Identifying codes in graphs of given maximum degree

Florent Foucaud (LaBRI, Bordeaux, France)

joint works with:
Ralf Klasing, Adrian Kosowski, André Raspaud (2012)
Eleonora Guerrini, Matjaž Kovše, Aline Parreau, Reza Naserasr, Petru Valicov (2011)
Guillem Perarnau (2012)
Sylvain Gravier, Aline Parreau, Reza Naserasr, Petru Valicov (2012)

LRI, Paris, 25.05.2012

Locating a burglar in a museum

Locating a burglar in a museum

Locating a burglar in a museum

Graph $G=(V, E) . V$: vertices (rooms), $E \subseteq V \times V$: edges (doors)

Locating a burglar in a museum

Graph $G=(V, E) . V$: vertices (rooms), $E \subseteq V \times V$: edges (doors)

Locating a burglar in a museum

Graph $G=(V, E) . V$: vertices (rooms), $E \subseteq V \times V$: edges (doors)

Locating a burglar in a museum

Graph $G=(V, E) . V:$ vertices (rooms), $E \subseteq V \times V$: edges (doors)

Locating a burglar in a museum

How many detectors do we need?

Identifying codes: definition

Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$

Definition - Identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V such that:

- C is a dominating set in $G: \forall u \in V, N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V, N[u] \cap C \neq N[v] \cap C$

Identifying codes: definition

Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$

Definition - Identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V such that:

- C is a dominating set in $G: \forall u \in V, N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V, N[u] \cap C \neq N[v] \cap C$ Equivalently: $(N[u] \Delta N[v]) \cap C \neq \emptyset$ (covering symmetric differences)

Identifying codes: definition

Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$
Definition - Identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998)
Subset C of V such that:

- C is a dominating set in $G: \forall u \in V, N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V, N[u] \cap C \neq N[v] \cap C$ Equivalently: $(N[u] \Delta N[v]) \cap C \neq \emptyset$ (covering symmetric differences)

Notation - Identifying code number
$\gamma^{\mathrm{ID}}(G)$: minimum cardinality of an identifying code of G

Identifying codes: definition

Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$
Definition - Identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998)
Subset C of V such that:

- C is a dominating set in $G: \forall u \in V, N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V, N[u] \cap C \neq N[v] \cap C$ Equivalently: $(N[u] \Delta N[v]) \cap C \neq \emptyset$ (covering symmetric differences)

Proposition

C is an identifying code IFF:

- C is a dominating set in G
- $\forall u \neq v$ of V with $d_{G}(u, v) \leq 2,(N[u] \Delta N[v]) \cap C \neq \emptyset$

Identifiable graphs

$N[u]$: set of vertices v s.t. $d(u, v) \leq 1$

Remark

Not all graphs have an identifying code!
Twins $=$ pair u, v such that $N[u]=N[v]$.
A graph is identifiable iff it is twin-free (i.e. it has no twins).

The test cover problem

Remark

Identifying codes can be seen as a special case of the test cover problem (a.k.a. test collection problem).

Example on board.

Bounds not related to $\Delta(G)$

Theorem (lower bound: Karpovsky, Chakrabarty, Levitin, 1998 upper bound: Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

Let G be an identifiable graph on n vertices with at least one edge, then

$$
\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\mathrm{D}}(G) \leq n-1
$$

Bounds not related to $\Delta(G)$

Theorem (lower bound: Karpovsky, Chakrabarty, Levitin, 1998 upper bound: Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

Let G be an identifiable graph on n vertices with at least one edge, then

$$
\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\mathrm{D}}(G) \leq n-1
$$

A class of graphs called \mathcal{A}

Definition - Graph A_{k}

$V\left(A_{k}\right)=\left\{x_{1}, \ldots, x_{2 k}\right\}$.
x_{i} connected to x_{j} iff $|j-i| \leq k-1$
Note: $A_{1}=\overline{K_{2}} ;$ for $k \geq 2, A_{k}=P_{2 k}^{k-1}$

Clique on $\left\{x_{k+1}, \ldots, x_{2 k}\right\}$

Clique on $\left\{x_{1}, \ldots, x_{k}\right\}$

A class of graphs called \mathcal{A} - examples

A characterization

Definition - Join and its closure

(\mathcal{A}, \bowtie) : closure of graphs of \mathcal{A} with respect to \bowtie (complete join).

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)
Let G be an identifiable graph on n vertices. Then:

$$
\gamma^{\mathrm{ID}}(G)=n-1 \Leftrightarrow G \in\left\{K_{1, n-1}\right\} \cup(\mathcal{A}, \bowtie) \cup(\mathcal{A}, \bowtie) \bowtie K_{1} \text { and } G \neq \overline{K_{2}} .
$$

A characterization

Definition - Join and its closure
(\mathcal{A}, \bowtie) : closure of graphs of \mathcal{A} with respect to \bowtie (complete join).

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)
Let G be an identifiable graph on n vertices. Then:

$$
\gamma^{\mathrm{ID}}(G)=n-1 \Leftrightarrow G \in\left\{K_{1, n-1}\right\} \cup(\mathcal{A}, \bowtie) \cup(\mathcal{A}, \bowtie) \bowtie K_{1} \text { and } G \neq \overline{K_{2}} .
$$

Observation

All these graphs have maximum degree $n-1$ or $n-2$!

A conjecture

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)
Let G be an identifiable graph with maximum degree Δ and n vertices, then

$$
\frac{2 n}{\Delta+2} \leq \gamma^{1 \mathrm{D}}(G)
$$

A conjecture

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)
Let G be an identifiable graph with maximum degree Δ and n vertices, then

$$
\frac{2 n}{\Delta+2} \leq \gamma^{\mathrm{ID}}(G)
$$

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

Let G be a connected nontrivial identifiable graph on n vertices and of maximum degree Δ. Then:

$$
\gamma^{\mathrm{D}}(G) \leq n-\frac{n}{\Delta}+c(\text { for some constant } c)
$$

The conjecture is true for $\Delta=2$ (with $c=3 / 2$).

Extremal examples

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

Let G be a connected nontrivial identifiable graph on n vertices and of maximum degree Δ. Then:

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{\Delta}+c(\text { for some constant } c) .
$$

Extremal examples

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

Let G be a connected nontrivial identifiable graph on n vertices and of maximum degree Δ. Then:

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{\Delta}+c(\text { for some constant } c)
$$

Extremal examples

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

Let G be a connected nontrivial identifiable graph on n vertices and of maximum degree Δ. Then:

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{\Delta}+c(\text { for some constant } c)
$$

Extremal examples

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

Let G be a connected nontrivial identifiable graph on n vertices and of maximum degree Δ. Then:

$$
\gamma^{\mathrm{D}}(G) \leq n-\frac{n}{\Delta}+c(\text { for some constant } c)
$$

Extremal examples

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

Let G be a connected nontrivial identifiable graph on n vertices and of maximum degree Δ. Then:

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{\Delta}+c(\text { for some constant } c) .
$$

Extremal examples

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

Let G be a connected nontrivial identifiable graph on n vertices and of maximum degree Δ. Then:

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{\Delta}+c(\text { for some constant } c)
$$

Extremal examples

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

Let G be a connected nontrivial identifiable graph on n vertices and of maximum degree Δ. Then:

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{\Delta}+c(\text { for some constant } c)
$$

Also: Sierpiński graphs
(see A. Parreau, S. Gravier, M. Kovše, M. Mollard and J. Moncel, 2011+)

Extremal examples

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

Let G be a connected nontrivial identifiable graph on n vertices and of maximum degree Δ. Then:

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{\Delta}+c(\text { for some constant } c)
$$

Question
Can we prove that $\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{\Theta(\Delta)}$?

Forced vertices

u, v such that $N[v] \ominus N[u]=\{x\}$
Then $x \in C$, forced by $u v$.

Note: if G regular, no forced vertices.

First bounds

Theorem (F., Guerrini, Kovse, Naserasr, Parreau, Valicov, 2011)
Let G be a connected identifiable graph of maximum degree Δ. Then

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{\Theta\left(\Delta^{5}\right)}
$$

If G is Δ-regular, $\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{\Theta\left(\Delta^{3}\right)}$

Proof idea:

Proposition

Let I be a distance 4-independent set of G. If for all $x \in I, x$ is not forced, $V-I$ is also an identifying code.

First bounds

Theorem (F., Guerrini, Kovse, Naserasr, Parreau, Valicov, 2011)
Let G be a connected identifiable graph of maximum degree Δ. Then

$$
\gamma^{10}(G) \leq n-\frac{n}{\theta\left(\Delta^{5}\right)}
$$

If G is Δ-regular, $\gamma^{\text {ID }}(G) \leq n-\frac{n}{\Theta\left(\Delta^{3}\right)}$

Proposition

Proof idea:

Let I be a distance 4-independent set of G. If for all $x \in I, x$ is not forced, $V-I$ is also an identifying code.

Lemma (Bertrand, Hudry, 2001)

For each vertex x of G, there exists a non forced vertex y in $N[x]$.

First bounds

Theorem (F., Guerrini, Kovse, Naserasr, Parreau, Valicov, 2011)

Let G be a connected identifiable graph of maximum degree Δ. Then

$$
\gamma^{10}(G) \leq n-\frac{n}{\theta\left(\Delta^{5}\right)}
$$

If G is Δ-regular, $\gamma^{10}(G) \leq n-\frac{n}{\Theta\left(\Delta^{3}\right)}$

Proposition

Proof idea:

Let I be a distance 4-independent set of G. If for all $x \in I, x$ is not forced, $V-I$ is also an identifying code.

Lemma (Bertrand, Hudry, 2001)

For each vertex x of G, there exists a non forced vertex y in $N[x]$.
Take a (maximal) 6-independent set I. Find the set I^{\prime} "good vertices" which are not forced: $|I|=\left|I^{\prime}\right| . V-I^{\prime}$ is an identifying code.
For regular graphs, there are no forced vertices: a 4-IS is enough.

Triangle-free graphs

Theorem (F., Klasing, Kosowski, Raspaud, 2009)
Let G be a connected identifiable triangle-free graph on n vertices and of maximum degree Δ. Then

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{\left(1+\frac{3}{\ln \Delta-1}\right) \Delta}=n-\frac{n}{\left(1+o_{\Delta}(1)\right) \Delta}
$$

Proof idea:

Let X be the set of vertices having at least some false twin (false twins: $u \nsim v$ and $N(u)=N(v))$.

- If X is large, at least $\frac{|X|}{\Delta}$ vertices can be out of a code and we are done
- Otherwise, build a maximal independent set S with $|S|>\frac{\ln \Delta}{\Delta} n$ (using J. Shearer's bound)
- Locally modify S to get S^{\prime}, not too small: $\left|S^{\prime}\right| \geq|S| / 3$
- $V \backslash S^{\prime}$ is an identifying code

Triangle-free graphs

Theorem (F., Klasing, Kosowski, Raspaud, 2009)
Let G be a connected identifiable triangle-free graph on n vertices and of maximum degree Δ. Then

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{\left(1+\frac{3}{\ln \Delta-1}\right) \Delta}=n-\frac{n}{\left(1+o_{\Delta}(1)\right) \Delta}
$$

Theorem (F., Klasing, Kosowski, Raspaud, 2009)

In fact: let G be a connected identifiable triangle-free graph on n vertices and of maximum degree Δ s.t. for all subgraphs $H, \alpha(H) \geq f(\Delta) n_{H}$. Then

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{\Delta+\frac{3}{f(\Delta)}}
$$

Triangle-free graphs

Theorem (F., Klasing, Kosowski, Raspaud, 2009)
Let G be a connected identifiable triangle-free graph on n vertices and of maximum degree Δ. Then

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{\left(1+\frac{3}{\ln \Delta-1}\right) \Delta}=n-\frac{n}{\left(1+o_{\Delta}(1)\right) \Delta}
$$

Theorem (F., Klasing, Kosowski, Raspaud, 2009)

In fact: let G be a connected identifiable triangle-free graph on n vertices and of maximum degree Δ s.t. for all subgraphs $H, \alpha(H) \geq f(\Delta) n_{H}$. Then

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{\Delta+\frac{3}{f(\Delta)}}
$$

Corollary

G k-colourable: $\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{\Delta+3 k}$.
\Rightarrow Bipartite: $\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{\Delta+6}$
\Rightarrow Planar triangle-free: $\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{\Delta+9}$

Triangle-free graphs - examples

Complete $(\Delta-1)$-ary tree, caterpillar: roughly, $\gamma^{\mathrm{ID}}(G)=n-\frac{n}{\Delta-1}$

$\gamma^{\mathrm{ID}}(G)=n-\frac{n}{2 \Delta / 3}$

Triangle-free graphs - examples

Complete $(\Delta-1)$-ary tree, caterpillar: roughly, $\gamma^{\mathrm{ID}}(G)=n-\frac{n}{\Delta-1}$

$\gamma^{\mathrm{ID}}(G)=n-\frac{n}{2 \Delta / 3}$
Theorem (F., Klasing, Kosowski, Raspaud, 2009)
In fact: let G be a connected identifiable triangle-free graph on n vertices and of maximum degree Δ and without false twins. Then

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{\frac{3 \Delta}{\ln \Delta-1}}=n-\frac{n}{o(\Delta)}
$$

So, any counterexample or extremal example should have false twins.

Using probabilistic arguments

Notation

Let $N F(G)$ be the proportion of non forced vertices of G

$$
N F(G)=\frac{\# \text { non-forced vertices in G }}{\# \text { vertices in G }}
$$

Theorem (F., Perarnau, 2011)

For each identifiable graph G on n vertices having maximum degree $\Delta \geq 3$ and no isolated vertices,

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n \cdot N F(G)^{2}}{103 \Delta}
$$

Proof idea:

- Take all forced vertices (set F) into the code.
- From $V \backslash F$, select each vertex with probability $p_{S}=\frac{1}{k \cdot \Delta}$ (k constant) to belong to a set S. We want $C=V \backslash S$.
- Use Lovász' Local Lemma to show that $\operatorname{Pr}(C$ is a code $)>f(k, n, \Delta)>0$
- Use the Chernoff bound to show that $\operatorname{Pr}(C$ is too small $)<f(k, n, \Delta)$

Bounding the number of forced vertices

Proposition

$$
\frac{1}{\Delta+1} \leq N F(G) \leq 1
$$

Proof:

Lemma (Bertrand, Hudry, 2001)

Let G be an identifiable graph having no isolated vertices. Let x be a vertex of G. There exists a non forced vertex y in $N[x]$.
\Rightarrow The set S of non-forced vertices forms a dominating set. Hence $|S| \geq \frac{n}{\Delta+1}$.

Bounding the number of forced vertices

Proposition

Let G be a graph of clique number at most k. There exists a function ρ such that:

$$
\frac{1}{\rho(k)} \leq N F(G) \leq 1
$$

Bounding the number of forced vertices

Proposition

Let G be a graph of clique number at most k. There exists a function ρ such that:

$$
\frac{1}{\rho(k)} \leq N F(G) \leq 1
$$

- Define graph $\vec{H}(G)$
- Max. degree of $\vec{H}(G): 2 k-3$
- Longest directed chain of $\vec{H}(G)$: k-1
- Each component has a non-forced vertex
- $\Rightarrow \rho(k) \leq \sum_{i=0}^{k-2}(2 k-3)^{i}$

Corollaries

Theorem (F., Perarnau, 2011)

For each identifiable graph G on n vertices having maximum degree $\Delta \geq 3$ and no isolated vertices,

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n \cdot N F(G)^{2}}{103 \Delta}
$$

Corollary

- In general, $N F(G) \geq \frac{1}{\Delta+1}$ and $\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{\Theta\left(\Delta^{3}\right)}$
- If G is Δ-regular, $N F(G)=1$ and $\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{103 \Delta}=n-\frac{n}{\Theta(\Delta)}$
- If G has clique number bounded by $k, N F(G) \geq \frac{1}{\rho(k)}$ and $\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{103 \cdot(\rho(k))^{2} \cdot \Delta}=n-\frac{n}{\Theta(\Delta)}$

Note: for $k=2,3,4,5: 103 \cdot(\rho(k))^{2}=103,1.360,81.685,13.600 .000$

Line graphs

The conjecture holds for some large subclass of line graphs:

Theorem (F., Gravier, Naserasr, Parreau, Valicov, 2011)

Let G be an edge-identifiable graph with a minimal edge-identifying code C_{E}. Then $G\left[C_{E}\right]$ is 2-degenerate.

Corollary

If G edge-identifiable, $\gamma^{\text {ID }}(\mathcal{L}(G)) \leq 2|V(G)|-3$.

Corollary

If G is an edge-identifiable graph with average degree $\bar{d}(G) \geq 5$, then $\gamma^{\text {ID }}(\mathcal{L}(G)) \leq n-\frac{n}{\Delta(\mathcal{L}(G))}$ where $n=|V(\mathcal{L}(G))|$.

Questions

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

Let G be a connected nontrivial identifiable graph on n vertices and of maximum degree Δ. Then:

$$
\gamma^{\mathrm{D}}(G) \leq n-\frac{n}{\Delta}+c(\text { for some constant } c)
$$

- Can we reduce the constants?
- Can we improve the bound $n-\frac{n}{\Theta\left(\Delta^{3}\right)}$?
- What about $\Delta=3$?
- What about trees (having a look at David Auger's algorithm)?
- What about claw-free graphs? $n-\frac{n}{\Theta\left(\Delta^{2}\right)}$ seems to hold by directly using similar arguments than for triangle-free graphs.
- Other related parameters?

