
Combinatorial and algorithmic aspects
of identifying codes in graphs

Florent Foucaud

Bordeaux

December 10th, 2012

Identifying the rooms of a building

Graph G = (V ,E). V : vertices (rooms), E ⊆ V × V : edges (doors)

Motion detector: detects intruder in its room or in adjacent rooms

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 2 / 36

Identifying the rooms of a building

Graph G = (V ,E). V : vertices (rooms), E ⊆ V × V : edges (doors)

Motion detector: detects intruder in its room or in adjacent rooms

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 2 / 36

Identifying the rooms of a building

Graph G = (V ,E). V : vertices (rooms), E ⊆ V × V : edges (doors)

Motion detector: detects intruder in its room or in adjacent rooms

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 2 / 36

Identifying the rooms of a building

Graph G = (V ,E). V : vertices (rooms), E ⊆ V × V : edges (doors)

Motion detector: detects intruder in its room or in adjacent rooms

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 2 / 36

Identifying the rooms of a building

Graph G = (V ,E). V : vertices (rooms), E ⊆ V × V : edges (doors)

Motion detector: detects intruder in its room or in adjacent rooms

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 2 / 36

Identifying codes

G : undirected graph
N[u]: set of vertices v s.t. d(u, v) ≤ 1

Subset C of V (G) such that:
C is a dominating set: ∀u ∈ V (G), N[u] ∩ C 6= ∅, and

C is a separating code: ∀u 6= v of V (G), N[u] ∩ C 6= N[v] ∩ C

Equivalently:
(N[u]	 N[v]) ∩ C 6= ∅ → hitting symmetric differences

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Goal: minimize number of detectors

γ ID(G): minimum size of an identifying code in G

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 3 / 36

Identifying codes

G : undirected graph
N[u]: set of vertices v s.t. d(u, v) ≤ 1

Subset C of V (G) such that:
C is a dominating set: ∀u ∈ V (G), N[u] ∩ C 6= ∅, and

C is a separating code: ∀u 6= v of V (G), N[u] ∩ C 6= N[v] ∩ C
Equivalently:

(N[u]	 N[v]) ∩ C 6= ∅ → hitting symmetric differences

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Goal: minimize number of detectors

γ ID(G): minimum size of an identifying code in G

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 3 / 36

Identifying codes

G : undirected graph
N[u]: set of vertices v s.t. d(u, v) ≤ 1

Subset C of V (G) such that:
C is a dominating set: ∀u ∈ V (G), N[u] ∩ C 6= ∅, and

C is a separating code: ∀u 6= v of V (G), N[u] ∩ C 6= N[v] ∩ C
Equivalently:

(N[u]	 N[v]) ∩ C 6= ∅ → hitting symmetric differences

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Goal: minimize number of detectors

γ ID(G): minimum size of an identifying code in G

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 3 / 36

Identifying codes

G : undirected graph
N[u]: set of vertices v s.t. d(u, v) ≤ 1

Subset C of V (G) such that:
C is a dominating set: ∀u ∈ V (G), N[u] ∩ C 6= ∅, and

C is a separating code: ∀u 6= v of V (G), N[u] ∩ C 6= N[v] ∩ C
Equivalently:

(N[u]	 N[v]) ∩ C 6= ∅ → hitting symmetric differences

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Goal: minimize number of detectors

γ ID(G): minimum size of an identifying code in G

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 3 / 36

Identifiable graphs

Not all graphs have an identifying code!

Remark

Twins = pair u, v such that N[u] = N[v].

u v

A graph is identifiable if and only if it is twin-free (i.e. has no twins).

Proposition

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 4 / 36

Identifiable graphs

Not all graphs have an identifying code!

Remark

Twins = pair u, v such that N[u] = N[v].

u v

A graph is identifiable if and only if it is twin-free (i.e. has no twins).

Proposition

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 4 / 36

Bounds on γ ID(G)

n: number of vertices

G identifiable graph on n vertices:

dlog2(n + 1)e ≤ γ ID(G)

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

→ Graphs reaching bound characterized by Moncel, 2006.

G identifiable graph on n vertices with at least one edge:

γ ID(G) ≤ n − 1

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

γ ID(G) = n⇔ G has no edges

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 5 / 36

Bounds on γ ID(G)

n: number of vertices

G identifiable graph on n vertices:

dlog2(n + 1)e ≤ γ ID(G)

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

→ Graphs reaching bound characterized by Moncel, 2006.

G identifiable graph on n vertices with at least one edge:

γ ID(G) ≤ n − 1

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

γ ID(G) = n⇔ G has no edges

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 5 / 36

Bounds on γ ID(G)

n: number of vertices

G identifiable graph on n vertices:

dlog2(n + 1)e ≤ γ ID(G)

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

→ Graphs reaching bound characterized by Moncel, 2006.

G identifiable graph on n vertices with at least one edge:

γ ID(G) ≤ n − 1

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

γ ID(G) = n⇔ G has no edges

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 5 / 36

Bounds on γ ID(G)

n: number of vertices

G identifiable graph on n vertices:

dlog2(n + 1)e ≤ γ ID(G)

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

→ Graphs reaching bound characterized by Moncel, 2006.

G identifiable graph on n vertices with at least one edge:

γ ID(G) ≤ n − 1

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

γ ID(G) = n⇔ G has no edges

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 5 / 36

Examples

Subset C of V (G) such that:

C is a dominating set: ∀u ∈ V (G), N[u] ∩ C 6= ∅, and

C is a separating code: ∀u 6= v of V (G), N[u] ∩ C 6= N[v] ∩ C
Equivalently:

(N[u]	 N[v]) ∩ C 6= ∅ → hitting symmetric differences

Definition - Identifying code

G identifiable, n vertices, some edges: dlog2(n+ 1)e ≤ γ ID(G) ≤ n− 1

Theorem

forced vertexforced vertex

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 6 / 36

Examples

Subset C of V (G) such that:

C is a dominating set: ∀u ∈ V (G), N[u] ∩ C 6= ∅, and

C is a separating code: ∀u 6= v of V (G), N[u] ∩ C 6= N[v] ∩ C
Equivalently:

(N[u]	 N[v]) ∩ C 6= ∅ → hitting symmetric differences

Definition - Identifying code

G identifiable, n vertices, some edges: dlog2(n+ 1)e ≤ γ ID(G) ≤ n− 1

Theorem

γ ID(G) = log2(n + 1)

forced vertexforced vertex

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 6 / 36

Examples

Subset C of V (G) such that:

C is a dominating set: ∀u ∈ V (G), N[u] ∩ C 6= ∅, and

C is a separating code: ∀u 6= v of V (G), N[u] ∩ C 6= N[v] ∩ C
Equivalently:

(N[u]	 N[v]) ∩ C 6= ∅ → hitting symmetric differences

Definition - Identifying code

G identifiable, n vertices, some edges: dlog2(n+ 1)e ≤ γ ID(G) ≤ n− 1

Theorem

γ ID(G) = log2(n + 1)

forced vertexforced vertex

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 6 / 36

Examples

Subset C of V (G) such that:

C is a dominating set: ∀u ∈ V (G), N[u] ∩ C 6= ∅, and

C is a separating code: ∀u 6= v of V (G), N[u] ∩ C 6= N[v] ∩ C
Equivalently:

(N[u]	 N[v]) ∩ C 6= ∅ → hitting symmetric differences

Definition - Identifying code

G identifiable, n vertices, some edges: dlog2(n+ 1)e ≤ γ ID(G) ≤ n− 1

Theorem

γ ID(G) = log2(n + 1)

forced vertexforced vertex

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 6 / 36

Examples

Subset C of V (G) such that:

C is a dominating set: ∀u ∈ V (G), N[u] ∩ C 6= ∅, and

C is a separating code: ∀u 6= v of V (G), N[u] ∩ C 6= N[v] ∩ C
Equivalently:

(N[u]	 N[v]) ∩ C 6= ∅ → hitting symmetric differences

Definition - Identifying code

G identifiable, n vertices, some edges: dlog2(n+ 1)e ≤ γ ID(G) ≤ n− 1

Theorem

γ ID(G) = log2(n + 1)

forced vertexforced vertex

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 6 / 36

Examples

Subset C of V (G) such that:

C is a dominating set: ∀u ∈ V (G), N[u] ∩ C 6= ∅, and

C is a separating code: ∀u 6= v of V (G), N[u] ∩ C 6= N[v] ∩ C
Equivalently:

(N[u]	 N[v]) ∩ C 6= ∅ → hitting symmetric differences

Definition - Identifying code

G identifiable, n vertices, some edges: dlog2(n+ 1)e ≤ γ ID(G) ≤ n− 1

Theorem

γ ID(G) = log2(n + 1)

forced vertexforced vertex

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 6 / 36

Examples

Subset C of V (G) such that:

C is a dominating set: ∀u ∈ V (G), N[u] ∩ C 6= ∅, and

C is a separating code: ∀u 6= v of V (G), N[u] ∩ C 6= N[v] ∩ C
Equivalently:

(N[u]	 N[v]) ∩ C 6= ∅ → hitting symmetric differences

Definition - Identifying code

G identifiable, n vertices, some edges: dlog2(n+ 1)e ≤ γ ID(G) ≤ n− 1

Theorem

γ ID(G) = log2(n + 1)

forced vertexforced vertex

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 6 / 36

Examples

Subset C of V (G) such that:

C is a dominating set: ∀u ∈ V (G), N[u] ∩ C 6= ∅, and

C is a separating code: ∀u 6= v of V (G), N[u] ∩ C 6= N[v] ∩ C
Equivalently:

(N[u]	 N[v]) ∩ C 6= ∅ → hitting symmetric differences

Definition - Identifying code

G identifiable, n vertices, some edges: dlog2(n+ 1)e ≤ γ ID(G) ≤ n− 1

Theorem

γ ID(G) = log2(n + 1)

forced vertexforced vertex

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 6 / 36

Examples

Subset C of V (G) such that:

C is a dominating set: ∀u ∈ V (G), N[u] ∩ C 6= ∅, and

C is a separating code: ∀u 6= v of V (G), N[u] ∩ C 6= N[v] ∩ C
Equivalently:

(N[u]	 N[v]) ∩ C 6= ∅ → hitting symmetric differences

Definition - Identifying code

G identifiable, n vertices, some edges: dlog2(n+ 1)e ≤ γ ID(G) ≤ n− 1

Theorem

γ ID(G) = log2(n + 1)

forced vertexforced vertex

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 6 / 36

Examples

Subset C of V (G) such that:

C is a dominating set: ∀u ∈ V (G), N[u] ∩ C 6= ∅, and

C is a separating code: ∀u 6= v of V (G), N[u] ∩ C 6= N[v] ∩ C
Equivalently:

(N[u]	 N[v]) ∩ C 6= ∅ → hitting symmetric differences

Definition - Identifying code

G identifiable, n vertices, some edges: dlog2(n+ 1)e ≤ γ ID(G) ≤ n− 1

Theorem

γ ID(G) = log2(n + 1)

forced vertex

forced vertex

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 6 / 36

Examples

Subset C of V (G) such that:

C is a dominating set: ∀u ∈ V (G), N[u] ∩ C 6= ∅, and

C is a separating code: ∀u 6= v of V (G), N[u] ∩ C 6= N[v] ∩ C
Equivalently:

(N[u]	 N[v]) ∩ C 6= ∅ → hitting symmetric differences

Definition - Identifying code

G identifiable, n vertices, some edges: dlog2(n+ 1)e ≤ γ ID(G) ≤ n− 1

Theorem

γ ID(G) = log2(n + 1)

forced vertex

forced vertex

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 6 / 36

Examples

Subset C of V (G) such that:

C is a dominating set: ∀u ∈ V (G), N[u] ∩ C 6= ∅, and

C is a separating code: ∀u 6= v of V (G), N[u] ∩ C 6= N[v] ∩ C
Equivalently:

(N[u]	 N[v]) ∩ C 6= ∅ → hitting symmetric differences

Definition - Identifying code

G identifiable, n vertices, some edges: dlog2(n+ 1)e ≤ γ ID(G) ≤ n− 1

Theorem

γ ID(G) = log2(n + 1)

forced vertexforced vertex

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 6 / 36

Examples

Subset C of V (G) such that:

C is a dominating set: ∀u ∈ V (G), N[u] ∩ C 6= ∅, and

C is a separating code: ∀u 6= v of V (G), N[u] ∩ C 6= N[v] ∩ C
Equivalently:

(N[u]	 N[v]) ∩ C 6= ∅ → hitting symmetric differences

Definition - Identifying code

G identifiable, n vertices, some edges: dlog2(n+ 1)e ≤ γ ID(G) ≤ n− 1

Theorem

γ ID(G) = log2(n + 1)

forced vertexforced vertex

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 6 / 36

A question

G identifiable graph on n vertices with at least one edge:

γ ID(G) ≤ n − 1

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

What are the graphs G with n vertices and γ ID(G) = n − 1 ?

Question

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 7 / 36

Part 1

Part 1
Graphs with large identifying code number

Part 2
Identifying code number and maximum degree

Part 3
Algorithmic hardness of the identifying code problem

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 8 / 36

Forced vertices

u, v such that N[v]	 N[u] = {f }:

f belongs to any identifying code

→ f forced by u, v .

f
v u

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 9 / 36

Graphs with many forced vertices

Special path powers: Ak = Pk−1
2k

A2 = P4 A3 = P2
6

A4 = P3
8

γ ID(Ak) = n − 1

Proposition

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 10 / 36

Graphs with many forced vertices

Special path powers: Ak = Pk−1
2k

A2 = P4 A3 = P2
6

A4 = P3
8

γ ID(Ak) = n − 1

Proposition

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 10 / 36

Graphs with many forced vertices

Special path powers: Ak = Pk−1
2k

A2 = P4 A3 = P2
6

A4 = P3
8

γ ID(Ak) = n − 1

Proposition

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 10 / 36

Graphs with many forced vertices

Special path powers: Ak = Pk−1
2k

A2 = P4 A3 = P2
6

A4 = P3
8

γ ID(Ak) = n − 1

Proposition

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 10 / 36

Graphs with many forced vertices

Special path powers: Ak = Pk−1
2k

A2 = P4 A3 = P2
6

A4 = P3
8

γ ID(Ak) = n − 1

Proposition

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 10 / 36

Constructions using joins

Ak Ak'

Two graphs Ak and Ak′

At each step, the constructed graph has γ ID = n − 1

Proposition

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 11 / 36

Constructions using joins

Ak Ak'

Join: add all edges between them

At each step, the constructed graph has γ ID = n − 1

Proposition

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 11 / 36

Constructions using joins

Ak Ak'

Join the new graph to two non-adjacent vertices (K2)

At each step, the constructed graph has γ ID = n − 1

Proposition

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 11 / 36

Constructions using joins

Ak Ak'

Join the new graph to two non-adjacent vertices, again

At each step, the constructed graph has γ ID = n − 1

Proposition

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 11 / 36

Constructions using joins

Ak Ak'

Finally, add a universal vertex

At each step, the constructed graph has γ ID = n − 1

Proposition

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 11 / 36

Constructions using joins

Ak Ak'

Finally, add a universal vertex

At each step, the constructed graph has γ ID = n − 1

Proposition

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 11 / 36

A characterization

(1) stars
(2) Ak = Pk−1

2k

(3) joins between 0 or more members of (2) and 0 or more copies of K2

(4) (2) or (3) with a universal vertex

G connected identifiable graph, n vertices:

γ ID(G) = n − 1 ⇔ G ∈ (1), (2), (3) or (4)

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 12 / 36

A characterization

(1) stars
(2) Ak = Pk−1

2k

(3) joins between 0 or more members of (2) and 0 or more copies of K2

(4) (2) or (3) with a universal vertex

G connected identifiable graph, n vertices:

γ ID(G) = n − 1 ⇔ G ∈ (1), (2), (3) or (4)

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

• G : minimum counterexample

G

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 12 / 36

A characterization

(1) stars
(2) Ak = Pk−1

2k

(3) joins between 0 or more members of (2) and 0 or more copies of K2

(4) (2) or (3) with a universal vertex

G connected identifiable graph, n vertices:

γ ID(G) = n − 1 ⇔ G ∈ (1), (2), (3) or (4)

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

• G : minimum counterexample

• v : vertex such that G − v
identifiable (exists) G

v

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 12 / 36

A characterization

(1) stars
(2) Ak = Pk−1

2k

(3) joins between 0 or more members of (2) and 0 or more copies of K2

(4) (2) or (3) with a universal vertex

G connected identifiable graph, n vertices:

γ ID(G) = n − 1 ⇔ G ∈ (1), (2), (3) or (4)

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

• G : minimum counterexample

• v : vertex such that G − v
identifiable (exists)

• Lemma: γ ID(G − v) = n′ − 1

G-v

v

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 12 / 36

A characterization

(1) stars
(2) Ak = Pk−1

2k

(3) joins between 0 or more members of (2) and 0 or more copies of K2

(4) (2) or (3) with a universal vertex

G connected identifiable graph, n vertices:

γ ID(G) = n − 1 ⇔ G ∈ (1), (2), (3) or (4)

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

• G : minimum counterexample

• v : vertex such that G − v
identifiable (exists)

• Lemma: γ ID(G − v) = n′ − 1
⇒ By minimality of G :

G − v ∈ (1), (2), (3) or (4)

G-v

v

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 12 / 36

A characterization

(1) stars
(2) Ak = Pk−1

2k

(3) joins between 0 or more members of (2) and 0 or more copies of K2

(4) (2) or (3) with a universal vertex

G connected identifiable graph, n vertices:

γ ID(G) = n − 1 ⇔ G ∈ (1), (2), (3) or (4)

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

• G : minimum counterexample

• v : vertex such that G − v
identifiable (exists)

• Lemma: γ ID(G − v) = n′ − 1
⇒ By minimality of G :

G − v ∈ (1), (2), (3) or (4)

• Put v back ⇒ contradiction:

G-v

v

no counterexample exists!
Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 12 / 36

A characterization

(1) stars
(2) Ak = Pk−1

2k

(3) joins between 0 or more members of (2) and 0 or more copies of K2

(4) (2) or (3) with a universal vertex

G connected identifiable graph, n vertices:

γ ID(G) = n − 1 ⇔ G ∈ (1), (2), (3) or (4)

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

All these graphs have maximum degree n − 1 or n − 2

Observation

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 12 / 36

Part 2

Part 1
Graphs with large identifying code number

Part 2
Identifying code number and maximum degree

Part 3
Algorithmic hardness of the identifying code problem

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 13 / 36

A lower bound using the maximum degree

maximum degree of G : maximum number of neighbours of a vertex in G

G identifiable graph, n vertices, maximum degree ∆:

2n
∆+2 ≤ γ

ID(G)

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

Equality if and only if G can be constructed as follows:

Theorem (F., Klasing, Kosowski, 2009)

• Take ∆-regular graph H

• Subdivide each edge once

• Possibly add some edges

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 14 / 36

A lower bound using the maximum degree

maximum degree of G : maximum number of neighbours of a vertex in G

G identifiable graph, n vertices, maximum degree ∆:

2n
∆+2 ≤ γ

ID(G)

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

Equality if and only if G can be constructed as follows:

Theorem (F., Klasing, Kosowski, 2009)

• Take ∆-regular graph H

• Subdivide each edge once

• Possibly add some edges

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 14 / 36

A lower bound using the maximum degree

maximum degree of G : maximum number of neighbours of a vertex in G

G identifiable graph, n vertices, maximum degree ∆:

2n
∆+2 ≤ γ

ID(G)

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

Equality if and only if G can be constructed as follows:

Theorem (F., Klasing, Kosowski, 2009)

• Take ∆-regular graph H

• Subdivide each edge once

• Possibly add some edges

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 14 / 36

A lower bound using the maximum degree

maximum degree of G : maximum number of neighbours of a vertex in G

G identifiable graph, n vertices, maximum degree ∆:

2n
∆+2 ≤ γ

ID(G)

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

Equality if and only if G can be constructed as follows:

Theorem (F., Klasing, Kosowski, 2009)

• Take ∆-regular graph H

• Subdivide each edge once

• Possibly add some edges

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 14 / 36

The influence of the maximum degree

What is a good upper bound on γ ID using the maximum degree?

Question

There exist graphs with n vertices, max. degree ∆ and γ ID(G) = n− n
∆ .

Proposition

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 15 / 36

The influence of the maximum degree

What is a good upper bound on γ ID using the maximum degree?

Question

There exist graphs with n vertices, max. degree ∆ and γ ID(G) = n− n
∆ .

Proposition

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 15 / 36

The influence of the maximum degree

What is a good upper bound on γ ID using the maximum degree?

Question

There exist graphs with n vertices, max. degree ∆ and γ ID(G) = n− n
∆ .

Proposition

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 15 / 36

The influence of the maximum degree

What is a good upper bound on γ ID using the maximum degree?

Question

There exist graphs with n vertices, max. degree ∆ and γ ID(G) = n− n
∆ .

Proposition

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 15 / 36

The influence of the maximum degree

What is a good upper bound on γ ID using the maximum degree?

Question

There exist graphs with n vertices, max. degree ∆ and γ ID(G) = n− n
∆ .

Proposition

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 15 / 36

The influence of the maximum degree

What is a good upper bound on γ ID using the maximum degree?

Question

There exist graphs with n vertices, max. degree ∆ and γ ID(G) = n− n
∆ .

Proposition

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 15 / 36

The influence of the maximum degree

What is a good upper bound on γ ID using the maximum degree?

Question

There exist graphs with n vertices, max. degree ∆ and γ ID(G) = n− n
∆ .

Proposition

Also: Sierpiński graphs

(Gravier, Kovše, Mollard,
Moncel, Parreau, 2011)

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 15 / 36

A conjecture

G connected identifiable graph, n vertices, max. degree ∆. Then

γ ID(G) ≤ n − n
∆ + c for some constant c

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

Can we prove that γ ID(G) ≤ n − n
Θ(∆) ?

Question

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 16 / 36

A conjecture

G connected identifiable graph, n vertices, max. degree ∆. Then

γ ID(G) ≤ n − n
∆ + c for some constant c

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

Can we prove that γ ID(G) ≤ n − n
Θ(∆) ?

Question

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 16 / 36

Triangle-free graphs

G identifiable triangle-free graph, n vertices, max. degree ∆. Then

γ ID(G) ≤ n − n
∆+ 3∆

ln ∆−1

= n − n
∆(1+o∆(1))

Theorem (F., Klasing, Kosowski, Raspaud, 2009)

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 17 / 36

Triangle-free graphs

G identifiable triangle-free graph, n vertices, max. degree ∆. Then

γ ID(G) ≤ n − n
∆+ 3∆

ln ∆−1

= n − n
∆(1+o∆(1))

Theorem (F., Klasing, Kosowski, Raspaud, 2009)

Proof idea: Constructive.

Triangle-free graphs have large independent sets
(see e.g. Shearer: α(G) ≥ ln ∆

∆ n)

→ Locally modify such an independent set:
its complement is a “small” id. code.

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 17 / 36

Triangle-free graphs

G identifiable triangle-free graph, n vertices, max. degree ∆. Then

γ ID(G) ≤ n − n
∆+ 3∆

ln ∆−1

= n − n
∆(1+o∆(1))

Theorem (F., Klasing, Kosowski, Raspaud, 2009)

Same technique applies to families of triangle-free graphs with large
independent sets.
→ bipartite graphs: α(G) ≥ n

2 ⇒ γ ID(G) ≤ n − n
∆+9

Remark

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 17 / 36

The probabilistic method

1 Define a suitable probability space

2 Select some object from this space using a random process
→ select random set

3 Prove that with nonzero probability, certain ”good” conditions hold
→ selected set is small id. code

4 Conclusion: there always exists a ”good” object
→ small id. code

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 18 / 36

Upper bounds for γ ID(G)

G identifiable graph, n vertices, maximum degree ∆, no isolated
vertices:

γ ID(G) ≤ n − n·NF (G)2

105∆

Theorem (F., Perarnau, 2011)

NF (G): proportion of non forced vertices of G

NF (G) =
#non forced vertices in G

#vertices in G

Notation

f
v u

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 19 / 36

Proof

1) F : forced vertices. Select “big” random set S from V (G) \ F

Goal: C = V (G) \ S small identifying code

2) Use Lovász Local Lemma: define bad events
→ if none occurs, V (G) \ S is an identifying code

3) Compute probability PrE (p,∆) of each bad event E

4) Local Lemma: if dependencies are “small”:
with nonzero probability none of the bad events occurs

⇒ exists S s.t. C is an id. code → E(|C|) = n − p · nNF (G)

Problem: maybe S ≈ ∅ and C ≈ V (G)!!!

5) Solution: Chernoff bound → w.h.p. |S | is close to expected size

Pr(C is id. code)

Pr(C is small id. code) > 0

Pr(C is too big)

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 20 / 36

Proof

1) F : forced vertices. Select “big” random set S from V (G) \ F

Goal: C = V (G) \ S small identifying code

for each vertex v from V (G) \ F
→ v ∈ S with probability p.

Want: p = Θ
(

1
∆

)
E(|S |) = p · nNF (G) = nNF (G)

Θ(∆)

2) Use Lovász Local Lemma: define bad events
→ if none occurs, V (G) \ S is an identifying code

3) Compute probability PrE (p,∆) of each bad event E

4) Local Lemma: if dependencies are “small”:
with nonzero probability none of the bad events occurs

⇒ exists S s.t. C is an id. code → E(|C|) = n − p · nNF (G)

Problem: maybe S ≈ ∅ and C ≈ V (G)!!!

5) Solution: Chernoff bound → w.h.p. |S | is close to expected size

Pr(C is id. code)

Pr(C is small id. code) > 0

Pr(C is too big)

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 20 / 36

Proof

1) F : forced vertices. Select “big” random set S from V (G) \ F
Goal: C = V (G) \ S small identifying code

for each vertex v from V (G) \ F
→ v ∈ S with probability p.

Want: p = Θ
(

1
∆

)
E(|S |) = p · nNF (G) = nNF (G)

Θ(∆)

E(|C|) = n − nNF (G)
Θ(∆)

2) Use Lovász Local Lemma: define bad events
→ if none occurs, V (G) \ S is an identifying code

3) Compute probability PrE (p,∆) of each bad event E

4) Local Lemma: if dependencies are “small”:
with nonzero probability none of the bad events occurs

⇒ exists S s.t. C is an id. code → E(|C|) = n − p · nNF (G)

Problem: maybe S ≈ ∅ and C ≈ V (G)!!!

5) Solution: Chernoff bound → w.h.p. |S | is close to expected size

Pr(C is id. code)

Pr(C is small id. code) > 0

Pr(C is too big)

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 20 / 36

Proof

1) F : forced vertices. Select “big” random set S from V (G) \ F
Goal: C = V (G) \ S small identifying code

2) Use Lovász Local Lemma: define bad events
→ if none occurs, V (G) \ S is an identifying code

3) Compute probability PrE (p,∆) of each bad event E

4) Local Lemma: if dependencies are “small”:
with nonzero probability none of the bad events occurs

⇒ exists S s.t. C is an id. code → E(|C|) = n − p · nNF (G)

Problem: maybe S ≈ ∅ and C ≈ V (G)!!!

5) Solution: Chernoff bound → w.h.p. |S | is close to expected size

Pr(C is id. code)

Pr(C is small id. code) > 0

Pr(C is too big)

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 20 / 36

Proof

1) F : forced vertices. Select “big” random set S from V (G) \ F
Goal: C = V (G) \ S small identifying code

2) Use Lovász Local Lemma: define bad events
→ if none occurs, V (G) \ S is an identifying code

u

S

..
.

each vertex u
→ 1 event for domination

u v

SS

..
.

..
.

..
.

u v

SS

...

..
.

..
.

each pair u, v at dist. at most 2
→ 1 event for separation

3) Compute probability PrE (p,∆) of each bad event E

4) Local Lemma: if dependencies are “small”:
with nonzero probability none of the bad events occurs

⇒ exists S s.t. C is an id. code → E(|C|) = n − p · nNF (G)

Problem: maybe S ≈ ∅ and C ≈ V (G)!!!

5) Solution: Chernoff bound → w.h.p. |S | is close to expected size

Pr(C is id. code)

Pr(C is small id. code) > 0

Pr(C is too big)

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 20 / 36

Proof

1) F : forced vertices. Select “big” random set S from V (G) \ F
Goal: C = V (G) \ S small identifying code

2) Use Lovász Local Lemma: define bad events
→ if none occurs, V (G) \ S is an identifying code

3) Compute probability PrE (p,∆) of each bad event E

4) Local Lemma: if dependencies are “small”:
with nonzero probability none of the bad events occurs

⇒ exists S s.t. C is an id. code → E(|C|) = n − p · nNF (G)

Problem: maybe S ≈ ∅ and C ≈ V (G)!!!

5) Solution: Chernoff bound → w.h.p. |S | is close to expected size

Pr(C is id. code)

Pr(C is small id. code) > 0

Pr(C is too big)

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 20 / 36

Proof

1) F : forced vertices. Select “big” random set S from V (G) \ F
Goal: C = V (G) \ S small identifying code

2) Use Lovász Local Lemma: define bad events
→ if none occurs, V (G) \ S is an identifying code

3) Compute probability PrE (p,∆) of each bad event E

4) Local Lemma: if dependencies are “small”:
with nonzero probability none of the bad events occurs

⇒ exists S s.t. C is an id. code → E(|C|) = n − p · nNF (G)

Problem: maybe S ≈ ∅ and C ≈ V (G)!!!

5) Solution: Chernoff bound → w.h.p. |S | is close to expected size

Pr(C is id. code)

Pr(C is small id. code) > 0

Pr(C is too big)

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 20 / 36

Proof

1) F : forced vertices. Select “big” random set S from V (G) \ F
Goal: C = V (G) \ S small identifying code

2) Use Lovász Local Lemma: define bad events
→ if none occurs, V (G) \ S is an identifying code

3) Compute probability PrE (p,∆) of each bad event E

4) Local Lemma: if dependencies are “small”:
with nonzero probability none of the bad events occurs

⇒ exists S s.t. C is an id. code → E(|C|) = n − p · nNF (G)

Problem: maybe S ≈ ∅ and C ≈ V (G)!!!

5) Solution: Chernoff bound → w.h.p. |S | is close to expected size

Pr(C is id. code)

Pr(C is small id. code) > 0

Pr(C is too big)

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 20 / 36

Proof

1) F : forced vertices. Select “big” random set S from V (G) \ F
Goal: C = V (G) \ S small identifying code

2) Use Lovász Local Lemma: define bad events
→ if none occurs, V (G) \ S is an identifying code

3) Compute probability PrE (p,∆) of each bad event E

4) Local Lemma: if dependencies are “small”:
with nonzero probability none of the bad events occurs

⇒ exists S s.t. C is an id. code → E(|C|) = n − p · nNF (G)

Problem: maybe S ≈ ∅ and C ≈ V (G)!!!

5) Solution: Chernoff bound → w.h.p. |S | is close to expected size

Pr(C is id. code)

Pr(C is small id. code) > 0

Pr(C is too big)

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 20 / 36

Proof

1) F : forced vertices. Select “big” random set S from V (G) \ F
Goal: C = V (G) \ S small identifying code

2) Use Lovász Local Lemma: define bad events
→ if none occurs, V (G) \ S is an identifying code

3) Compute probability PrE (p,∆) of each bad event E

4) Local Lemma: if dependencies are “small”:
with nonzero probability none of the bad events occurs

⇒ exists S s.t. C is an id. code → E(|C|) = n − p · nNF (G)

Problem: maybe S ≈ ∅ and C ≈ V (G)!!!

5) Solution: Chernoff bound → w.h.p. |S | is close to expected size

Pr(C is id. code)

Pr(C is small id. code) > 0

Pr(C is too big)

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 20 / 36

Bounding the number of forced vertices

NF (G): proportion of non forced vertices of G

G identifiable graph on n vertices having maximum degree ∆ and no
isolated vertices:

γ ID(G) ≤ n − n·NF (G)2

105∆

Theorem (F., Perarnau, 2011)

What can be said about NF (G)?

Question

G regular ⇒ NF (G) = 1

G regular: γ ID(G) ≤ n − n
105∆

Corollary

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 21 / 36

Bounding the number of forced vertices

NF (G): proportion of non forced vertices of G

G identifiable graph on n vertices having maximum degree ∆ and no
isolated vertices:

γ ID(G) ≤ n − n·NF (G)2

105∆

Theorem (F., Perarnau, 2011)

What can be said about NF (G)?

Question

G regular ⇒ NF (G) = 1

G regular: γ ID(G) ≤ n − n
105∆

Corollary

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 21 / 36

Bounding the number of forced vertices

NF (G): proportion of non forced vertices of G

G identifiable graph on n vertices having maximum degree ∆ and no
isolated vertices:

γ ID(G) ≤ n − n·NF (G)2

105∆

Theorem (F., Perarnau, 2011)

G : identifiable graph having no isolated vertices. Let x be a vertex of
G . There exists a non forced vertex in N[x].
→ Set of non forced vertices is a dominating set.

Lemma (Bertrand, 2005)

1
∆+1 ≤ NF (G) ≤ 1 and γ ID(G) ≤ n − n

105(∆+1)3

Corollary

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 22 / 36

Bounding the number of forced vertices

NF (G): proportion of non forced vertices of G

G identifiable graph on n vertices having maximum degree ∆ and no
isolated vertices:

γ ID(G) ≤ n − n·NF (G)2

105∆

Theorem (F., Perarnau, 2011)

G : identifiable graph having no isolated vertices. Let x be a vertex of
G . There exists a non forced vertex in N[x].
→ Set of non forced vertices is a dominating set.

Lemma (Bertrand, 2005)

1
∆+1 ≤ NF (G) ≤ 1 and γ ID(G) ≤ n − n

105(∆+1)3

Corollary

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 22 / 36

Bounding the number of forced vertices

NF (G): proportion of non forced vertices of G

G identifiable graph on n vertices having maximum degree ∆ and no
isolated vertices:

γ ID(G) ≤ n − n·NF (G)2

105∆

Theorem (F., Perarnau, 2011)

clique number of G : max. size of a complete subgraph in G

Let G be a graph of clique number at most k . There exists a (huge)
function c such that:

1
c(k) ≤ NF (G) ≤ 1

Proposition (F., Perarnau, 2011)

γ ID(G) ≤ n − n
105c(k)2∆ = n − n

Θ(∆)

Corollary

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 23 / 36

Bounding the number of forced vertices

NF (G): proportion of non forced vertices of G

G identifiable graph on n vertices having maximum degree ∆ and no
isolated vertices:

γ ID(G) ≤ n − n·NF (G)2

105∆

Theorem (F., Perarnau, 2011)

clique number of G : max. size of a complete subgraph in G

Let G be a graph of clique number at most k . There exists a (huge)
function c such that:

1
c(k) ≤ NF (G) ≤ 1

Proposition (F., Perarnau, 2011)

γ ID(G) ≤ n − n
105c(k)2∆ = n − n

Θ(∆)

Corollary

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 23 / 36

Summary

G connected identifiable graph, n vertices, max. degree ∆. Then

γ ID(G) ≤ n − n
∆ + c for some constant c

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

in general: γ ID(G) ≤ n − n
Θ(∆3)

triangle-free: γ ID(G) ≤ n − n
∆(1+o∆(1))

bipartite: γ ID(G) ≤ n − n
∆+9

regular: γ ID(G) ≤ n − n
105∆

clique number k : n − n
105c(k)2∆

Theorem

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 24 / 36

Part 3

Part 1
Graphs with large identifying code number

Part 2
Identifying code number and maximum degree

Part 3
Algorithmic hardness of the identifying code problem

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 25 / 36

Computational problems

• Set of inputs
• Given an input, task to be solved by an algorithm

Definition - Computational problem

Decision problem. Task: answer Yes/No question

INPUT: graph G , integer k
QUESTION: does G have an identifying code of size at most k?

Definition - IDCODE

Polynomial-time for:
• trees (Auger, 2010)

• bounded treewidth
(Moncel, 2005)

NP-complete for:
• planar subcubic graphs

(Auger et al. 2010)
• planar bipartite unit disk graphs

(Müller, Sereni, 2009)
• etc.

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 26 / 36

Computational problems

• Set of inputs
• Given an input, task to be solved by an algorithm

Definition - Computational problem

Decision problem. Task: answer Yes/No question

INPUT: graph G , integer k
QUESTION: does G have an identifying code of size at most k?

Definition - IDCODE

Polynomial-time for:
• trees (Auger, 2010)

• bounded treewidth
(Moncel, 2005)

NP-complete for:
• planar subcubic graphs

(Auger et al. 2010)
• planar bipartite unit disk graphs

(Müller, Sereni, 2009)
• etc.

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 26 / 36

Computational problems

• Set of inputs
• Given an input, task to be solved by an algorithm

Definition - Computational problem

Decision problem. Task: answer Yes/No question

INPUT: graph G , integer k
QUESTION: does G have an identifying code of size at most k?

Definition - IDCODE

Polynomial-time for:
• trees (Auger, 2010)

• bounded treewidth
(Moncel, 2005)

NP-complete for:
• planar subcubic graphs

(Auger et al. 2010)
• planar bipartite unit disk graphs

(Müller, Sereni, 2009)
• etc.

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 26 / 36

Computational problems

• Set of inputs
• Given an input, task to be solved by an algorithm

Definition - Computational problem

Minimization problem. Task: find a small solution

α-approximation algorithm: returns solution of size ≤ α · OPTIMUM

INPUT: graph G
TASK: find smallest possible identifying code of G

Definition - MIN IDCODE

O(log(n))-approximation algorithm (n: order of input graph)

No o(log(n))-approximation algorithm, unless P = NP
(Berger-Wolf et al. 2006 / Suomela, 2007)

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 27 / 36

Computational problems

• Set of inputs
• Given an input, task to be solved by an algorithm

Definition - Computational problem

Minimization problem. Task: find a small solution

α-approximation algorithm: returns solution of size ≤ α · OPTIMUM

INPUT: graph G
TASK: find smallest possible identifying code of G

Definition - MIN IDCODE

O(log(n))-approximation algorithm (n: order of input graph)

No o(log(n))-approximation algorithm, unless P = NP
(Berger-Wolf et al. 2006 / Suomela, 2007)

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 27 / 36

Computational problems

• Set of inputs
• Given an input, task to be solved by an algorithm

Definition - Computational problem

Minimization problem. Task: find a small solution

α-approximation algorithm: returns solution of size ≤ α · OPTIMUM

INPUT: graph G
TASK: find smallest possible identifying code of G

Definition - MIN IDCODE

O(log(n))-approximation algorithm (n: order of input graph)

No o(log(n))-approximation algorithm, unless P = NP
(Berger-Wolf et al. 2006 / Suomela, 2007)

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 27 / 36

Question

What is the complexity of IDCODE and MIN IDCODE for various
standard graph classes?
→ restriction of the input set

Question

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 28 / 36

Polynomial-time reductions

Two computational problems A,B
Polynomial-time computable function r : A→ B such that:

B efficiently solvable ⇒ A efficiently solvable.

Definition - Reduction

If A is hard, then B is hard.

Proposition

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 29 / 36

Polynomial-time reductions

Two computational problems A,B
Polynomial-time computable function r : A→ B such that:

B efficiently solvable ⇒ A efficiently solvable.

Definition - Reduction

If A is hard, then B is hard.

Proposition

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 29 / 36

Discriminating code

Subset C ⊆ B which dominates and separates vertices of A.

Definition - Discriminating code of a bipartite graph G (A,B)

A

example: C = {1, 3, 5}

({1}) a

({1, 3}) b

({3}) c

({3, 5}) d

B

1

2

3

4

5

INPUT: bipartite graph G
TASK: find smallest possible discriminating code of G

Definition - MIN DISCR CODE

No o(log(n))-approximation algorithm, unless P = NP
(De Bontridder et al. 2003)

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 30 / 36

Discriminating code

Subset C ⊆ B which dominates and separates vertices of A.

Definition - Discriminating code of a bipartite graph G (A,B)

A

example: C = {1, 3, 5}

({1}) a

({1, 3}) b

({3}) c

({3, 5}) d

B

1

2

3

4

5

INPUT: bipartite graph G
TASK: find smallest possible discriminating code of G

Definition - MIN DISCR CODE

No o(log(n))-approximation algorithm, unless P = NP
(De Bontridder et al. 2003)

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 30 / 36

New and non-approximability reductions

Reduction: MIN DISCR CODE to MIN IDCODE for bipartite graphs.

A B

..
.

x y z
LOG. ID.

log2(|B|) vertices

A B

G (A,B) has discr. code of size k if and only if G ′ has an
identifying code of size k + 3dlog2(|B|+ 1)e+ 2. Constructive.

If MIN IDCODE has an α-approximation algorithm, then MIN
DISCR. CODE has a 4α-approximation algorithm.

Theorem (F., 2012)

NP-hard to approximate MIN IDCODE within o(log(n))
→ even for bipartite graphs.

Corollary

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 31 / 36

New and non-approximability reductions

Reduction: MIN DISCR CODE to MIN IDCODE for bipartite graphs.

A B

..
.

x y z
LOG. ID.

log2(|B|) vertices

A B

G (A,B) has discr. code of size k if and only if G ′ has an
identifying code of size k + 3dlog2(|B|+ 1)e+ 2. Constructive.

If MIN IDCODE has an α-approximation algorithm, then MIN
DISCR. CODE has a 4α-approximation algorithm.

Theorem (F., 2012)

NP-hard to approximate MIN IDCODE within o(log(n))
→ even for bipartite graphs.

Corollary

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 31 / 36

New and non-approximability reductions

Reduction: MIN DISCR CODE to MIN IDCODE for bipartite graphs.

A B

..
.

x y z
LOG. ID.

log2(|B|) vertices

A B

G (A,B) has discr. code of size k if and only if G ′ has an
identifying code of size k + 3dlog2(|B|+ 1)e+ 2. Constructive.

If MIN IDCODE has an α-approximation algorithm, then MIN
DISCR. CODE has a 4α-approximation algorithm.

Theorem (F., 2012)

NP-hard to approximate MIN IDCODE within o(log(n))
→ even for bipartite graphs.

Corollary

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 31 / 36

New non-approximability reductions

Similar reductions for split graphs and co-bipartite graphs.

..
.

..
.

clique ind. set

X S

split graphs

..
.

..
.

clique clique

X S

co-bipartite graphs

It is NP-hard to approximate MIN IDCODE within o(log(n))
→ even for split graphs and for co-bipartite graphs.

Theorem (F., 2012)

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 32 / 36

Interval graphs

Intersection graph of intervals of the real line.

Definition - Interval graph

Many problems are efficiently solvable for interval graphs.
Example: DOMINATING SET

Remark

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 33 / 36

Interval graphs

Intersection graph of intervals of the real line.

Definition - Interval graph

Many problems are efficiently solvable for interval graphs.
Example: DOMINATING SET

Remark

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 33 / 36

IDCODE for interval graphs

IDCODE is NP-complete for interval graphs. Reduction from 3-
DIMENSIONAL MATCHING.

Theorem (F., Kosowski, Mertzios, Naserasr, Parreau, Valicov, 2012)

Main idea:
an interval can separate two pairs of intervals that are far away
without affecting what lies in between.

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 34 / 36

Complexity of IDCODE for various graph classes

trees

bounded TW

outerplanar

series-parallel

cographs

bounded CW

unit interval

line of trees

line of bounded TW

permutation

interval

trapezoid

directed path

strongly chordal

undirected path co-bipartite line of bipartite

bipartite

triangle-free

chordal bipartite

split co-comparability

quasi-line

line

unit 2-interval subcubic

2-interval planar

3-interval

comparability chordal AT-free

claw-free

K1,6-free

unit diskperfect DSP

IDCODE
NP-complete

IDCODE
in P

complexity of
IDCODE
unknown

separation for DOMINATING SET

What is the complexity
of IDCODE for these classes?

What is the complexity of approximating
MIN IDCODE for these classes?

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 35 / 36

Complexity of IDCODE for various graph classes

trees

bounded TW

outerplanar

series-parallel

cographs

bounded CW

unit interval

line of trees

line of bounded TW

permutation

interval

trapezoid

directed path

strongly chordal

undirected path co-bipartite line of bipartite

bipartite

triangle-free

chordal bipartite

split co-comparability

quasi-line

line

unit 2-interval subcubic

2-interval planar

3-interval

comparability chordal AT-free

claw-free

K1,6-free

unit diskperfect DSP

IDCODE
NP-complete

IDCODE
in P

complexity of
IDCODE
unknown

separation for DOMINATING SET

What is the complexity
of IDCODE for these classes?

What is the complexity of approximating
MIN IDCODE for these classes?

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 35 / 36

Complexity of IDCODE for various graph classes

trees

bounded TW

outerplanar

series-parallel

cographs

bounded CW

unit interval

line of trees

line of bounded TW

permutation

interval

trapezoid

directed path

strongly chordal

undirected path co-bipartite line of bipartite

bipartite

triangle-free

chordal bipartite

split co-comparability

quasi-line

line

unit 2-interval subcubic

2-interval planar

3-interval

comparability chordal AT-free

claw-free

K1,6-free

unit diskperfect DSP

IDCODE
NP-complete

IDCODE
in P

complexity of
IDCODE
unknown

separation for DOMINATING SET

What is the complexity
of IDCODE for these classes?

What is the complexity of approximating
MIN IDCODE for these classes?

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 35 / 36

Perspectives

Part 1: Graphs with large identifying code number

What are tight bounds on γ ID for specific graph classes?
→ planar graphs, special chordal graphs, permutation graphs,...

Part 2: Identifying code number and maximum degree

Can we approach/prove our conjecture γ ID(G) ≤ n − n/∆ + c?
→ trees, subcubic graphs, line graphs,...

Part 3: Algorithmic hardness of the identifying code problem

What is the complexity of (MIN) IDCODE for specific graph classes?
→ unit interval graphs,...

Other perspectives:

Parameterized complexity of IDCODE

Fractional identifying codes

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 36 / 36

Perspectives

Part 1: Graphs with large identifying code number

What are tight bounds on γ ID for specific graph classes?
→ planar graphs, special chordal graphs, permutation graphs,...

Part 2: Identifying code number and maximum degree

Can we approach/prove our conjecture γ ID(G) ≤ n − n/∆ + c?
→ trees, subcubic graphs, line graphs,...

Part 3: Algorithmic hardness of the identifying code problem

What is the complexity of (MIN) IDCODE for specific graph classes?
→ unit interval graphs,...

Other perspectives:

Parameterized complexity of IDCODE

Fractional identifying codes

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 36 / 36

Perspectives

Part 1: Graphs with large identifying code number

What are tight bounds on γ ID for specific graph classes?
→ planar graphs, special chordal graphs, permutation graphs,...

Part 2: Identifying code number and maximum degree

Can we approach/prove our conjecture γ ID(G) ≤ n − n/∆ + c?
→ trees, subcubic graphs, line graphs,...

Part 3: Algorithmic hardness of the identifying code problem

What is the complexity of (MIN) IDCODE for specific graph classes?
→ unit interval graphs,...

Other perspectives:

Parameterized complexity of IDCODE

Fractional identifying codes

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 36 / 36

Perspectives

Part 1: Graphs with large identifying code number

What are tight bounds on γ ID for specific graph classes?
→ planar graphs, special chordal graphs, permutation graphs,...

Part 2: Identifying code number and maximum degree

Can we approach/prove our conjecture γ ID(G) ≤ n − n/∆ + c?
→ trees, subcubic graphs, line graphs,...

Part 3: Algorithmic hardness of the identifying code problem

What is the complexity of (MIN) IDCODE for specific graph classes?
→ unit interval graphs,...

Other perspectives:

Parameterized complexity of IDCODE

Fractional identifying codes

Florent Foucaud Combinatorial and algorithmic aspects of identifying codes in graphs 36 / 36

	Introduction
	Graphs with large identifying number
	Identifying code number and maximum degree
	Algorithmic hardness
	Conclusion

