Combinatorial and algorithmic aspects of identifying codes in graphs

Florent Foucaud

Bordeaux

December 10th, 2012

Graph G = (V, E). V: vertices (rooms), $E \subseteq V \times V$: edges (doors)

Graph G = (V, E). V: vertices (rooms), $E \subseteq V \times V$: edges (doors) Motion detector: detects intruder in its room or in adjacent rooms

Graph G = (V, E). V: vertices (rooms), $E \subseteq V \times V$: edges (doors) Motion detector: detects intruder in its room or in adjacent rooms G: undirected graph N[u]: set of vertices v s.t. $d(u, v) \leq 1$

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

G: undirected graph N[u]: set of vertices v s.t. $d(u, v) \leq 1$

Subset C of V(G) such that:

- C is a **dominating set**: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text{hitting symmetric differences}$

 $\begin{array}{l} G\colon \text{ undirected graph} \\ N[u]\colon \text{set of vertices } v \text{ s.t. } d(u,v) \leq 1 \end{array}$

Subset C of V(G) such that:

- C is a **dominating set**: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow hitting symmetric differences$

Goal: minimize number of detectors

G: undirected graph N[u]: set of vertices v s.t. $d(u, v) \leq 1$

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow$ hitting symmetric differences

Goal: minimize number of detectors

 $\gamma^{\text{\tiny ID}}(G)$: minimum size of an identifying code in G

 Remark

 Not all graphs have an identifying code!

 Twins = pair u, v such that N[u] = N[v].

 u v

n: number of vertices

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

G identifiable graph on n vertices:

 $\lceil \log_2(n+1) \rceil \leq \gamma^{\text{\tiny ID}}(\mathit{G})$

n: number of vertices

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

G identifiable graph on n vertices:

```
\lceil \log_2(n+1) \rceil \leq \gamma^{\text{\tiny ID}}(G)
```

 \rightarrow Graphs reaching bound characterized by Moncel, 2006.

n: number of vertices

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

G identifiable graph on n vertices:

$$\lceil \log_2(n+1) \rceil \leq \gamma^{\scriptscriptstyle {\rm ID}}(G)$$

 \rightarrow Graphs reaching bound characterized by Moncel, 2006.

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

$$\gamma^{\text{\tiny{ID}}}(G) \leq n-1$$

n: number of vertices

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

G identifiable graph on n vertices:

$$\lceil \log_2(n+1) \rceil \leq \gamma^{\scriptscriptstyle {\rm ID}}(G)$$

 \rightarrow Graphs reaching bound characterized by Moncel, 2006.

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

$$\gamma^{\scriptscriptstyle {\rm ID}}({\it G}) \leq n-1$$

$$\gamma^{\text{\tiny ID}}(G) = n \Leftrightarrow G$$
 has no edges

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- *C* is a **separating code**: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text{hitting symmetric differences}$

Theorem

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- *C* is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text{hitting symmetric differences}$

Theorem

 ${{\it G}}$ identifiable, ${\it n}$ vertices, some edges: $\lceil \log_2(n+1)\rceil \leq \gamma^{\scriptscriptstyle \rm ID}({{\it G}}) \leq n-1$

$$\gamma^{n}(G) = \log_{2}(n+1)$$

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow$ hitting symmetric differences

Theorem

G identifiable, n vertices, some edges: $\lceil \log_2(n+1) \rceil \le \gamma^{|D|}(G) \le n-1$

$$\gamma^{\text{\tiny ID}}(G) = \log_2(n+1)$$

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow$ hitting symmetric differences

Theorem

G identifiable, *n* vertices, some edges: $\lceil \log_2(n+1) \rceil \le \gamma^{\text{ID}}(G) \le n-1$

$$\gamma^{\text{\tiny{ID}}}(G) = \log_2(n+1)$$

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow$ hitting symmetric differences

Theorem

G identifiable, n vertices, some edges: $\lceil \log_2(n+1) \rceil \le \gamma^{|D|}(G) \le n-1$

 $\gamma^{\text{\tiny ID}}(G) = \log_2(n+1)$

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- *C* is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text{hitting symmetric differences}$

Theorem

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow$ hitting symmetric differences

Theorem

G identifiable, n vertices, some edges: $\lceil \log_2(n+1) \rceil \le \gamma^{|D|}(G) \le n-1$

 $\gamma^{\text{\tiny ID}}(G) = \log_2(n+1)$

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow$ hitting symmetric differences

Theorem

G identifiable, n vertices, some edges: $\lceil \log_2(n+1) \rceil \le \gamma^{|D|}(G) \le n-1$

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- *C* is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text{hitting symmetric differences}$

Theorem

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- *C* is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text{hitting symmetric differences}$

Theorem

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- *C* is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text{hitting symmetric differences}$

Theorem

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- *C* is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text{hitting symmetric differences}$

Theorem

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- *C* is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text{hitting symmetric differences}$

Theorem

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

$$\gamma^{\text{\tiny{ID}}}(G) \leq n-1$$

Question

What are the graphs G with n vertices and $\gamma^{\text{\tiny ID}}(G) = n - 1$?

Part 1 Graphs with large identifying code number

Part 2 Identifying code number and maximum degree

Part 3 Algorithmic hardness of the identifying code problem u, v such that $N[v] \ominus N[u] = \{f\}$:

f belongs to any identifying code

$$\rightarrow$$
 f forced by *u*, *v*.

Special path powers: $A_k = P_{2k}^{k-1}$

 $A_2 = P_4$

 $A_3 = P_6^2$

 $A_4 = P_8^3$

Special path powers: $A_k = P_{2k}^{k-1}$

Special path powers: $A_k = P_{2k}^{k-1}$

 $A_2 = P_4$

 $A_3 = P_6^2$

 $A_4 = P_8^3$

Special path powers: $A_k = P_{2k}^{k-1}$

Graphs with many forced vertices

Special path powers: $A_k = P_{2k}^{k-1}$

Two graphs A_k and $A_{k'}$

Join: add all edges between them

Join the new graph to two non-adjacent vertices $(\overline{K_2})$

Join the new graph to two non-adjacent vertices, again

Finally, add a universal vertex

(1) stars

(2)
$$A_k = P_{2k}^{k-1}$$

- (3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_2}$
- (4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

$$\gamma^{\scriptscriptstyle {
m ID}}({\it G})={\it n}-1 \Leftrightarrow {\it G}\in(1),$$
 (2), (3) or (4)

(1) stars

(2)
$$A_k = P_{2k}^{k-1}$$

- (3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_2}$
- (4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

G connected identifiable graph, n vertices:

$$\gamma^{\scriptscriptstyle {
m ID}}({\it G})={\it n}-1 \Leftrightarrow {\it G}\in(1),$$
 (2), (3) or (4)

• G: minimum counterexample

(1) stars

(2)
$$A_k = P_{2k}^{k-1}$$

- (3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_2}$
- (4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

$$\gamma^{\scriptscriptstyle {
m ID}}(G)=n-1 \Leftrightarrow G\in (1), \, (2), \, (3) ext{ or } (4)$$

- G: minimum counterexample
- v: vertex such that G v identifiable (exists)

(1) stars

(2)
$$A_k = P_{2k}^{k-1}$$

- (3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_2}$
- (4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

$$\gamma^{\scriptscriptstyle {
m ID}}(G)=n-1 \Leftrightarrow G\in (1), \, (2), \, (3) ext{ or } (4)$$

- G: minimum counterexample
- v: vertex such that G v identifiable (exists)

• Lemma:
$$\gamma^{\text{\tiny ID}}(G-v) = n'-1$$

(1) stars

(2)
$$A_k = P_{2k}^{k-1}$$

- (3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_2}$
- (4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

$$\gamma^{\scriptscriptstyle {
m ID}}(G)=n-1 \Leftrightarrow G\in (1), \ (2), \ (3) \ {
m or} \ (4)$$

- G: minimum counterexample
- v: vertex such that G v identifiable (exists)

• Lemma:
$$\gamma^{\text{ID}}(G - v) = n' - 1$$

 \Rightarrow By minimality of G :
 $G - v \in (1), (2), (3)$ or (4

(1) stars

(2)
$$A_k = P_{2k}^{k-1}$$

- (3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_2}$
- (4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

G connected identifiable graph, n vertices:

$$\gamma^{\scriptscriptstyle {
m ID}}({\it G})={\it n}-1 \Leftrightarrow {\it G}\in(1),$$
 (2), (3) or (4)

- G: minimum counterexample
- v: vertex such that G v identifiable (exists)

• Lemma:
$$\gamma^{\text{ID}}(G - v) = n' - 1$$

 \Rightarrow By minimality of G :
 $G - v \in (1), (2), (3)$ or (4

• Put *v* back ⇒ **contradiction**:

no counterexample exists!

(1) stars

(2)
$$A_k = P_{2k}^{k-1}$$

- (3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_2}$
- (4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

G connected identifiable graph, n vertices:

$$\gamma^{\scriptscriptstyle (\mathsf{D})}(G) = n-1 \Leftrightarrow G \in (1), (2), (3) \text{ or } (4)$$

Observation

All these graphs have maximum degree n-1 or n-2

Part 1 Graphs with large identifying code number

Part 2 Identifying code number and maximum degree

Part 3 Algorithmic hardness of the identifying code problem

maximum degree of G: maximum number of neighbours of a vertex in G

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

G identifiable graph, n vertices, maximum degree Δ :

$$rac{2n}{\Delta+2} \leq \gamma^{\text{\tiny ID}}(G)$$

maximum degree of G: maximum number of neighbours of a vertex in G

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

G identifiable graph, n vertices, maximum degree Δ :

$$rac{2n}{\Delta+2} \leq \gamma^{\text{ID}}(G)$$

Theorem (F., Klasing, Kosowski, 2009)

Equality if and only if G can be constructed as follows:

• Take Δ -regular graph H

maximum degree of G: maximum number of neighbours of a vertex in G

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

G identifiable graph, n vertices, maximum degree Δ :

$$rac{2n}{\Delta+2} \leq \gamma^{\text{ID}}(G)$$

Theorem (F., Klasing, Kosowski, 2009)

Equality if and only if G can be constructed as follows:

- Take Δ -regular graph H
- Subdivide each edge once

maximum degree of G: maximum number of neighbours of a vertex in G

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

G identifiable graph, n vertices, maximum degree Δ :

$$rac{2n}{\Delta+2} \leq \gamma^{\text{ID}}(G)$$

Theorem (F., Klasing, Kosowski, 2009)

Equality if and only if G can be constructed as follows:

- Take Δ -regular graph H
- Subdivide each edge once
- Possibly add some edges

Question

What is a good ${\bf upper \ bound}$ on $\gamma^{\rm \tiny ID}$ using the maximum degree?

Question

What is a good ${\bf upper \ bound}$ on $\gamma^{\rm \tiny ID}$ using the maximum degree?

Proposition

There exist graphs with *n* vertices, max. degree Δ and $\gamma^{\text{ID}}(G) = n - \frac{n}{\Delta}$.

Question What is a good upper bound on γ^{ID} using the maximum degree? Proposition There exist graphs with *n* vertices, max. degree Δ and $\gamma^{\text{ID}}(G) = n - \frac{n}{\Delta}$.

Question What is a good upper bound on γ^{ID} using the maximum degree? Proposition

There exist graphs with *n* vertices, max. degree Δ and $\gamma^{\text{ID}}(G) = n - \frac{n}{\Delta}$.

Also: Sierpiński graphs

(Gravier, Kovše, Mollard, Moncel, Parreau, 2011)

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

 ${\it G}$ connected identifiable graph, ${\it n}$ vertices, max. degree $\Delta.$ Then

 $\gamma^{\scriptscriptstyle ext{\tiny ID}}(G) \leq n - rac{n}{\Delta} + c$ for some constant c

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

 ${\it G}$ connected identifiable graph, ${\it n}$ vertices, max. degree $\Delta.$ Then

$$\gamma^{\scriptscriptstyle { ext{
m ID}}}(G) \leq n - rac{n}{\Delta} + c$$
 for some constant c

(Question)

Can we prove that
$$\gamma^{\scriptscriptstyle {\rm ID}}(G) \leq n - rac{n}{\Theta(\Delta)}$$
?

Triangle-free graphs

Theorem (F., Klasing, Kosowski, Raspaud, 2009)

G identifiable triangle-free graph, n vertices, max. degree Δ . Then

$$\gamma^{\scriptscriptstyle ext{
m ID}}(G) \leq n - rac{n}{\Delta + rac{3\Delta}{\ln \Delta - 1}} = n - rac{n}{\Delta(1 + o_\Delta(1))}$$

Triangle-free graphs

Theorem (F., Klasing, Kosowski, Raspaud, 2009)

G identifiable triangle-free graph, n vertices, max. degree Δ . Then

$$\gamma^{\scriptscriptstyle ext{
m ID}}(G) \leq n - rac{n}{\Delta + rac{3\Delta}{\ln \Delta - 1}} = n - rac{n}{\Delta(1 + o_\Delta(1))}$$

Proof idea: Constructive.

Triangle-free graphs have **large** independent sets (see e.g. Sheard

e e.g. Shearer:
$$\alpha(G) \geq \frac{\ln \Delta}{\Delta}n$$

 \rightarrow Locally modify such an independent set:

its complement is a "small" id. code.

Triangle-free graphs

Theorem (F., Klasing, Kosowski, Raspaud, 2009)

G identifiable triangle-free graph, n vertices, max. degree Δ . Then

$$\gamma^{\scriptscriptstyle {
m ID}}(G) \leq n - rac{n}{\Delta + rac{3\Delta}{\ln \Delta - 1}} = n - rac{n}{\Delta(1 + o_\Delta(1))}$$

Remark

Same technique applies to families of triangle-free graphs with large independent sets.

 \rightarrow bipartite graphs: $\alpha(G) \geq \frac{n}{2} \Rightarrow \gamma^{\text{\tiny ID}}(G) \leq n - \frac{n}{\Delta+9}$

- Define a suitable probability space
- elect some object from this space using a random process → select random set
- Prove that with nonzero probability, certain "good" conditions hold → selected set is small id. code
- Oconclusion: there always exists a "good" object → small id. code

Upper bounds for $\gamma^{\scriptscriptstyle D}(G)$

Theorem (F., Perarnau, 2011)

G identifiable graph, *n* vertices, maximum degree Δ , no isolated vertices: $\gamma^{\text{ID}}(G) \leq n - \frac{n \cdot NF(G)^2}{105 \Delta}$

Notation NF(G): proportion of non forced vertices of G $NF(G) = \frac{\#\text{non forced vertices in G}}{\#\text{vertices in G}}$

Proof

1) *F*: forced vertices. Select "big" random set *S* from $V(G) \setminus F$

Proof

1) *F*: forced vertices. Select "big" random set *S* from $V(G) \setminus F$

for each vertex v from $V(G) \setminus F$ $\rightarrow v \in S$ with probability p.

Want:
$$p = \Theta\left(\frac{1}{\Delta}\right)$$

$$\mathbb{E}(|S|) = p \cdot nNF(G) = \frac{nNF(G)}{\Theta(\Delta)}$$

Proof

1) *F*: forced vertices. Select "big" random set *S* from $V(G) \setminus F$ **Goal**: $C = V(G) \setminus S$ small identifying code

for each vertex v from $V(G) \setminus F$ $\rightarrow v \in S$ with probability p.

Want:
$$p = \Theta\left(rac{1}{\Delta}
ight)$$

$$\mathbb{E}(|S|) = p \cdot nNF(G) = \frac{nNF(G)}{\Theta(\Delta)}$$

$$\mathbb{E}(|\mathcal{C}|) = n - \frac{nNF(G)}{\Theta(\Delta)}$$
1) *F*: forced vertices. Select "big" random set *S* from $V(G) \setminus F$ **Goal**: $C = V(G) \setminus S$ small identifying code

2) Use Lovász Local Lemma: define bad events \rightarrow if none occurs, $V(G) \setminus S$ is an identifying code

1) *F*: forced vertices. Select "big" random set *S* from $V(G) \setminus F$ **Goal**: $C = V(G) \setminus S$ small identifying code

2) Use Lovász Local Lemma: define bad events \rightarrow if none occurs, $V(G) \setminus S$ is an identifying code

each pair u, v at dist. at most 2 \rightarrow 1 event for separation

1) *F*: forced vertices. Select "big" random set *S* from $V(G) \setminus F$ **Goal**: $C = V(G) \setminus S$ small identifying code

2) Use Lovász Local Lemma: define bad events \rightarrow if none occurs, $V(G) \setminus S$ is an identifying code

3) Compute probability $Pr_E(p, \Delta)$ of each bad event E

1) *F*: forced vertices. Select "big" random set *S* from $V(G) \setminus F$ **Goal**: $C = V(G) \setminus S$ small identifying code

2) Use Lovász Local Lemma: define bad events \rightarrow if none occurs, $V(G) \setminus S$ is an identifying code

3) Compute probability $Pr_E(p, \Delta)$ of each bad event E

4) Local Lemma: if dependencies are **"small"**: with **nonzero** probability none of the bad events occurs

1) *F*: forced vertices. Select "big" random set *S* from $V(G) \setminus F$ **Goal**: $C = V(G) \setminus S$ small identifying code

2) Use Lovász Local Lemma: define bad events \rightarrow if none occurs, $V(G) \setminus S$ is an identifying code

3) Compute probability $Pr_E(p, \Delta)$ of each bad event E

4) Local Lemma: if dependencies are **"small"**: with **nonzero** probability none of the bad events occurs

 \Rightarrow exists S s.t. C is an id. code $\rightarrow \mathbb{E}(|C|) = n - p \cdot nNF(G)$

1) *F*: forced vertices. Select "big" random set *S* from $V(G) \setminus F$ **Goal**: $C = V(G) \setminus S$ small identifying code

2) Use Lovász Local Lemma: define bad events \rightarrow if none occurs, $V(G) \setminus S$ is an identifying code

3) Compute probability $Pr_E(p, \Delta)$ of each bad event E

4) Local Lemma: if dependencies are **"small"**: with **nonzero** probability none of the bad events occurs

$$\Rightarrow$$
 exists S s.t. C is an id. code $\rightarrow \mathbb{E}(|C|) = n - p \cdot nNF(G)$

Problem: maybe $S \approx \emptyset$ and $\mathcal{C} \approx V(G)!!!$

1) *F*: forced vertices. Select "big" random set *S* from $V(G) \setminus F$ **Goal**: $C = V(G) \setminus S$ small identifying code

2) Use Lovász Local Lemma: define bad events \rightarrow if none occurs, $V(G) \setminus S$ is an identifying code

3) Compute probability $Pr_E(p, \Delta)$ of each bad event E

4) Local Lemma: if dependencies are **"small"**: with **nonzero** probability none of the bad events occurs

$$\Rightarrow$$
 exists S s.t. C is an id. code $\rightarrow \mathbb{E}(|C|) = n - p \cdot nNF(G)$

Problem: maybe $S \approx \emptyset$ and $\mathcal{C} \approx V(G)$!!!

5) Solution: Chernoff bound \rightarrow w.h.p. |S| is close to expected size

NF(G): proportion of non forced vertices of G

Theorem (F., Perarnau, 2011) *G* identifiable graph on *n* vertices having maximum degree Δ and no isolated vertices: $\alpha^{IP}(G) \leq n - \frac{n \cdot NF(G)^2}{2}$

$$\gamma^{\text{ID}}(G) \leq n - \frac{n \cdot NF(G)^2}{105\Delta}$$

Question

What can be said about NF(G)?

NF(G): proportion of non forced vertices of G

Theorem (F., Perarnau, 2011) *G* identifiable graph on *n* vertices having maximum degree Δ and no isolated vertices: $\alpha^{IP}(G) \leq n - \frac{n \cdot NF(G)^2}{2}$

$$\gamma^{\text{ID}}(G) \leq n - \frac{n \cdot NF(G)}{105\Delta}$$

Question

What can be said about NF(G)?

 $G \text{ regular} \Rightarrow NF(G) = 1$

Corollary G regular: $\gamma^{\text{ID}}(G) \leq n - \frac{n}{105\Delta}$

NF(G): proportion of non forced vertices of G

Theorem (F., Perarnau, 2011)

G identifiable graph on *n* vertices having maximum degree Δ and no isolated vertices: $\gamma^{\text{ID}}(G) \leq n - \frac{n \cdot NF(G)^2}{2}$

$$\gamma^{\text{ID}}(G) \leq n - rac{n \cdot NF(G)^2}{105\Delta}$$

Lemma (Bertrand, 2005)

G: identifiable graph having no isolated vertices. Let x be a vertex of *G*. There exists a non forced vertex in N[x].

 \rightarrow Set of non forced vertices is a **dominating set**.

NF(G): proportion of non forced vertices of G

Theorem (F., Perarnau, 2011)

G identifiable graph on *n* vertices having maximum degree Δ and no isolated vertices: $\gamma^{\text{ID}}(G) \leq n - \frac{n \cdot NF(G)^2}{2}$

$$\gamma^{\text{ID}}(G) \leq n - \frac{n \cdot NF(G)^2}{105\Delta}$$

Lemma (Bertrand, 2005)

G: identifiable graph having no isolated vertices. Let x be a vertex of *G*. There exists a non forced vertex in N[x].

 \rightarrow Set of non forced vertices is a **dominating set**.

Corollary

$$rac{1}{\Delta+1} \leq {\sf NF}({\sf G}) \leq 1$$
 and $\gamma^{\scriptscriptstyle {
m ID}}({\sf G}) \leq {\sf n} - rac{{\sf n}}{105(\Delta+1)^3}$

NF(G): proportion of non forced vertices of G

Theorem (F., Perarnau, 2011)

G identifiable graph on n vertices having maximum degree Δ and no isolated vertices: $\gamma^{\text{ID}}(G) \leq n - \frac{n \cdot NF(G)^2}{105 \Delta}$

clique number of G: max. size of a complete subgraph in G

Proposition (F., Perarnau, 2011)

Let G be a graph of clique number at most k. There exists a (huge) function c such that:

 $\frac{1}{c(k)} \leq NF(G) \leq 1$

NF(G): proportion of non forced vertices of G

Theorem (F., Perarnau, 2011)

G identifiable graph on n vertices having maximum degree Δ and no isolated vertices: $\gamma^{\text{ID}}(G) \leq n - \frac{n \cdot NF(G)^2}{105\Delta}$

clique number of G: max. size of a complete subgraph in G

Proposition (F., Perarnau, 2011)

Let G be a graph of clique number at most k. There exists a (huge) function c such that:

$$\frac{1}{c(k)} \leq NF(G) \leq 1$$

Corollary

$$\gamma^{\text{\tiny ID}}(G) \leq n - rac{n}{105c(k)^2\Delta} = n - rac{n}{\Theta(\Delta)}$$

Summary

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

G connected identifiable graph, n vertices, max. degree Δ . Then $\gamma^{\text{\tiny ID}}(G) \leq n - \frac{n}{\Delta} + c$ for some constant c

Theorem

in general:
$$\gamma^{\text{ID}}(G) \leq n - \frac{n}{\Theta(\Delta^3)}$$

triangle-free: $\gamma^{\text{ID}}(G) \leq n - \frac{n}{\Delta(1+o_{\Delta}(1))}$
bipartite: $\gamma^{\text{ID}}(G) \leq n - \frac{n}{\Delta+9}$
regular: $\gamma^{\text{ID}}(G) \leq n - \frac{n}{105\Delta}$
clique number k : $n - \frac{n}{105c(k)^2\Delta}$

Part 1 Graphs with large identifying code number

Part 2 Identifying code number and maximum degree

Part 3 Algorithmic hardness of the identifying code problem

Definition - Computational problem

- Set of inputs
- \bullet Given an input, \boldsymbol{task} to be solved by an algorithm

Definition - Computational problem

- Set of inputs
- Given an input, **task** to be solved by an algorithm

Decision problem. Task: answer Yes/No question

Definition - IDCODE

INPUT: graph G, integer kQUESTION: does G have an identifying code of size at most k?

Definition - Computational problem

- Set of inputs
- Given an input, **task** to be solved by an algorithm

Decision problem. Task: answer Yes/No question

Definition - IDCODE

INPUT: graph G, integer kQUESTION: does G have an identifying code of size at most k?

Polynomial-time for:

- trees (Auger, 2010)
- bounded treewidth (Moncel, 2005)

NP-complete for:

- planar subcubic graphs (Auger et al. 2010)
- planar bipartite unit disk graphs (Müller, Sereni, 2009)

Definition - Computational problem

- Set of inputs
- Given an input, **task** to be solved by an algorithm

Definition - Computational problem

- Set of inputs
- Given an input, **task** to be solved by an algorithm

Minimization problem. Task: find a small solution

 α -approximation algorithm: returns solution of size $\leq \alpha \cdot OPTIMUM$

Definition - MIN IDCODE

INPUT: graph GTASK: find smallest possible identifying code of G

Definition - Computational problem

- Set of inputsGiven an input, task to be solved by an algorithm

Minimization problem. Task: find a small solution

 α -approximation algorithm: returns solution of size $< \alpha \cdot OPTIMUM$

Definition - MIN IDCODE

INPUT: graph GTASK: find smallest possible identifying code of G

 $O(\log(n))$ -approximation algorithm (n: order of input graph)

No $o(\log(n))$ -approximation algorithm, unless P = NP(Berger-Wolf et al. 2006 / Suomela, 2007)

Question

What is the complexity of IDCODE and MIN IDCODE for various standard graph classes?

 \rightarrow restriction of the input set

Definition - Reduction

Two computational problems A, BPolynomial-time computable function $r : A \rightarrow B$ such that:

B efficiently solvable \Rightarrow A efficiently solvable.

Definition - Reduction

Two computational problems A, BPolynomial-time computable function $r : A \rightarrow B$ such that:

B efficiently solvable \Rightarrow *A* efficiently solvable.

Proposition

If A is hard, then B is hard.

Discriminating code

Definition - Discriminating code of a bipartite graph G(A, B)

Subset $C \subseteq B$ which dominates and separates vertices of A.

example: $C = \{1, 3, 5\}$

Discriminating code

Definition - Discriminating code of a bipartite graph G(A, B)

Subset $C \subseteq B$ which dominates and separates vertices of A.

Definition - MIN DISCR CODE

INPUT: bipartite graph GTASK: find smallest possible discriminating code of G

No $o(\log(n))$ -approximation algorithm, unless P = NP(De Bontridder et al. 2003)

New and non-approximability reductions

Reduction: MIN DISCR CODE to MIN IDCODE for bipartite graphs.

New and non-approximability reductions

Reduction: MIN DISCR CODE to MIN IDCODE for bipartite graphs.

Theorem (F., 2012)

- G(A, B) has discr. code of size k if and only if G' has an identifying code of size k + 3⌈log₂(|B|+1)⌉ + 2. Constructive.
- If MIN IDCODE has an α -approximation algorithm, then MIN DISCR. CODE has a 4α -approximation algorithm.

New and non-approximability reductions

Reduction: MIN DISCR CODE to MIN IDCODE for bipartite graphs.

NP-hard to approximate MIN IDCODE within $o(\log(n)) \rightarrow$ even for **bipartite** graphs.

New non-approximability reductions

Similar reductions for split graphs and co-bipartite graphs.

Definition - Interval graph

Intersection graph of intervals of the real line.

Definition - Interval graph

Intersection graph of intervals of the real line.

Remark

Many problems are efficiently solvable for interval graphs. Example: DOMINATING SET Theorem (F., Kosowski, Mertzios, Naserasr, Parreau, Valicov, 2012)

IDCODE is NP-complete for interval graphs. Reduction from 3-DIMENSIONAL MATCHING.

Main idea:

an interval can separate two pairs of intervals that are **far away** without affecting what lies in between.

Complexity of IDCODE for various graph classes

Complexity of IDCODE for various graph classes

Complexity of IDCODE for various graph classes

• Part 1: Graphs with large identifying code number

What are tight bounds on γ^{ID} for specific graph classes? \rightarrow planar graphs, special chordal graphs, permutation graphs,...

Part 1: Graphs with large identifying code number
 What are tight bounds on γ^{ID} for specific graph classes?
 → planar graphs, special chordal graphs, permutation graphs,...

• Part 2: Identifying code number and maximum degree

Can we approach/prove our conjecture $\gamma^{\text{ID}}(G) \leq n - n/\Delta + c$? \rightarrow trees, subcubic graphs, line graphs,...

- Part 1: Graphs with large identifying code number
 What are tight bounds on γ^{ID} for specific graph classes?
 → planar graphs, special chordal graphs, permutation graphs,...
- Part 2: Identifying code number and maximum degree
 Can we approach/prove our conjecture γ^{ID}(G) ≤ n − n/Δ + c?
 → trees, subcubic graphs, line graphs,...
- Part 3: Algorithmic hardness of the identifying code problem
 What is the complexity of (MIN) IDCODE for specific graph classes?
 → unit interval graphs,...

- Part 1: Graphs with large identifying code number
 What are tight bounds on γ^{ID} for specific graph classes?
 → planar graphs, special chordal graphs, permutation graphs,...
- Part 2: Identifying code number and maximum degree Can we approach/prove our conjecture $\gamma^{\text{ID}}(G) \leq n - n/\Delta + c$? \rightarrow trees, subcubic graphs, line graphs,...
- Part 3: Algorithmic hardness of the identifying code problem
 What is the complexity of (MIN) IDCODE for specific graph classes?
 → unit interval graphs,...

Other perspectives:

- Parameterized complexity of IDCODE
- Fractional identifying codes