Florent Foucaud

Bordeaux

December 10th, 2012

©
»

Graph G = (V, E). V: vertices (rooms), E C V x V: edges (doors)

Florent Foucaud 2/36

@\" e}

Graph G = (V, E). V: vertices (rooms), E C V x V: edges (doors)

Motion detector: detects intruder in its room or in adjacent rooms

Florent Foucaud 2/36

b}

R

Graph G = (V, E). V: vertices (rooms), E C V x V: edges (doors)

Motion detector: detects intruder in its room or in adjacent rooms

Florent Foucaud 2/36

G: undirected graph
N[u]: set of vertices v s.t. d(u,v) <1

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:
o C is a dominating set: Yu € V(G), N[u] N C # (), and

e Cis a separating code: Yu # v of V(G), N[uln C # N[v]nC

Florent Foucaud 3/36

G: undirected graph
N[u]: set of vertices v s.t. d(u,v) <1

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:
o C is a dominating set: Yu € V(G), N[u] N C # (), and
e Cis a separating code: Yu # v of V(G), N[uln C # N[v]nC
Equivalently:
(N[u] © N[v]) N C # O — hitting symmetric differences

Florent Foucaud 3/36

G: undirected graph
N[u]: set of vertices v s.t. d(u,v) <1

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:
o C is a dominating set: Yu € V(G), N[u] N C # (), and
e Cis a separating code: Yu # v of V(G), N[uln C # N[v]nC
Equivalently:
(N[u] © N[v]) N C # O — hitting symmetric differences

Goal: minimize number of detectors

Florent Foucaud 3/36

G: undirected graph
N[u]: set of vertices v s.t. d(u,v) <1

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:
o C is a dominating set: Yu € V(G), N[u] N C # (), and
o C is a separating code: Vu # v of V(G), N[uln C # N[v]n C
Equivalently:
(N[u] © N[v]) N C # O — hitting symmetric differences

Goal: minimize number of detectors

~°(G): minimum size of an identifying code in G

Florent Foucaud 3/36

Remark

Not all graphs have an identifying code!

Twins = pair u, v such that N[u] = N[v].

Florent Foucaud 4 /36

Remark
Not all graphs have an identifying code!
Twins = pair u, v such that N[u] = N[v].
Proposition

A graph is identifiable if and only if it is twin-free (i.e. has no twins).

Florent Foucaud 4 /36

n: number of vertices

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)]

G identifiable graph on n vertices:

[logo(n +1)] <~°(G)

Florent Foucaud 5/ 36

n: number of vertices

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)]

G identifiable graph on n vertices:

[logo(n +1)] <~°(G)

— Graphs reaching bound characterized by Moncel, 2006.

Florent Foucaud 5/ 36

n: number of vertices

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)]

G identifiable graph on n vertices:

[logo(n +1)] <~°(G)

— Graphs reaching bound characterized by Moncel, 2006.

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

7(G)<n—-1

Florent Foucaud 5/ 36

n: number of vertices

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)]

G identifiable graph on n vertices:

[logo(n +1)] <~°(G)

— Graphs reaching bound characterized by Moncel, 2006.

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

7(G)<n—-1

v°(G) = n< G has no edges °

Florent Foucaud 5/36

Definition - Identifying code)

Subset C of V/(G) such that:
o C is a dominating set: Yu € V(G), N[u]N C # 0, and
o C is a separating code: Yu # v of V(G), N[uln C # N[v]n C
Equivalently:
(N[u] © N[v]) N C # 0 — hitting symmetric differences

Theorem

G identifiable, n vertices, some edges: [log,(n+1)] <~°(G) <n-—1

Florent Foucaud 6 /36

Definition - Identifying code)

Subset C of V(G) such that:
o C is a dominating set: Yu € V(G), N[u]N C # 0, and
o C is a separating code: Yu # v of V(G), N[ulnC # N[v]n C
Equivalently:
(N[u] © N[v]) N C # 0 — hitting symmetric differences

Theorem

G identifiable, n vertices, some edges: [log,(n+1)] <~°(G)<n-—1

7°(G) = loga(n + 1)

Florent Foucaud 6 /36

Definition - Identifying code)

Subset C of V/(G) such that:
o C is a dominating set: Yu € V(G), N[u]N C # 0, and
o C is a separating code: Yu # v of V(G), N[uln C # N[v]n C
Equivalently:
(N[u] © N[v]) N C # 0 — hitting symmetric differences

Theorem

G identifiable, n vertices, some edges: [log,(n+1)] <~"(G)<n-—1

7°(G) = logy(n+1)

Florent Foucaud 6 /36

Definition - Identifying code)

Subset C of V/(G) such that:
o C is a dominating set: Yu € V(G), N[u]N C # 0, and
o C is a separating code: Yu # v of V(G), N[uln C # N[v]n C
Equivalently:
(N[u] © N[v]) N C # 0 — hitting symmetric differences

Theorem

G identifiable, n vertices, some edges: [log,(n+1)] <~"(G)<n-—1

7°(G) = logy(n+1)

Florent Foucaud 6 /36

Definition - Identifying code)

Subset C of V/(G) such that:
o C is a dominating set: Yu € V(G), N[u]N C # 0, and
o C is a separating code: Yu # v of V(G), N[uln C # N[v]n C
Equivalently:
(N[u] © N[v]) N C # 0 — hitting symmetric differences

Theorem

G identifiable, n vertices, some edges: [log,(n+1)] <~"(G)<n-—1

7°(G) = logy(n+1)

Florent Foucaud 6 /36

Definition - Identifying code)

Subset C of V/(G) such that:
o C is a dominating set: Yu € V(G), N[u]N C # 0, and
o C is a separating code: Yu # v of V(G), N[uln C # N[v]n C
Equivalently:
(N[u] © N[v]) N C # 0 — hitting symmetric differences

Theorem

G identifiable, n vertices, some edges: [log,(n+1)] <~"(G)<n-—1

7°(G) = logy(n+1)

Florent Foucaud 6 /36

Definition - Identifying code)

Subset C of V/(G) such that:
o C is a dominating set: Yu € V(G), N[u]N C # 0, and
o C is a separating code: Yu # v of V(G), N[uln C # N[v]n C
Equivalently:
(N[u] © N[v]) N C # 0 — hitting symmetric differences

Theorem

G identifiable, n vertices, some edges: [log,(n+1)] <~"(G)<n-—1

7°(G) = logy(n+1)

Florent Foucaud 6 /36

Definition - Identifying code)

Subset C of V/(G) such that:
o C is a dominating set: Yu € V(G), N[u]N C # 0, and
o C is a separating code: Yu # v of V(G), N[uln C # N[v]n C
Equivalently:
(N[u] © N[v]) N C # 0 — hitting symmetric differences

Theorem

G identifiable, n vertices, some edges: [log,(n+1)] <~"(G)<n-—1

7°(G) = logy(n+1)

Florent Foucaud 6 /36

Definition - Identifying code)

Subset C of V/(G) such that:
o C is a dominating set: Yu € V(G), N[u]N C # 0, and
o C is a separating code: Yu # v of V(G), N[uln C # N[v]n C
Equivalently:
(N[u] © N[v]) N C # 0 — hitting symmetric differences

Theorem

G identifiable, n vertices, some edges: [log,(n+1)] <~"(G)<n-—1

7°(G) = logy(n+1)

Florent Foucaud 6 /36

Definition - Identifying code)

Subset C of V/(G) such that:
o C is a dominating set: Yu € V(G), N[u]N C # 0, and
o C is a separating code: Yu # v of V(G), N[uln C # N[v]n C
Equivalently:
(N[u] © N[v]) N C # 0 — hitting symmetric differences

Theorem

G identifiable, n vertices, some edges: [log,(n+1)] <~"(G)<n-—1

7°(G) = logy(n+1)

e > e O forced vertex

Florent Foucaud 6 /36

Definition - Identifying code)

Subset C of V/(G) such that:
o C is a dominating set: Yu € V(G), N[u]N C # 0, and
o C is a separating code: Yu # v of V(G), N[uln C # N[v]n C
Equivalently:
(N[u] © N[v]) N C # 0 — hitting symmetric differences

Theorem

G identifiable, n vertices, some edges: [log,(n+1)] <~"(G)<n-—1

7°(G) = logy(n+1)

forced vertex O o—— o

Florent Foucaud 6 /36

Definition - Identifying code)

Subset C of V/(G) such that:
o C is a dominating set: Yu € V(G), N[u]N C # 0, and
o C is a separating code: Yu # v of V(G), N[uln C # N[v]n C
Equivalently:
(N[u] © N[v]) N C # 0 — hitting symmetric differences

Theorem

G identifiable, n vertices, some edges: [log,(n+1)] <~"(G)<n-—1

7°(G) = logy(n+1)

Florent Foucaud 6 /36

Definition - Identifying code)

Subset C of V/(G) such that:
o C is a dominating set: Yu € V(G), N[u]N C # 0, and
o C is a separating code: Yu # v of V(G), N[uln C # N[v]n C
Equivalently:
(N[u] © N[v]) N C # 0 — hitting symmetric differences

Theorem

G identifiable, n vertices, some edges: [log,(n+1)] <~"(G)<n-—1

7°(G) = logy(n+1)

Florent Foucaud 6 /36

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

7(G)<n—-1

Question

What are the graphs G with n vertices and ¥°(G) =n—17

Florent Foucaud 7/ 36

Part 1
Graphs with large identifying code number

Part 2
Identifying code number and maximum degree

Part 3
Algorithmic hardness of the identifying code problem

u, v such that N[v] & N[u] = {f}: v u
f belongs to any identifying code

— f forced by u, v.

Florent Foucaud 9 /36

Special path powers: Ay = Py,

AN

Ao = P,

A3=P62 A4=P§'

Florent Foucaud 10 / 36

Special path powers: Ay = Py,

AN

=P As = F2 A= P}

Florent Foucaud 10 / 36

Special path powers: Ay = Py,

AN

=P As = F2 A= P}

Florent Foucaud 10 / 36

Special path powers: Ay = Py,

v ~
A ~
. ..
N
N
\s ~
~ .
l AY
Seo)
Ay =Py

Florent Foucaud 10 / 36

Special path powers: A, = PX !

AN

A =P A; = P2 Ay =P3

Proposition

YP(Ak) =n—1

Florent Foucaud 10 / 36

Two graphs Ai and Ay

Florent Foucaud 11 / 36

—

i

Join: add all edges between them

Florent Foucaud 11 / 36

—
</
)
/A

Join the new graph to two non-adjacent vertices (Kz)

V4

Florent Foucaud

Join the new graph to two non-adjacent vertices, again

Finally, add a universal vertex

Finally, add a universal vertex

Proposition

At each step, the constructed graph has 4" = n—1

(1) stars

(2) Ac= Pl

(3) joins between 0 or more members of (2) and 0 or more copies of K
(4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovde, Naserasr, Parreau, Valicov, 2011)]

G connected identifiable graph, n vertices:

YP(G)=n—-1«< G e (1), (2), (3) or (4)

Florent Foucaud 12 / 36

joins between 0 or more members of (2) and 0 or more copies of K
(2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovde, Naserasr, Parreau, Valicov, 2011)]

G connected identifiable graph, n vertices:

YP(G)=n—-1«< G e (1), (2), (3) or (4)

e G: minimum counterexample

Florent Foucaud

2 /36

Ak—’DZkkl

(1)
(2)
(3) joins between 0 or more members of (2) and 0 or more copies of K
(4)

(2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovde, Naserasr, Parreau, Valicov, 2011)]

G connected identifiable graph, n vertices:

YP(G)=n—-1«< G e (1), (2), (3) or (4)

e G: minimum counterexample

e v: vertex such that G — v
identifiable (exists)

Florent Foucaud 12 / 36

Ak—’DZkkl

(1)
(2)
(3) joins between 0 or more members of (2) and 0 or more copies of K
(4)

(2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovde, Naserasr, Parreau, Valicov, 2011)]

G connected identifiable graph, n vertices:

YP(G)=n—-1«< G e (1), (2), (3) or (4)

e G: minimum counterexample

e v: vertex such that G — v
identifiable (exists)

e Lemma: y"°(G—v)=n" -1

Florent Foucaud 12 / 36

Ak—’DZkkl

(1)
(2)
(3) joins between 0 or more members of (2) and 0 or more copies of K
(4)

(2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovde, Naserasr, Parreau, Valicov, 2011)]

G connected identifiable graph, n vertices:

YP(G)=n—-1«< G e (1), (2), (3) or (4)

e G: minimum counterexample

e v: vertex such that G — v

identifiable (exists)

e Lemma: y"°(G—v)=n" -1

= By minimality of G:
G—ve(l),(2),(3)or(4)

Florent Foucaud 12 / 36

Ak—’DZkkl

(1)
(2)
(3) joins between 0 or more members of (2) and 0 or more copies of K
(4)

(2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovde, Naserasr, Parreau, Valicov, 2011)]

G connected identifiable graph, n vertices:

YP(G)=n—-1«< G e (1), (2), (3) or (4)

e G: minimum counterexample

e v: vertex such that G — v
identifiable (exists)

e Lemma: y"°(G—v)=n" -1
= By minimality of G:
G—ve () (2),(3)or(4)

e Put v back = contradiction: no counterexample exists!

Florent Foucaud 12 / 36

(1)
(2) A= Pyt

(3) joins between 0 or more members of (2) and 0 or more copies of Ky
(4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovde, Naserasr, Parreau, Valicov, 2011)]

G connected identifiable graph, n vertices:

YP(G)=n—-1«< G e (1), (2), (3) or (4)

Observation

All these graphs have maximum degree n — 1 or n — 2

Florent Foucaud 12 / 36

Part 1
Graphs with large identifying code number

Part 2
Identifying code number and maximum degree

Part 3
Algorithmic hardness of the identifying code problem

maximum degree of G: maximum number of neighbours of a vertex in G

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)]

G identifiable graph, n vertices, maximum degree A:

s <9°(G)

Florent Foucaud 14 / 36

maximum degree of G: maximum number of neighbours of a vertex in G

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)]

G identifiable graph, n vertices, maximum degree A:

s <9°(G)

Theorem (F., Klasing, Kosowski, 2009)]

Equality if and only if G can be constructed as follows:

o Take A-regular graph H

Florent Foucaud 14 / 36

maximum degree of G: maximum number of neighbours of a vertex in G

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)]

G identifiable graph, n vertices, maximum degree A:

s <9°(G)

Theorem (F., Klasing, Kosowski, 2009)]

Equality if and only if G can be constructed as follows:

o Take A-regular graph H

e Subdivide each edge once

Florent Foucaud 14 / 36

maximum degree of G: maximum number of neighbours of a vertex in G

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)]

G identifiable graph, n vertices, maximum degree A:

s <9°(G)

Theorem (F., Klasing, Kosowski, 2009)]

Equality if and only if G can be constructed as follows:

o Take A-regular graph H
e Subdivide each edge once

e Possibly add some edges

Florent Foucaud 14 / 36

Question

What is a good upper bound on ~'® using the maximum degree?

Florent Foucaud 15 / 36

Question

What is a good upper bound on ~'® using the maximum degree?

Proposition

There exist graphs with n vertices, max. degree A and 7'°(G) = n— .

Florent Foucaud 15 / 36

Question

What is a good upper bound on +'"° using the maximum degree?

Proposition

There exist graphs with n vertices, max. degree A and v°(G) = n—%.

Florent Foucaud 15 / 36

Question

What is a good upper bound on «'° using the maximum degree?

Proposition

There exist graphs with n vertices, max. degree A and 7'"°(G) = n— .

Florent Foucaud 15 / 36

Question

What is a good upper bound on ~'® using the maximum degree?

Proposition

There exist graphs with n vertices, max. degree A and 7'°(G) = n— .

Florent Foucaud 15 / 36

Question

What is a good upper bound on ~'® using the maximum degree?

Proposition

There exist graphs with n vertices, max. degree A and 7'°(G) = n— .

(@ O

Florent Foucaud 15 / 36

Question

What is a good upper bound on ~'® using the maximum degree?

Proposition

There exist graphs with n vertices, max. degree A and 7'°(G) = n— .

Also: Sierpinski graphs

(Gravier, Kovge, Mollard,
Moncel, Parreau, 2011)

Florent Foucaud 15 / 36

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)]

G connected identifiable graph, n vertices, max. degree A. Then

7°(G) < n— X + ¢ for some constant ¢

Florent Foucaud 16 / 36

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)]

G connected identifiable graph, n vertices, max. degree A. Then

7°(G) < n— X + ¢ for some constant ¢

Question

Can we prove that v°(G) < n— SNK

Florent Foucaud 16 / 36

Theorem (F., Klasing, Kosowski, Raspaud, 2009)]

G identifiable triangle-free graph, n vertices, max. degree A. Then

7°(G) < n— n

N g n
Dot A(l+oa(1))

Florent Foucaud 17 / 36

Theorem (F., Klasing, Kosowski, Raspaud, 2009)]

G identifiable triangle-free graph, n vertices, max. degree A. Then

7°(G) < n— W =N~ XATor()

Proof idea: Constructive.

Triangle-free graphs have large independent sets
(see e.g. Shearer: a(G) > n&n)

— Locally modify such an independent set:
its complement is a “small” id. code.

Florent Foucaud

Theorem (F., Klasing, Kosowski, Raspaud, 2009)]

G identifiable triangle-free graph, n vertices, max. degree A. Then

7°(G) < n— n

N g
NIy A(l+oa(1))

Remark

Same technique applies to families of triangle-free graphs with large
independent sets.
— bipartite graphs: a(G) > 3 = 7°(G) < n— 35

Florent Foucaud

© Define a suitable probability space

@ Select some object from this space using a random process
— select random set

© Prove that with nonzero probability, certain " good” conditions hold
— selected set is small id. code

@ Conclusion: there always exists a "good" object
— small id. code

Florent Foucaud 18 / 36

Theorem (F., Perarnau, 2011)]

G identifiable graph, n vertices, maximum degree A, no isolated

vertices: 2
D n-NF(G
7°(G) < n— “ga
Notation

NF(G): proportion of non forced vertices of G

#non forced vertices in G
#tvertices in G

NF(G) =

Florent Foucaud 19 / 36

Proof

1) F: forced vertices. Select “big" random set S from V(G)\ F

for each vertex v from V(G)\ F
— v € § with probability p.

Want: p=0© (%)

E(IS]) = p- nNF(G) = “gsS

ic aspects of i ifying codes in graphs 20/ 36

1) F: forced vertices. Select “big" random set S from V(G) \ F
Goal: C = V(G)\ S small identifying code

for each vertex v from V(G)\ F
— v € S with probability p.

Want: p=© (%)

E(|S|) = p- nNF(G) = 55

E(IC]) = n — 2505

Florent Foucaud 20 / 36

1) F: forced vertices. Select "big" random set S from V(G)\ F
Goal: C = V(G)\ S small identifying code

2) Use Lovész Local Lemma: define bad events
— if none occurs, V(G)\ S is an identifying code

Florent Foucaud 20 / 36

1) F: forced vertices. Select “big" random set S from V(G) \ F
Goal: C = V(G)\ S small identifying code

2) Use Lovész Local Lemma: define bad events
— if none occurs, V(G)\ S is an identifying code

each vertex u
— 1 event for domination

each pair u, v at dist. at most 2
— 1 event for separation

Florent Foucaud 20 / 36

1) F: forced vertices. Select “big" random set S from V(G) \ F
Goal: C = V(G)\ S small identifying code

2) Use Lovész Local Lemma: define bad events
— if none occurs, V(G)\ S is an identifying code

3) Compute probability Pre(p, A) of each bad event E

Florent Foucaud 20 / 36

1) F: forced vertices. Select “big" random set S from V(G) \ F
Goal: C = V(G)\ S small identifying code

2) Use Lovész Local Lemma: define bad events
— if none occurs, V(G)\ S is an identifying code

3) Compute probability Pre(p, A) of each bad event E

4) Local Lemma: if dependencies are “small”:
with nonzero probability none of the bad events occurs

Florent Foucaud 20 / 36

1) F: forced vertices. Select “big" random set S from V(G) \ F
Goal: C = V(G)\ S small identifying code

2) Use Lovész Local Lemma: define bad events
— if none occurs, V(G)\ S is an identifying code

3) Compute probability Pre(p, A) of each bad event E

4) Local Lemma: if dependencies are “small”:
with nonzero probability none of the bad events occurs

= exists S s.t. C is an id. code — E(|C|) = n— p - nNF(G)

Florent Foucaud 20 / 36

1) F: forced vertices. Select “big" random set S from V(G) \ F
Goal: C = V(G)\ S small identifying code

2) Use Lovész Local Lemma: define bad events
— if none occurs, V(G)\ S is an identifying code

3) Compute probability Pre(p, A) of each bad event E

4) Local Lemma: if dependencies are “small”:
with nonzero probability none of the bad events occurs

= exists S s.t. C is an id. code — E(|C|) = n— p - nNF(G)
Problem: maybe S~) and C = V/(G)!!!

Florent Foucaud 20 / 36

1) F: forced vertices. Select “big" random set S from V(G) \ F
Goal: C = V(G)\ S small identifying code

2) Use Lovész Local Lemma: define bad events
— if none occurs, V(G)\ S is an identifying code

3) Compute probability Pre(p, A) of each bad event E

4) Local Lemma: if dependencies are “small”:
with nonzero probability none of the bad events occurs

= exists S s.t. C is an id. code — E(|C|) = n— p - nNF(G)
Problem: maybe S ~ @ and C =~ V(G)!I!

5) Solution: Chernoff bound — w.h.p. |S| is close to expected size

Florent Foucaud

|_— Pr(Cis id. code)

—Pr(C is small id. code) > 0

-

| —— Pr(C is too big)

20 / 36

NF(G): proportion of non forced vertices of G

Theorem (F., Perarnau, 2011)]

G identifiable graph on n vertices having maximum degree A and no
isolated vertices: NF(C)?
7°(6) < n— "R

Question

What can be said about NF(G)?

Florent Foucaud 21 /36

NF(G): proportion of non forced vertices of G

Theorem (F., Perarnau, 2011)]

G identifiable graph on n vertices having maximum degree A and no
isolated vertices: NF(C)?
7°(6) < n— "R

Question

What can be said about NF(G)?

G regular = NF(G) =1

Corollary

G regular: v°(G) < n— 5%

Florent Foucaud 21 /36

NF(G): proportion of non forced vertices of G

Theorem (F., Perarnau, 2011)]

G identifiable graph on n vertices having maximum degree A and no

isolated vertices: 2
D n-NF(G
7°(G) < n— “ga

Lemma (Bertrand, 2005)]

G: identifiable graph having no isolated vertices. Let x be a vertex of
G. There exists a non forced vertex in N[x].
— Set of non forced vertices is a dominating set.

Florent Foucaud 22 /36

NF(G): proportion of non forced vertices of G

Theorem (F., Perarnau, 2011)]

G identifiable graph on n vertices having maximum degree A and no

isolated vertices: 2
D n-NF(G
7°(G) < n— “ga

Lemma (Bertrand, 2005)]

G: identifiable graph having no isolated vertices. Let x be a vertex of
G. There exists a non forced vertex in N[x].
— Set of non forced vertices is a dominating set.

Corollary

a1 < NF(G) <landy°(G) <n-— TO5(A 17

Florent Foucaud 22 /36

NF(G): proportion of non forced vertices of G

Theorem (F., Perarnau, 2011)]

G identifiable graph on n vertices having maximum degree A and no

isolated vertices: n-NF(G)?
7°(6) < n— “ea

cliqgue number of G: max. size of a complete subgraph in G

Proposition (F., Perarnau, 2011)]

Let G be a graph of clique number at most k. There exists a (huge)
function ¢ such that:

25 <NF(G) <1

Florent Foucaud 23 /36

NF(G): proportion of non forced vertices of G

Theorem (F., Perarnau, 2011)]

G identifiable graph on n vertices having maximum degree A and no

isolated vertices: n-NF(G)?
7°(C) < n— TigeR

clique number of G: max. size of a complete subgraph in G

Proposition (F., Perarnau, 2011)]

Let G be a graph of clique number at most k. There exists a (huge)
function ¢ such that:
&5 < NF(G) <1
Corollary
7°(G) < 1 — tosc(epa = " — (5

Florent Foucaud 23 /36

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)]

G connected identifiable graph, n vertices, max. degree A. Then

7°(G) < n— X + ¢ for some constant ¢

Theorem

in general: v°(G) < n— (A%

triangle-free: v°(G) < n— _A(1+ZA(1))

bipartite: v°(G) < n— 355

regular: ¥°(G) < n — Ex

clique number k: n— 1056&) =

Florent Foucaud 24 / 36

Part 1
Graphs with large identifying code number

Part 2
Identifying code number and maximum degree

Part 3
Algorithmic hardness of the identifying code problem

Definition - Computational problem]

e Set of inputs
e Given an input, task to be solved by an algorithm

Florent Foucaud 26 / 36

Definition - Computational problem]

e Set of inputs
e Given an input, task to be solved by an algorithm

Decision problem. Task: answer Yes/No question

Definition - IDCODE)

INPUT: graph G, integer k
QUESTION: does G have an identifying code of size at most k?

Florent Foucaud 26 / 36

Definition - Computational problem]

e Set of inputs
e Given an input, task to be solved by an algorithm

Decision problem. Task: answer Yes/No question

Definition - IDCODE)

INPUT: graph G, integer k
QUESTION: does G have an identifying code of size at most k?

Polynomial-time for: NP-complete for:
o trees (Auger, 2010) e planar subcubic graphs
(Auger et al. 2010)
e bounded treewidth e planar bipartite unit disk graphs
(Moncel, 2005) (Miiller, Sereni, 2009)

e etc.

Florent Foucaud

26 / 36

Definition - Computational problem]

e Set of inputs
e Given an input, task to be solved by an algorithm

Florent Foucaud 27 / 36

Definition - Computational problem]

e Set of inputs
e Given an input, task to be solved by an algorithm

Minimization problem. Task: find a small solution

«a-approximation algorithm: returns solution of size < - OPTIMUM

Definition - MIN IDCODE)

INPUT: graph G
TASK: find smallest possible identifying code of G

Florent Foucaud 27 / 36

Definition - Computational problem]

e Set of inputs
e Given an input, task to be solved by an algorithm

Minimization problem. Task: find a small solution

«a-approximation algorithm: returns solution of size < - OPTIMUM

Definition - MIN IDCODE)

INPUT: graph G
TASK: find smallest possible identifying code of G

O(log(n))-approximation algorithm (n: order of input graph)

No o(log(n))-approximation algorithm, unless P = NP
(Berger-Wolf et al. 2006 / Suomela, 2007)

Florent Foucaud 27 / 36

Question

What is the complexity of IDCODE and MIN IDCODE for various
standard graph classes?
— restriction of the input set

Florent Foucaud 28 / 36

Definition - Reduction)

Two computational problems A, B
Polynomial-time computable function r : A — B such that:

B efficiently solvable = A efficiently solvable.

Florent Foucaud 29 / 36

Definition - Reduction)

Two computational problems A, B
Polynomial-time computable function r : A — B such that:

B efficiently solvable = A efficiently solvable.

Proposition

If Ais hard, then B is hard.

Florent Foucaud 29 / 36

Definition - Discriminating code of a bipartite graph G(A, B)]

Subset C C B which dominates and separates vertices of A.

A B
(1) a 1

({1.3) b 2 example: C = {1,3,5}
{3 e 3

({3.5)) d 4

Florent Foucaud 30 / 36

Definition - Discriminating code of a bipartite graph G(A, B)]

Subset C C B which dominates and separates vertices of A.

A B
(1) a 1
({1.3) b 2 example: C = {1,3,5}
({3 e 3
({3.5}) d 4

Definition - MIN DISCR CODE)

INPUT: bipartite graph G
TASK: find smallest possible discriminating code of G

No o(log(n))-approximation algorithm, unless P = NP
(De Bontridder et al. 2003)

Florent Foucaud 30 /36

Reduction: MIN DISCR CODE to MIN IDCODE for bipartite graphs.

Florent Foucaud

Reduction: MIN DISCR CODE to MIN IDCODE for bipartite graphs.

(HE

o G(A, B) has discr. code of size k if and only if G’ has an
identifying code of size k + 3[log,(|B| + 1)] + 2. Constructive.

o If MIN IDCODE has an a-approximation algorithm, then MIN
DISCR. CODE has a 4a-approximation algorithm.

Theorem (F., 2012))

Florent Foucaud 31/36

Reduction: MIN DISCR CODE to MIN IDCODE for bipartite graphs.

(HE

o G(A, B) has discr. code of size k if and only if G’ has an
identifying code of size k + 3[log,(|B| + 1)] + 2. Constructive.

o If MIN IDCODE has an a-approximation algorithm, then MIN
DISCR. CODE has a 4a-approximation algorithm.

Theorem (F., 2012))

Corollary

NP-hard to approximate MIN IDCODE within o(log(n))
— even for bipartite graphs.

Florent Foucaud 31/36

Similar reductions for split graphs and co-bipartite graphs.

clique ind. set clique clique
@

co-bipartite graphs

split graphs

Theorem (F., 2012))

It is NP-hard to approximate MIN IDCODE within o(log(n))
— even for split graphs and for co-bipartite graphs.

Florent Foucaud 32 /36

Definition - Interval graph]

Intersection graph of intervals of the real line.

Florent Foucaud 33 /36

Definition - Interval graph]

Intersection graph of intervals of the real line.

Remark

Many problems are efficiently solvable for interval graphs.
Example: DOMINATING SET

Florent Foucaud 33 /36

Theorem (F., Kosowski, Mertzios, Naserasr, Parreau, Valicov, 2012)

IDCODE is NP-complete for interval graphs. Reduction from 3-
DIMENSIONAL MATCHING.

Main idea:
an interval can separate two pairs of intervals that are far away

without affecting what lies in between.

Florent Foucaud

34

Ki g-free 3-interval

perfect unit disk claw-free 2-interval planar

triangle-free comparability chordal quasi-line unit 2-interval \ subcubic

separation for DOMINATING SET

permutation unit interval
unknown

bounded CW line of bounded TW

bounded TW

series-parallel

outerplanar

trees: cographs line of trees

Ky o-free interval

perfect unit disk claw-free 2-interval planar

triangle-free comparability chordal quasi-line unit 2-interval \ subcubic
bipartite

chordal bipartite

separation for DOMINATING SET
directed path

What is the complexity
of IDCODE for these classes?

L \\ //l /)(I

interval

[permutation unit interval I /
bounded CW line of bounded TW
bounded TW
series-parallel —
outerplanar
trees: cographs line of trees

Florent Foucaud

Ky o-free interval

perfect unit disk claw-free 2-interval planar

triangle-free comparability chordal quasi-line unit 2-interval \ subcubic

bipartite split
VA

IDCODE /[
NP-complete | | chordal bipartite

IO IS g Y A separation for DOMINATING SET

What is the complexity

interval of IDCODE for these classes?
¥ -/ X 7
[permutation unit inferval (=] "
. | !
bounded CW line of bou’nded ™w
bounded TW
se"”fa"’"e" What is the complexity of approximating
outerplanar MIN IDCODE for these classes?
trees cographs line of trees

Florent Foucaud 35 /36

o Part 1: Graphs with large identifying code number

What are tight bounds on ~'® for specific graph classes?
— planar graphs, special chordal graphs, permutation graphs,...

Florent Foucaud 36 / 36

o Part 1: Graphs with large identifying code number

What are tight bounds on «'® for specific graph classes?
— planar graphs, special chordal graphs, permutation graphs,...

o Part 2: Identifying code number and maximum degree

Can we approach/prove our conjecture ¥°(G) < n—n/A+c?
— trees, subcubic graphs, line graphs,...

36 /36

Florent Foucaud

o Part 1: Graphs with large identifying code number

What are tight bounds on «'® for specific graph classes?
— planar graphs, special chordal graphs, permutation graphs,...

o Part 2: Identifying code number and maximum degree

Can we approach/prove our conjecture ¥°(G) < n—n/A+c?
— trees, subcubic graphs, line graphs,...

e Part 3: Algorithmic hardness of the identifying code problem

What is the complexity of (MIN) IDCODE for specific graph classes?
— unit interval graphs,...

Florent Foucaud 36 /36

Perspectives

o Part 1: Graphs with large identifying code number
What are tight bounds on «'® for specific graph classes?
— planar graphs, special chordal graphs, permutation graphs,...

o Part 2: Identifying code number and maximum degree
Can we approach/prove our conjecture ¥°(G) < n—n/A+c?
— trees, subcubic graphs, line graphs,...

e Part 3: Algorithmic hardness of the identifying code problem
What is the complexity of (MIN) IDCODE for specific graph classes?
— unit interval graphs,...

Other perspectives:

e Parameterized complexity of IDCODE

o Fractional identifying codes

Florent Foucaud Ci i ial and i ic aspects of i ifying codes in graphs 36 / 36

	Introduction
	Graphs with large identifying number
	Identifying code number and maximum degree
	Algorithmic hardness
	Conclusion

