′ “good vertices” which
are not forced: |I | = |I ′|. V − I ′ is an identifying code.
For regular graphs, there are no forced vertices: a 4-IS is enough.
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Triangle-free graphs

Let G be a connected identifiable triangle-free graph on n vertices and of
maximum degree ∆. Then

γ ID(G) ≤ n − n

(1+ 3
ln ∆−1

)∆
= n − n

(1+o∆(1))∆

Theorem (F., Klasing, Kosowski, Raspaud, 2009)

Proof idea:

Let X be the set of vertices having at least some false twin (false twins: u 6∼ v
and N(u) = N(v)).

If X is large, at least |X |
∆

vertices can be out of a code and we are done

Otherwise, build a maximal independent set S with |S | > ln ∆
∆

n
(using J. Shearer’s bound)

Locally modify S to get S ′, not too small: |S ′| ≥ |S |/3

V \ S ′ is an identifying code
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In fact: let G be a connected identifiable triangle-free graph on n vertices
and of maximum degree ∆ s.t. for all subgraphs H, α(H) ≥ f (∆)nH . Then

γ ID(G) ≤ n − n

∆+ 3
f (∆)

Theorem (F., Klasing, Kosowski, Raspaud, 2009)
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and of maximum degree ∆ s.t. for all subgraphs H, α(H) ≥ f (∆)nH . Then

γ ID(G) ≤ n − n

∆+ 3
f (∆)

Theorem (F., Klasing, Kosowski, Raspaud, 2009)

G k-colourable: γ ID(G) ≤ n − n
∆+3k

.

⇒ Bipartite: γ ID(G) ≤ n − n
∆+6

⇒ Planar triangle-free: γ ID(G) ≤ n − n
∆+9

Corollary
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Triangle-free graphs - examples

Complete (∆− 1)-ary tree, caterpillar: roughly, γ ID(G) = n − n
∆−1

γ ID(G) = n − n
2∆/3

In fact: let G be a connected identifiable triangle-free graph on n vertices
and of maximum degree ∆ and without false twins. Then

γ ID(G) ≤ n − n
3∆

ln ∆−1

= n − n
o(∆)

Theorem (F., Klasing, Kosowski, Raspaud, 2009)

So, any counterexample or extremal example should have false twins.
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Using probabilistic arguments

Let NF (G) be the proportion of non forced vertices of G

NF (G) =
#non-forced vertices in G

#vertices in G

Notation

For each identifiable graph G on n vertices having maximum degree ∆ ≥ 3
and no isolated vertices,

γ ID(G) ≤ n − n · NF (G)2

103∆

Theorem (F., Perarnau, 2011)

Proof idea:

Take all forced vertices (set F ) into the code.

From V \ F , select each vertex with probability pS = 1
k·∆ (k constant) to

belong to a set S . We want C = V \ S .

Use Lovász’ Local Lemma to show that Pr(C is a code) > f (k, n,∆) > 0

Use the Chernoff bound to show that Pr(C is too small) < f (k, n,∆)

Florent Foucaud Identifying codes in graphs of given maximum degree 18 / 23



Bounding the number of forced vertices

1
∆+1
≤ NF (G) ≤ 1

Proposition

Proof:

Let G be an identifiable graph having no isolated vertices. Let x be a vertex
of G . There exists a non forced vertex y in N[x ].

Lemma (Bertrand, Hudry, 2001)

⇒ The set S of non-forced vertices forms a dominating set. Hence |S | ≥ n
∆+1

.
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Bounding the number of forced vertices

Let G be a graph of clique number at most k. There exists a function ρ
such that:

1
ρ(k)
≤ NF (G) ≤ 1

Proposition

Define graph
−→
H (G)

Max. degree of
−→
H (G): 2k − 3

Longest directed chain of
−→
H (G):

k − 1

Each component has a
non-forced vertex

⇒ ρ(k) ≤
∑k−2

i=0 (2k − 3)i u → v if N[v ] = N[u] ∪ {x}
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Corollaries

For each identifiable graph G on n vertices having maximum degree ∆ ≥ 3
and no isolated vertices,

γ ID(G) ≤ n − n · NF (G)2

103∆

Theorem (F., Perarnau, 2011)

In general, NF (G) ≥ 1
∆+1

and γ ID(G) ≤ n − n
Θ(∆3)

If G is ∆-regular, NF (G) = 1 and γ ID(G) ≤ n − n
103∆

= n − n
Θ(∆)

If G has clique number bounded by k, NF (G) ≥ 1
ρ(k)

and

γ ID(G) ≤ n − n
103·(ρ(k))2·∆ = n − n

Θ(∆)

Note: for k = 2, 3, 4, 5: 103 · (ρ(k))2 = 103, 1.360, 81.685, 13.600.000

Corollary
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Line graphs

The conjecture holds for some large subclass of line graphs:

Let G be an edge-identifiable graph with a minimal edge-identifying code
CE . Then G [CE ] is 2-degenerate.

Theorem (F., Gravier, Naserasr, Parreau, Valicov, 2011)

If G edge-identifiable, γ ID(L(G)) ≤ 2|V (G)| − 3.

Corollary

If G is an edge-identifiable graph with average degree d(G) ≥ 5, then
γ ID(L(G)) ≤ n − n

∆(L(G))
where n = |V (L(G))|.

Corollary
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Questions

Let G be a connected nontrivial identifiable graph on n vertices and of
maximum degree ∆. Then:

γ ID(G) ≤ n − n
∆

+ c (for some constant c).

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

Can we reduce the constants?

Can we improve the bound n − n
Θ(∆3)

?

What about ∆ = 3?

What about trees (having a look at David Auger’s algorithm)?

What about claw-free graphs? n − n
Θ(∆2)

seems to hold by directly using

similar arguments than for triangle-free graphs.

Other related parameters?
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