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Identifying the rooms of a building

Graph G = (V ,E ). V : vertices (rooms), E ⊆ V × V : edges (doors)

Motion detector: detects intruder in its room or in adjacent rooms
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Identifying codes

G : undirected graph
N[u]: set of vertices v s.t. d(u, v) ≤ 1

Subset C of V (G ) such that:
C is a dominating set: ∀u ∈ V (G ), N[u] ∩ C 6= ∅, and

C is a separating code: ∀u 6= v of V (G ), N[u] ∩ C 6= N[v ] ∩ C

Equivalently:
(N[u]	 N[v ]) ∩ C 6= ∅ → hitting symmetric differences

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Goal: minimize number of detectors

γ ID(G ): minimum size of an identifying code in G
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Identifiable graphs

Not all graphs have an identifying code!

Remark

Twins = pair u, v such that N[u] = N[v ].

u v

A graph is identifiable if and only if it is twin-free (i.e. has no twins).

Proposition
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Bounds on γ ID(G )

n: number of vertices

G identifiable graph on n vertices:

dlog2(n + 1)e ≤ γ ID(G )

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

→ Graphs reaching bound characterized by Moncel, 2006.

G identifiable graph on n vertices with at least one edge:

γ ID(G ) ≤ n − 1

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

γ ID(G ) = n⇔ G has no edges
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Examples

Subset C of V (G ) such that:

C is a dominating set: ∀u ∈ V (G ), N[u] ∩ C 6= ∅, and

C is a separating code: ∀u 6= v of V (G ), N[u] ∩ C 6= N[v ] ∩ C
Equivalently:

(N[u]	 N[v ]) ∩ C 6= ∅ → hitting symmetric differences

Definition - Identifying code

G identifiable, n vertices, some edges: dlog2(n+ 1)e ≤ γ ID(G ) ≤ n− 1

Theorem

forced vertexforced vertex
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A question

G identifiable graph on n vertices with at least one edge:

γ ID(G ) ≤ n − 1

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

What are the graphs G with n vertices and γ ID(G ) = n − 1 ?

Question
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Part 1

Part 1
Graphs with large identifying code number

Part 2
Identifying code number and maximum degree

Part 3
Algorithmic hardness of the identifying code problem
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Forced vertices

u, v such that N[v ]	 N[u] = {f }:

f belongs to any identifying code

→ f forced by u, v .

f
v u
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Graphs with many forced vertices

Special path powers: Ak = Pk−1
2k

A2 = P4 A3 = P2
6

A4 = P3
8

γ ID(Ak) = n − 1

Proposition
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Constructions using joins

Ak Ak'

Two graphs Ak and Ak′

At each step, the constructed graph has γ ID = n − 1

Proposition
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Constructions using joins

Ak Ak'

Join: add all edges between them

At each step, the constructed graph has γ ID = n − 1

Proposition
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Constructions using joins

Ak Ak'

Join the new graph to two non-adjacent vertices (K2)

At each step, the constructed graph has γ ID = n − 1

Proposition
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Constructions using joins

Ak Ak'

Join the new graph to two non-adjacent vertices, again

At each step, the constructed graph has γ ID = n − 1

Proposition
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Constructions using joins

Ak Ak'

Finally, add a universal vertex

At each step, the constructed graph has γ ID = n − 1

Proposition
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Constructions using joins

Ak Ak'

Finally, add a universal vertex

At each step, the constructed graph has γ ID = n − 1

Proposition
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A characterization

(1) stars
(2) Ak = Pk−1

2k

(3) joins between 0 or more members of (2) and 0 or more copies of K2

(4) (2) or (3) with a universal vertex

G connected identifiable graph, n vertices:

γ ID(G ) = n − 1 ⇔ G ∈ (1), (2), (3) or (4)

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)
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A characterization

(1) stars
(2) Ak = Pk−1

2k

(3) joins between 0 or more members of (2) and 0 or more copies of K2
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G connected identifiable graph, n vertices:
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Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

• G : minimum counterexample

• v : vertex such that G − v
identifiable (exists)

• Lemma: γ ID(G − v) = n′ − 1
⇒ By minimality of G :

G − v ∈ (1), (2), (3) or (4)

• Put v back ⇒ contradiction:

G-v

v

no counterexample exists!
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A characterization

(1) stars
(2) Ak = Pk−1

2k

(3) joins between 0 or more members of (2) and 0 or more copies of K2

(4) (2) or (3) with a universal vertex

G connected identifiable graph, n vertices:

γ ID(G ) = n − 1 ⇔ G ∈ (1), (2), (3) or (4)

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

All these graphs have maximum degree n − 1 or n − 2

Observation
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Part 2

Part 1
Graphs with large identifying code number

Part 2
Identifying code number and maximum degree

Part 3
Algorithmic hardness of the identifying code problem
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A lower bound using the maximum degree

maximum degree of G : maximum number of neighbours of a vertex in G

G identifiable graph, n vertices, maximum degree ∆:

2n
∆+2 ≤ γ

ID(G )

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

Equality if and only if G can be constructed as follows:

Theorem (F., Klasing, Kosowski, 2009)

• Take ∆-regular graph H

• Subdivide each edge once

• Possibly add some edges
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The influence of the maximum degree

What is a good upper bound on γ ID using the maximum degree?

Question

There exist graphs with n vertices, max. degree ∆ and γ ID(G ) = n− n
∆ .

Proposition
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The influence of the maximum degree

What is a good upper bound on γ ID using the maximum degree?

Question

There exist graphs with n vertices, max. degree ∆ and γ ID(G ) = n− n
∆ .

Proposition

Also: Sierpiński graphs

(Gravier, Kovše, Mollard,
Moncel, Parreau, 2011)
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A conjecture

G connected identifiable graph, n vertices, max. degree ∆. Then

γ ID(G ) ≤ n − n
∆ + c for some constant c

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

Can we prove that γ ID(G ) ≤ n − n
Θ(∆) ?

Question
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Triangle-free graphs

G identifiable triangle-free graph, n vertices, max. degree ∆. Then

γ ID(G ) ≤ n − n
∆+ 3∆

ln ∆−1

= n − n
∆(1+o∆(1))

Theorem (F., Klasing, Kosowski, Raspaud, 2009)
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G identifiable triangle-free graph, n vertices, max. degree ∆. Then

γ ID(G ) ≤ n − n
∆+ 3∆

ln ∆−1

= n − n
∆(1+o∆(1))

Theorem (F., Klasing, Kosowski, Raspaud, 2009)

Proof idea: Constructive.

Triangle-free graphs have large independent sets
(see e.g. Shearer: α(G ) ≥ ln ∆

∆ n)

→ Locally modify such an independent set:
its complement is a “small” id. code.
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Triangle-free graphs

G identifiable triangle-free graph, n vertices, max. degree ∆. Then

γ ID(G ) ≤ n − n
∆+ 3∆

ln ∆−1

= n − n
∆(1+o∆(1))

Theorem (F., Klasing, Kosowski, Raspaud, 2009)

Same technique applies to families of triangle-free graphs with large
independent sets.
→ bipartite graphs: α(G ) ≥ n

2 ⇒ γ ID(G ) ≤ n − n
∆+9

Remark
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The probabilistic method

1 Define a suitable probability space

2 Select some object from this space using a random process
→ select random set

3 Prove that with nonzero probability, certain ”good” conditions hold
→ selected set is small id. code

4 Conclusion: there always exists a ”good” object
→ small id. code
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Upper bounds for γ ID(G )

G identifiable graph, n vertices, maximum degree ∆, no isolated
vertices:

γ ID(G ) ≤ n − n·NF (G)2

105∆

Theorem (F., Perarnau, 2011)

NF (G ): proportion of non forced vertices of G

NF (G ) =
#non forced vertices in G

#vertices in G

Notation

f
v u
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Proof

1) F : forced vertices. Select “big” random set S from V (G ) \ F

Goal: C = V (G ) \ S small identifying code

2) Use Lovász Local Lemma: define bad events
→ if none occurs, V (G ) \ S is an identifying code

3) Compute probability PrE (p,∆) of each bad event E

4) Local Lemma: if dependencies are “small”:
with nonzero probability none of the bad events occurs

⇒ exists S s.t. C is an id. code → E(|C|) = n − p · nNF (G )

Problem: maybe S ≈ ∅ and C ≈ V (G )!!!

5) Solution: Chernoff bound → w.h.p. |S | is close to expected size

Pr(C is id. code)

Pr(C is small id. code) > 0

Pr(C is too big)
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u

S

..
.

each vertex u
→ 1 event for domination

u v

SS

..
.

..
.

..
.

u v

SS

...

..
.

..
.

each pair u, v at dist. at most 2
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Bounding the number of forced vertices

NF (G ): proportion of non forced vertices of G

G identifiable graph on n vertices having maximum degree ∆ and no
isolated vertices:

γ ID(G ) ≤ n − n·NF (G)2

105∆

Theorem (F., Perarnau, 2011)

What can be said about NF (G )?

Question

G regular ⇒ NF (G ) = 1

G regular: γ ID(G ) ≤ n − n
105∆

Corollary
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Bounding the number of forced vertices

NF (G ): proportion of non forced vertices of G

G identifiable graph on n vertices having maximum degree ∆ and no
isolated vertices:

γ ID(G ) ≤ n − n·NF (G)2

105∆

Theorem (F., Perarnau, 2011)

G : identifiable graph having no isolated vertices. Let x be a vertex of
G . There exists a non forced vertex in N[x ].
→ Set of non forced vertices is a dominating set.

Lemma (Bertrand, 2005)

1
∆+1 ≤ NF (G ) ≤ 1 and γ ID(G ) ≤ n − n

105(∆+1)3

Corollary
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Bounding the number of forced vertices

NF (G ): proportion of non forced vertices of G

G identifiable graph on n vertices having maximum degree ∆ and no
isolated vertices:

γ ID(G ) ≤ n − n·NF (G)2

105∆

Theorem (F., Perarnau, 2011)

clique number of G : max. size of a complete subgraph in G

Let G be a graph of clique number at most k . There exists a (huge)
function c such that:

1
c(k) ≤ NF (G ) ≤ 1

Proposition (F., Perarnau, 2011)

γ ID(G ) ≤ n − n
105c(k)2∆ = n − n

Θ(∆)

Corollary
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Summary

G connected identifiable graph, n vertices, max. degree ∆. Then

γ ID(G ) ≤ n − n
∆ + c for some constant c

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

in general: γ ID(G ) ≤ n − n
Θ(∆3)

triangle-free: γ ID(G ) ≤ n − n
∆(1+o∆(1))

bipartite: γ ID(G ) ≤ n − n
∆+9

regular: γ ID(G ) ≤ n − n
105∆

clique number k : n − n
105c(k)2∆

Theorem
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Part 3

Part 1
Graphs with large identifying code number

Part 2
Identifying code number and maximum degree

Part 3
Algorithmic hardness of the identifying code problem
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Computational problems

• Set of inputs
• Given an input, task to be solved by an algorithm

Definition - Computational problem

Decision problem. Task: answer Yes/No question

INPUT: graph G , integer k
QUESTION: does G have an identifying code of size at most k?

Definition - IDCODE

Polynomial-time for:
• trees (Auger, 2010)

• bounded treewidth
(Moncel, 2005)

NP-complete for:
• planar subcubic graphs

(Auger et al. 2010)
• planar bipartite unit disk graphs

(Müller, Sereni, 2009)
• etc.
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Computational problems

• Set of inputs
• Given an input, task to be solved by an algorithm

Definition - Computational problem

Minimization problem. Task: find a small solution

α-approximation algorithm: returns solution of size ≤ α · OPTIMUM

INPUT: graph G
TASK: find smallest possible identifying code of G

Definition - MIN IDCODE

O(log(n))-approximation algorithm (n: order of input graph)

No o(log(n))-approximation algorithm, unless P = NP
(Berger-Wolf et al. 2006 / Suomela, 2007)
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Question

What is the complexity of IDCODE and MIN IDCODE for various
standard graph classes?
→ restriction of the input set

Question
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Polynomial-time reductions

Two computational problems A,B
Polynomial-time computable function r : A→ B such that:

B efficiently solvable ⇒ A efficiently solvable.

Definition - Reduction

If A is hard, then B is hard.

Proposition
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Discriminating code

Subset C ⊆ B which dominates and separates vertices of A.

Definition - Discriminating code of a bipartite graph G (A,B)

A

example: C = {1, 3, 5}

({1}) a

({1, 3}) b

({3}) c

({3, 5}) d

B

1

2

3

4

5

INPUT: bipartite graph G
TASK: find smallest possible discriminating code of G

Definition - MIN DISCR CODE

No o(log(n))-approximation algorithm, unless P = NP
(De Bontridder et al. 2003)
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New and non-approximability reductions

Reduction: MIN DISCR CODE to MIN IDCODE for bipartite graphs.

A B

..
.

x y z
LOG. ID.

log2(|B|) vertices

A B

G (A,B) has discr. code of size k if and only if G ′ has an
identifying code of size k + 3dlog2(|B|+ 1)e+ 2. Constructive.

If MIN IDCODE has an α-approximation algorithm, then MIN
DISCR. CODE has a 4α-approximation algorithm.

Theorem (F., 2012)

NP-hard to approximate MIN IDCODE within o(log(n))
→ even for bipartite graphs.

Corollary
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New non-approximability reductions

Similar reductions for split graphs and co-bipartite graphs.

..
.

..
.

clique ind. set

X S

split graphs

..
.

..
.

clique clique

X S

co-bipartite graphs

It is NP-hard to approximate MIN IDCODE within o(log(n))
→ even for split graphs and for co-bipartite graphs.

Theorem (F., 2012)
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Interval graphs

Intersection graph of intervals of the real line.

Definition - Interval graph

Many problems are efficiently solvable for interval graphs.
Example: DOMINATING SET

Remark
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IDCODE for interval graphs

IDCODE is NP-complete for interval graphs. Reduction from 3-
DIMENSIONAL MATCHING.

Theorem (F., Kosowski, Mertzios, Naserasr, Parreau, Valicov, 2012)

Main idea:
an interval can separate two pairs of intervals that are far away
without affecting what lies in between.
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Complexity of IDCODE for various graph classes

trees

bounded TW

outerplanar

series-parallel

cographs

bounded CW

unit interval

line of trees

line of bounded TW

permutation

interval

trapezoid

directed path

strongly chordal

undirected path co-bipartite line of bipartite

bipartite

triangle-free

chordal bipartite

split co-comparability

quasi-line

line

unit 2-interval subcubic

2-interval planar

3-interval

comparability chordal AT-free
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Perspectives

Part 1: Graphs with large identifying code number

What are tight bounds on γ ID for specific graph classes?
→ planar graphs, special chordal graphs, permutation graphs,...

Part 2: Identifying code number and maximum degree

Can we approach/prove our conjecture γ ID(G ) ≤ n − n/∆ + c?
→ trees, subcubic graphs, line graphs,...

Part 3: Algorithmic hardness of the identifying code problem

What is the complexity of (MIN) IDCODE for specific graph classes?
→ unit interval graphs,...

Other perspectives:

Parameterized complexity of IDCODE

Fractional identifying codes
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