Combinatorial and algorithmic aspects of identifying codes in graphs

Florent Foucaud

Bordeaux

December 10th, 2012

Identifying the rooms of a building

Identifying the rooms of a building

Identifying the rooms of a building

Graph $G=(V, E) . V$: vertices (rooms), $E \subseteq V \times V$: edges (doors)

Identifying the rooms of a building

Graph $G=(V, E) . V$: vertices (rooms), $E \subseteq V \times V$: edges (doors)
Motion detector: detects intruder in its room or in adjacent rooms

Identifying the rooms of a building

Graph $G=(V, E) . V$: vertices (rooms), $E \subseteq V \times V$: edges (doors)
Motion detector: detects intruder in its room or in adjacent rooms

Identifying codes

G : undirected graph
$N[u]$: set of vertices v s.t. $d(u, v) \leq 1$
Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Identifying codes

G: undirected graph
$N[u]$: set of vertices v s.t. $d(u, v) \leq 1$
Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Identifying codes

G : undirected graph
$N[u]$: set of vertices v s.t. $d(u, v) \leq 1$
Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Goal: minimize number of detectors

Identifying codes

G: undirected graph
$N[u]$: set of vertices v s.t. $d(u, v) \leq 1$
Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Goal: minimize number of detectors
$\gamma^{\text {ID }}(G)$: minimum size of an identifying code in G

Identifiable graphs

Remark

Not all graphs have an identifying code!

Twins $=$ pair u, v such that $N[u]=N[v]$.

Identifiable graphs

Remark

Not all graphs have an identifying code!

Twins $=$ pair u, v such that $N[u]=N[v]$.

Proposition

A graph is identifiable if and only if it is twin-free (i.e. has no twins).

Bounds on $\gamma^{10}(G)$

n : number of vertices
Theorem (Karpovsky, Chakrabarty, Levitin, 1998)
G identifiable graph on n vertices:

$$
\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\mathrm{ID}}(G)
$$

Bounds on $\gamma^{10}(G)$

n : number of vertices
Theorem (Karpovsky, Chakrabarty, Levitin, 1998)
G identifiable graph on n vertices:

$$
\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\mathrm{ID}}(G)
$$

\rightarrow Graphs reaching bound characterized by Moncel, 2006.

Bounds on $\gamma^{\prime 0}(G)$

n : number of vertices

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

G identifiable graph on n vertices:

$$
\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\mathrm{ID}}(G)
$$

\rightarrow Graphs reaching bound characterized by Moncel, 2006.

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

$$
\gamma^{\mathrm{ID}}(G) \leq n-1
$$

Bounds on $\gamma^{\prime 0}(G)$

n : number of vertices

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

G identifiable graph on n vertices:

$$
\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\mathrm{ID}}(G)
$$

\rightarrow Graphs reaching bound characterized by Moncel, 2006.

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

$$
\gamma^{\text {ID }}(G) \leq n-1
$$

$$
\gamma^{10}(G)=n \Leftrightarrow G \text { has no edges }
$$

Examples

Definition - Identifying code
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{10}(G) \leq n-1$

Examples

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{1 \mathrm{D}}(G) \leq n-1$

Examples

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{1 \mathrm{D}}(G) \leq n-1$

Examples

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{1 \mathrm{D}}(G) \leq n-1$

Examples

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{1 \mathrm{D}}(G) \leq n-1$

Examples

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\text {DI }}(G) \leq n-1$

Examples

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\text {DI }}(G) \leq n-1$

Examples

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{1 \mathrm{D}}(G) \leq n-1$

Examples

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\text {DI }}(G) \leq n-1$

Examples

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{1 \mathrm{D}}(G) \leq n-1$

Examples

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{1 \mathrm{D}}(G) \leq n-1$

Examples

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{1 \mathrm{D}}(G) \leq n-1$

Examples

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{1 \mathrm{D}}(G) \leq n-1$

A question

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)
G identifiable graph on n vertices with at least one edge:

$$
\gamma^{\mathrm{ID}}(G) \leq n-1
$$

Question

What are the graphs G with n vertices and $\gamma^{\text {ID }}(G)=n-1$?

Part 1

Part 1

Graphs with large identifying code number

Part 2
Identifying code number and maximum degree

Part 3
 Algorithmic hardness of the identifying code problem

Forced vertices

u, v such that $N[v] \ominus N[u]=\{f\}:$
f belongs to any identifying code
$\rightarrow f$ forced by u, v.

Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$

$A_{2}=P_{4}$

$A_{3}=P_{6}^{2}$

$A_{4}=P_{8}^{3}$

Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$

$A_{2}=P_{4}$

$A_{3}=P_{6}^{2}$

$A_{4}=P_{8}^{3}$

Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$

$A_{2}=P_{4}$

$A_{3}=P_{6}^{2}$

$A_{4}=P_{8}^{3}$

Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$

$A_{2}=P_{4}$

$A_{3}=P_{6}^{2}$

$A_{4}=P_{8}^{3}$

Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$

$A_{2}=P_{4}$

$$
A_{3}=P_{6}^{2}
$$

$A_{4}=P_{8}^{3}$

Proposition

$$
\gamma^{10}\left(A_{k}\right)=n-1
$$

Constructions using joins

Two graphs A_{k} and $A_{k^{\prime}}$

Constructions using joins

Join: add all edges between them

Constructions using joins

Join the new graph to two non-adjacent vertices ($\overline{K_{2}}$)

Constructions using joins

Join the new graph to two non-adjacent vertices, again

Constructions using joins

Finally, add a universal vertex

Constructions using joins

Finally, add a universal vertex

Proposition

At each step, the constructed graph has $\gamma^{1 \mathrm{D}}=n-1$

A characterization

(1) stars
(2) $A_{k}=P_{2 k}^{k-1}$
(3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_{2}}$
(4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)
G connected identifiable graph, n vertices:

$$
\gamma^{\mathrm{D}}(G)=n-1 \Leftrightarrow G \in(1),(2),(3) \text { or }(4)
$$

A characterization

(1) stars
(2) $A_{k}=P_{2 k}^{k-1}$
(3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_{2}}$
(4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)
G connected identifiable graph, n vertices:

$$
\gamma^{\mathrm{ID}}(G)=n-1 \Leftrightarrow G \in(1),(2),(3) \text { or (4) }
$$

- G: minimum counterexample

A characterization

(1) stars
(2) $A_{k}=P_{2 k}^{k-1}$
(3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_{2}}$
(4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)
G connected identifiable graph, n vertices:

$$
\gamma^{\text {ID }}(G)=n-1 \Leftrightarrow G \in(1),(2),(3) \text { or (4) }
$$

- G : minimum counterexample
- v : vertex such that $G-v$ identifiable (exists)

A characterization

(1) stars
(2) $A_{k}=P_{2 k}^{k-1}$
(3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_{2}}$
(4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)
G connected identifiable graph, n vertices:

$$
\gamma^{\mathrm{ID}}(G)=n-1 \Leftrightarrow G \in(1),(2),(3) \text { or }(4)
$$

- G : minimum counterexample
- v : vertex such that $G-v$ identifiable (exists)
- Lemma: $\gamma^{\text {ID }}(G-v)=n^{\prime}-1$

A characterization

(1) stars
(2) $A_{k}=P_{2 k}^{k-1}$
(3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_{2}}$
(4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)
G connected identifiable graph, n vertices:

$$
\gamma^{\mathrm{D}}(G)=n-1 \Leftrightarrow G \in(1),(2),(3) \text { or }(4)
$$

- G : minimum counterexample
- v : vertex such that $G-v$ identifiable (exists)
- Lemma: $\gamma^{\text {ID }}(G-v)=n^{\prime}-1$
\Rightarrow By minimality of G :

$$
G-v \in(1),(2),(3) \text { or (4) }
$$

A characterization

(1) stars
(2) $A_{k}=P_{2 k}^{k-1}$
(3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_{2}}$
(4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)
G connected identifiable graph, n vertices:

$$
\gamma^{\mathrm{D}}(G)=n-1 \Leftrightarrow G \in(1),(2),(3) \text { or }(4)
$$

- G : minimum counterexample
- v : vertex such that $G-v$ identifiable (exists)
- Lemma: $\gamma^{\text {ID }}(G-v)=n^{\prime}-1$
\Rightarrow By minimality of G :

$$
G-v \in(1),(2),(3) \text { or }(4)
$$

- Put v back \Rightarrow contradiction: no counterexample exists!

A characterization

(1) stars
(2) $A_{k}=P_{2 k}^{k-1}$
(3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_{2}}$
(4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)
G connected identifiable graph, n vertices:

$$
\gamma^{\mathrm{ID}}(G)=n-1 \Leftrightarrow G \in(1),(2),(3) \text { or (4) }
$$

Observation

All these graphs have maximum degree $n-1$ or $n-2$

Part 2

Part 1
 Graphs with large identifying code number

Part 2

Identifying code number and maximum degree

Part 3
Algorithmic hardness of the identifying code problem

A lower bound using the maximum degree

maximum degree of G : maximum number of neighbours of a vertex in G
Theorem (Karpovsky, Chakrabarty, Levitin, 1998)
G identifiable graph, n vertices, maximum degree Δ :

$$
\frac{2 n}{\Delta+2} \leq \gamma^{10}(G)
$$

A lower bound using the maximum degree

maximum degree of G : maximum number of neighbours of a vertex in G
Theorem (Karpovsky, Chakrabarty, Levitin, 1998)
G identifiable graph, n vertices, maximum degree Δ :

$$
\frac{2 n}{\Delta+2} \leq \gamma^{1 D}(G)
$$

Theorem (F., Klasing, Kosowski, 2009)
Equality if and only if G can be constructed as follows:

- Take Δ-regular graph H

A lower bound using the maximum degree

maximum degree of G : maximum number of neighbours of a vertex in G
Theorem (Karpovsky, Chakrabarty, Levitin, 1998)
G identifiable graph, n vertices, maximum degree Δ :

$$
\frac{2 n}{\Delta+2} \leq \gamma^{1 D}(G)
$$

Theorem (F., Klasing, Kosowski, 2009)
Equality if and only if G can be constructed as follows:

- Take Δ-regular graph H
- Subdivide each edge once

A lower bound using the maximum degree

maximum degree of G : maximum number of neighbours of a vertex in G
Theorem (Karpovsky, Chakrabarty, Levitin, 1998)
G identifiable graph, n vertices, maximum degree Δ :

$$
\frac{2 n}{\Delta+2} \leq \gamma^{1 D}(G)
$$

Theorem (F., Klasing, Kosowski, 2009)
Equality if and only if G can be constructed as follows:

- Take Δ-regular graph H
- Subdivide each edge once
- Possibly add some edges

The influence of the maximum degree

Question
What is a good upper bound on γ^{10} using the maximum degree?

The influence of the maximum degree

Question
What is a good upper bound on $\gamma^{1 D}$ using the maximum degree?

Proposition

There exist graphs with n vertices, max. degree Δ and $\gamma^{\mathrm{ID}}(G)=n-\frac{n}{\Delta}$.

The influence of the maximum degree

Question

What is a good upper bound on $\gamma^{\text {ID }}$ using the maximum degree?

Proposition

There exist graphs with n vertices, max. degree Δ and $\gamma^{1 D}(G)=n-\frac{n}{\Delta}$.

The influence of the maximum degree

Question

What is a good upper bound on γ^{10} using the maximum degree?

Proposition

There exist graphs with n vertices, max. degree Δ and $\gamma^{\mathrm{ID}}(G)=n-\frac{n}{\Delta}$.

The influence of the maximum degree

Question

What is a good upper bound on γ^{10} using the maximum degree?

Proposition

There exist graphs with n vertices, max. degree Δ and $\gamma^{\mathrm{ID}}(G)=n-\frac{n}{\Delta}$.

The influence of the maximum degree

Question

What is a good upper bound on $\gamma^{1 \mathrm{D}}$ using the maximum degree?

Proposition

There exist graphs with n vertices, max. degree Δ and $\gamma^{\mathrm{ID}}(G)=n-\frac{n}{\Delta}$.

The influence of the maximum degree

Question

What is a good upper bound on $\gamma^{1 \mathrm{D}}$ using the maximum degree?

Proposition

There exist graphs with n vertices, max. degree Δ and $\gamma^{\mathrm{ID}}(G)=n-\frac{n}{\Delta}$.

Also: Sierpiński graphs
(Gravier, Kovše, Mollard,
Moncel, Parreau, 2011)

A conjecture

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)
G connected identifiable graph, n vertices, max. degree Δ. Then

$$
\gamma^{\text {ID }}(G) \leq n-\frac{n}{\Delta}+c \text { for some constant } c
$$

A conjecture

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

G connected identifiable graph, n vertices, max. degree Δ. Then

$$
\gamma^{\text {ID }}(G) \leq n-\frac{n}{\Delta}+c \text { for some constant } c
$$

Question

$$
\text { Can we prove that } \gamma^{10}(G) \leq n-\frac{n}{\Theta(\Delta)} ?
$$

Triangle-free graphs

Theorem (F., Klasing, Kosowski, Raspaud, 2009)
G identifiable triangle-free graph, n vertices, max. degree Δ. Then

$$
\gamma^{10}(G) \leq n-\frac{n}{\Delta+\frac{3 \Delta}{\ln \Delta-1}}=n-\frac{n}{\Delta(1+o \Delta(1))}
$$

Triangle-free graphs

Theorem (F., Klasing, Kosowski, Raspaud, 2009)
G identifiable triangle-free graph, n vertices, max. degree Δ. Then

$$
\gamma^{1 \mathrm{D}}(G) \leq n-\frac{n}{\Delta+\frac{3 \Delta}{\ln \Delta-1}}=n-\frac{n}{\Delta(1+o \Delta(1))}
$$

Proof idea: Constructive.
Triangle-free graphs have large independent sets (see e.g. Shearer: $\alpha(G) \geq \frac{\ln \Delta}{\Delta} n$)
\rightarrow Locally modify such an independent set: its complement is a "small" id. code.

Triangle-free graphs

Theorem (F., Klasing, Kosowski, Raspaud, 2009)
G identifiable triangle-free graph, n vertices, max. degree Δ. Then

$$
\gamma^{\text {ID }}(G) \leq n-\frac{n}{\Delta+\frac{3 \Delta}{\ln \Delta-1}}=n-\frac{n}{\Delta(1+o \Delta(1))}
$$

Remark

Same technique applies to families of triangle-free graphs with large independent sets.
\rightarrow bipartite graphs: $\alpha(G) \geq \frac{n}{2} \Rightarrow \gamma^{10}(G) \leq n-\frac{n}{\Delta+9}$

The probabilistic method

(1) Define a suitable probability space
(2) Select some object from this space using a random process \rightarrow select random set

0 Prove that with nonzero probability, certain "good" conditions hold \rightarrow selected set is small id. code

- Conclusion: there always exists a "good" object \rightarrow small id. code

Upper bounds for $\gamma^{10}(G)$

Theorem (F., Perarnau, 2011)

G identifiable graph, n vertices, maximum degree Δ, no isolated vertices:

$$
\gamma^{1 D}(G) \leq n-\frac{n \cdot N F(G)^{2}}{105 \Delta}
$$

Notation

$N F(G)$: proportion of non forced vertices of G

$$
N F(G)=\frac{\text { \#non forced vertices in G }}{\# \text { vertices in } G}
$$

Proof

1) F : forced vertices. Select "big" random set S from $V(G) \backslash F$

Proof

1) F : forced vertices. Select "big" random set S from $V(G) \backslash F$

for each vertex v from $V(G) \backslash F$ $\rightarrow v \in S$ with probability p.

Want: $p=\Theta\left(\frac{1}{\Delta}\right)$
$\mathbb{E}(|S|)=p \cdot n N F(G)=\frac{n N F(G)}{\Theta(\Delta)}$

Proof

1) F : forced vertices. Select "big" random set S from $V(G) \backslash F$

Goal: $\mathcal{C}=V(G) \backslash S$ small identifying code

for each vertex v from $V(G) \backslash F$ $\rightarrow v \in S$ with probability p.

Want: $p=\Theta\left(\frac{1}{\Delta}\right)$
$\mathbb{E}(|S|)=p \cdot n N F(G)=\frac{n N F(G)}{\Theta(\Delta)}$

$$
\mathbb{E}(|\mathcal{C}|)=n-\frac{n N F(G)}{\Theta(\Delta)}
$$

Proof

1) F : forced vertices. Select "big" random set S from $V(G) \backslash F$

Goal: $\mathcal{C}=V(G) \backslash S$ small identifying code
2) Use Lovász Local Lemma: define bad events
\rightarrow if none occurs, $V(G) \backslash S$ is an identifying code

Proof

1) F : forced vertices. Select "big" random set S from $V(G) \backslash F$

Goal: $\mathcal{C}=V(G) \backslash S$ small identifying code
2) Use Lovász Local Lemma: define bad events
\rightarrow if none occurs, $V(G) \backslash S$ is an identifying code

each vertex u
$\rightarrow 1$ event for domination

each pair u, v at dist. at most 2 $\rightarrow 1$ event for separation

Proof

1) F : forced vertices. Select "big" random set S from $V(G) \backslash F$

Goal: $\mathcal{C}=V(G) \backslash S$ small identifying code
2) Use Lovász Local Lemma: define bad events
\rightarrow if none occurs, $V(G) \backslash S$ is an identifying code
3) Compute probability $\operatorname{Pr}_{E}(p, \Delta)$ of each bad event E

Proof

1) F : forced vertices. Select "big" random set S from $V(G) \backslash F$

Goal: $\mathcal{C}=V(G) \backslash S$ small identifying code
2) Use Lovász Local Lemma: define bad events
\rightarrow if none occurs, $V(G) \backslash S$ is an identifying code
3) Compute probability $\operatorname{Pr}_{E}(p, \Delta)$ of each bad event E
4) Local Lemma: if dependencies are "small": with nonzero probability none of the bad events occurs

Proof

1) F : forced vertices. Select "big" random set S from $V(G) \backslash F$

Goal: $\mathcal{C}=V(G) \backslash S$ small identifying code
2) Use Lovász Local Lemma: define bad events
\rightarrow if none occurs, $V(G) \backslash S$ is an identifying code
3) Compute probability $\operatorname{Pr}_{E}(p, \Delta)$ of each bad event E
4) Local Lemma: if dependencies are "small": with nonzero probability none of the bad events occurs
\Rightarrow exists S s.t. \mathcal{C} is an id. code $\rightarrow \mathbb{E}(|\mathcal{C}|)=n-p \cdot n N F(G)$

Proof

1) F : forced vertices. Select "big" random set S from $V(G) \backslash F$

Goal: $\mathcal{C}=V(G) \backslash S$ small identifying code
2) Use Lovász Local Lemma: define bad events
\rightarrow if none occurs, $V(G) \backslash S$ is an identifying code
3) Compute probability $\operatorname{Pr}_{E}(p, \Delta)$ of each bad event E
4) Local Lemma: if dependencies are "small": with nonzero probability none of the bad events occurs
\Rightarrow exists S s.t. \mathcal{C} is an id. code $\rightarrow \mathbb{E}(|\mathcal{C}|)=n-p \cdot n N F(G)$
Problem: maybe $S \approx \emptyset$ and $\mathcal{C} \approx V(G)!!!$

Proof

1) F : forced vertices. Select "big" random set S from $V(G) \backslash F$

Goal: $\mathcal{C}=V(G) \backslash S$ small identifying code
2) Use Lovász Local Lemma: define bad events
\rightarrow if none occurs, $V(G) \backslash S$ is an identifying code
3) Compute probability $\operatorname{Pr}_{E}(p, \Delta)$ of each bad event E
4) Local Lemma: if dependencies are "small": with nonzero probability none of the bad events occurs
\Rightarrow exists S s.t. \mathcal{C} is an id. code $\rightarrow \mathbb{E}(|\mathcal{C}|)=n-p \cdot n N F(G)$
Problem: maybe $S \approx \emptyset$ and $\mathcal{C} \approx V(G)!!!$
5) Solution: Chernoff bound \rightarrow w.h.p. $|S|$ is close to expected size

Bounding the number of forced vertices

$N F(G)$: proportion of non forced vertices of G
Theorem (F., Perarnau, 2011)
G identifiable graph on n vertices having maximum degree Δ and no isolated vertices:

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n \cdot N F(G)^{2}}{105 \Delta}
$$

Question

$$
\text { What can be said about } N F(G) \text { ? }
$$

Bounding the number of forced vertices

$N F(G)$: proportion of non forced vertices of G
Theorem (F., Perarnau, 2011)
G identifiable graph on n vertices having maximum degree Δ and no isolated vertices:

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n \cdot N F(G)^{2}}{105 \Delta}
$$

Question

$$
\text { What can be said about } N F(G) \text { ? }
$$

$$
G \text { regular } \Rightarrow N F(G)=1
$$

Corollary

$$
G \text { regular: } \gamma^{10}(G) \leq n-\frac{n}{105 \Delta}
$$

Bounding the number of forced vertices

$N F(G)$: proportion of non forced vertices of G

Theorem (F., Perarnau, 2011)

G identifiable graph on n vertices having maximum degree Δ and no isolated vertices:

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n \cdot N F(G)^{2}}{105 \Delta}
$$

Lemma (Bertrand, 2005)

G: identifiable graph having no isolated vertices. Let x be a vertex of
G. There exists a non forced vertex in $N[x]$.
\rightarrow Set of non forced vertices is a dominating set.

Bounding the number of forced vertices

$N F(G)$: proportion of non forced vertices of G

Theorem (F., Perarnau, 2011)

G identifiable graph on n vertices having maximum degree Δ and no isolated vertices:

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n \cdot N F(G)^{2}}{105 \Delta}
$$

Lemma (Bertrand, 2005)

G : identifiable graph having no isolated vertices. Let x be a vertex of
G. There exists a non forced vertex in $N[x]$.
\rightarrow Set of non forced vertices is a dominating set.

Corollary

$$
\frac{1}{\Delta+1} \leq N F(G) \leq 1 \text { and } \gamma^{10}(G) \leq n-\frac{n}{105(\Delta+1)^{3}}
$$

Bounding the number of forced vertices

$N F(G)$: proportion of non forced vertices of G

Theorem (F., Perarnau, 2011)

G identifiable graph on n vertices having maximum degree Δ and no isolated vertices:

$$
\gamma^{\text {ID }}(G) \leq n-\frac{n \cdot N F(G)^{2}}{105 \Delta}
$$

clique number of G : max. size of a complete subgraph in G

Proposition (F., Perarnau, 2011)

Let G be a graph of clique number at most k. There exists a (huge) function c such that:

$$
\frac{1}{c(k)} \leq N F(G) \leq 1
$$

Bounding the number of forced vertices

$N F(G)$: proportion of non forced vertices of G

Theorem (F., Perarnau, 2011)

G identifiable graph on n vertices having maximum degree Δ and no isolated vertices:

$$
\gamma^{\mathrm{D}}(G) \leq n-\frac{n \cdot N F(G)^{2}}{105 \Delta}
$$

clique number of G : max. size of a complete subgraph in G

Proposition (F., Perarnau, 2011)

Let G be a graph of clique number at most k. There exists a (huge) function c such that:

$$
\frac{1}{c(k)} \leq N F(G) \leq 1
$$

Corollary

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{105 c(k)^{2} \Delta}=n-\frac{n}{\Theta(\Delta)}
$$

Summary

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

G connected identifiable graph, n vertices, max. degree Δ. Then

$$
\gamma^{10}(G) \leq n-\frac{n}{\Delta}+c \text { for some constant } c
$$

Theorem

$$
\begin{gathered}
\text { in general: } \gamma^{\mathrm{DD}}(G) \leq n-\frac{n}{\Theta\left(\Delta^{3}\right)} \\
\text { triangle-free: } \gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{\Delta\left(1+o_{\Delta}(1)\right)} \\
\text { bipartite: } \gamma^{\mathrm{D}(}(G) \leq n-\frac{n}{\Delta+9} \\
\text { regular: } \gamma^{\mathrm{DD}}(G) \leq n-\frac{n}{105 \Delta} \\
\text { clique number } k: n-\frac{n}{105 c(k)^{2} \Delta}
\end{gathered}
$$

Part 3

Part 1
 Graphs with large identifying code number

Part 2
Identifying code number and maximum degree

Part 3

Algorithmic hardness of the identifying code problem

Computational problems

Definition - Computational problem

- Set of inputs
- Given an input, task to be solved by an algorithm

Computational problems

Definition - Computational problem

- Set of inputs
- Given an input, task to be solved by an algorithm

Decision problem. Task: answer Yes/No question

Definition - IDCODE

INPUT: graph G, integer k
QUESTION: does G have an identifying code of size at most k ?

Computational problems

Definition - Computational problem

- Set of inputs
- Given an input, task to be solved by an algorithm

Decision problem. Task: answer Yes/No question

Definition - IDCODE

INPUT: graph G, integer k
QUESTION: does G have an identifying code of size at most k ?

Polynomial-time for:

- trees (Auger, 2010)
- bounded treewidth
(Moncel, 2005)

NP-complete for:

- planar subcubic graphs (Auger et al. 2010)
- planar bipartite unit disk graphs (Müller, Sereni, 2009)
- etc.

Computational problems

Definition-Computational problem

- Set of inputs
- Given an input, task to be solved by an algorithm

Computational problems

Definition - Computational problem

- Set of inputs
- Given an input, task to be solved by an algorithm

Minimization problem. Task: find a small solution
α-approximation algorithm: returns solution of size $\leq \alpha \cdot$ OPTIMUM

Definition - MIN IDCODE

INPUT: graph G
TASK: find smallest possible identifying code of G

Computational problems

Definition - Computational problem

- Set of inputs
- Given an input, task to be solved by an algorithm

Minimization problem. Task: find a small solution
α-approximation algorithm: returns solution of size $\leq \alpha \cdot$ OPTIMUM

Definition - MIN IDCODE

INPUT: graph G
TASK: find smallest possible identifying code of G
$O(\log (n))$-approximation algorithm (n: order of input graph)
No $o(\log (n))$-approximation algorithm, unless $P=N P$
(Berger-Wolf et al. 2006 / Suomela, 2007)

Question

Question
What is the complexity of IDCODE and MIN IDCODE for various standard graph classes?
\rightarrow restriction of the input set

Polynomial-time reductions

Definition - Reduction

Two computational problems A, B
Polynomial-time computable function $r: A \rightarrow B$ such that:
B efficiently solvable $\Rightarrow A$ efficiently solvable.

Polynomial-time reductions

Definition - Reduction

Two computational problems A, B
Polynomial-time computable function $r: A \rightarrow B$ such that:
B efficiently solvable $\Rightarrow A$ efficiently solvable.

Proposition

If A is hard, then B is hard.

Discriminating code

Definition - Discriminating code of a bipartite graph $G(A, B)$
Subset $\mathcal{C} \subseteq B$ which dominates and separates vertices of A.

Discriminating code

Definition - Discriminating code of a bipartite graph $G(A, B)$
Subset $\mathcal{C} \subseteq B$ which dominates and separates vertices of A.

Definition - MIN DISCR CODE

INPUT: bipartite graph G
TASK: find smallest possible discriminating code of G

No $o(\log (n))$-approximation algorithm, unless $P=N P$
(De Bontridder et al. 2003)

New and non-approximability reductions

Reduction: MIN DISCR CODE to MIN IDCODE for bipartite graphs.

New and non-approximability reductions

Reduction: MIN DISCR CODE to MIN IDCODE for bipartite graphs.

Theorem (F., 2012)

- $G(A, B)$ has discr. code of size k if and only if G^{\prime} has an identifying code of size $k+3\left\lceil\log _{2}(|B|+1)\right\rceil+2$. Constructive.
- If MIN IDCODE has an α-approximation algorithm, then MIN DISCR. CODE has a 4α-approximation algorithm.

New and non-approximability reductions

Reduction: MIN DISCR CODE to MIN IDCODE for bipartite graphs.

Theorem (F., 2012)

- $G(A, B)$ has discr. code of size k if and only if G^{\prime} has an identifying code of size $k+3\left\lceil\log _{2}(|B|+1)\right\rceil+2$. Constructive.
- If MIN IDCODE has an α-approximation algorithm, then MIN DISCR. CODE has a 4α-approximation algorithm.

Corollary

NP-hard to approximate MIN IDCODE within $o(\log (n))$ \rightarrow even for bipartite graphs.

New non-approximability reductions

Similar reductions for split graphs and co-bipartite graphs.

split graphs

co-bipartite graphs

Theorem (F., 2012)

It is NP-hard to approximate MIN IDCODE within $o(\log (n))$ \rightarrow even for split graphs and for co-bipartite graphs.

Interval graphs

Definition - Interval graph
Intersection graph of intervals of the real line.

Interval graphs

Definition - Interval graph
Intersection graph of intervals of the real line.

Remark

Many problems are efficiently solvable for interval graphs. Example: DOMINATING SET

IDCODE for interval graphs

Theorem (F., Kosowski, Mertzios, Naserasr, Parreau, Valicov, 2012)
IDCODE is NP-complete for interval graphs. Reduction from 3DIMENSIONAL MATCHING.

Main idea:

an interval can separate two pairs of intervals that are far away without affecting what lies in between.

Complexity of IDCODE for various graph classes

Complexity of IDCODE for various graph classes

Complexity of IDCODE for various graph classes

Perspectives

- Part 1: Graphs with large identifying code number What are tight bounds on γ^{10} for specific graph classes? \rightarrow planar graphs, special chordal graphs, permutation graphs,...

Perspectives

- Part 1: Graphs with large identifying code number What are tight bounds on γ^{10} for specific graph classes? \rightarrow planar graphs, special chordal graphs, permutation graphs,...
- Part 2: Identifying code number and maximum degree Can we approach/prove our conjecture $\gamma^{\text {ID }}(G) \leq n-n / \Delta+c$? \rightarrow trees, subcubic graphs, line graphs,...

Perspectives

- Part 1: Graphs with large identifying code number What are tight bounds on γ^{10} for specific graph classes? \rightarrow planar graphs, special chordal graphs, permutation graphs,...
- Part 2: Identifying code number and maximum degree Can we approach/prove our conjecture $\gamma^{\text {ID }}(G) \leq n-n / \Delta+c$? \rightarrow trees, subcubic graphs, line graphs,...
- Part 3: Algorithmic hardness of the identifying code problem What is the complexity of (MIN) IDCODE for specific graph classes? \rightarrow unit interval graphs,...

Perspectives

- Part 1: Graphs with large identifying code number What are tight bounds on $\gamma^{1 D}$ for specific graph classes? \rightarrow planar graphs, special chordal graphs, permutation graphs,...
- Part 2: Identifying code number and maximum degree Can we approach/prove our conjecture $\gamma^{\text {ID }}(G) \leq n-n / \Delta+c$? \rightarrow trees, subcubic graphs, line graphs,...
- Part 3: Algorithmic hardness of the identifying code problem What is the complexity of (MIN) IDCODE for specific graph classes? \rightarrow unit interval graphs,...

Other perspectives:

- Parameterized complexity of IDCODE
- Fractional identifying codes

