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Part I: location-domination
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Fire detection in a building

Detector can detect �re in its room and its neighborhood (through a door).

Each room must contain a detector or have one in an adjacent room.
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Modelization with a graph

Graph G = (V ,E). Vertices: rooms.
Edges: between any two rooms connected by a door

Set of detectors = dominating set D ⊆ V : ∀u ∈ V ,N[u]∩D 6= /0

Domination number γ(G): smallest size of a dominating set of G
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?

?

b

ca

b
b,c

c

Florent Foucaud Identi�cation problems in graphs 5 / 23



Back to the building

?

?

b

ca

b
b,c

c

Where is the �re ?

To locate the �re, we need more detectors.
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Locating the �re
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Locating the �re
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In each room with no detector, set of dominating detectors is distinct.
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Locating the �re
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Slater, 1980's: Locating-dominating set D = subset of vertices of G = (V ,E)
which is:

dominating : ∀u ∈ V ,N[u]∩D 6= /0,

locating : ∀u,v ∈ V \D,N[u]∩D 6= N[v ]∩D.
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Slater, 1980's: Locating-dominating set D = subset of vertices of G = (V ,E)
which is:

dominating : ∀u ∈ V ,N[u]∩D 6= /0,

locating : ∀u,v ∈ V \D,N[u]∩D 6= N[v ]∩D.

γL(G): location-domination number of G ,
minimum size of a locating-dominating set of G .

Remark: γ(G)≤ γL(G)
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Examples: paths

Domination number: γ(Pn) =
⌈
n

3

⌉

Florent Foucaud Identi�cation problems in graphs 6 / 23



Examples: paths

Domination number: γ(Pn) =
⌈
n

3

⌉

Location-domination number: γL(Pn) =
⌈
2n

5

⌉
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Upper bounds on the location-domination number
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Upper bounds

G graph of order n, no isolated vertices. Then γ(G)≤ n

2
.

Theorem (Domination bound � Ore, 1960's)
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G graph of order n, no isolated vertices. Then γ(G)≤ n

2
.

Theorem (Domination bound � Ore, 1960's)

Tight examples:

G graph of order n, no isolated vertices. Then γL(G)≤ n−1.

Theorem (Location-domination bound � Slater, 1980's)

Tight examples:

Remark: tight examples contain many twin-vertices!!
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Upper bound - a conjecture (1)

G graph of order n, no isolated vertices. Then γ(G)≤ n

2
.

Theorem (Domination bound � Ore, 1960's)

G graph of order n, no isolated vertices. Then γL(G)≤ n−1.

Theorem (Location-domination bound � Slater, 1980's)
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If true, tight: 1. domination-extremal graphs
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G graph of order n, no isolated vertices. Then γ(G)≤ n

2
.

Theorem (Domination bound � Ore, 1960's)

G graph of order n, no isolated vertices. Then γL(G)≤ n−1.

Theorem (Location-domination bound � Slater, 1980's)

G graph of order n, no isolated vertices, no twins. Then γL(G)≤ n

2
.

Conjecture (Garijo, González & Márquez, 2014+)

If true, tight: 3. a family with domination number 2

Clique on {xk+1, ...,x2k}

Clique on {x1, ...,xk}

xk+1 xk+2 xk+3 ...
x2k−1 x2k

x1 x2 x3

...
xk−1 xk
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Upper bound - a conjecture (2)

G graph of order n, no isolated vertices, no twins. Then γL(G)≤ n

2
.

Conjecture (Garijo, González & Márquez, 2014+)

Conjecture true if G has no 4-cycles, or if G is bipartite.

Theorem (Garijo, González & Márquez, 2014+)
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Conjecture true if G is line graph.

Theorem (F., Henning, Löwenstein, Sasse, 2014+)

Conjecture true if G is cubic graph.
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Upper bound - a conjecture (2)

G graph of order n, no isolated vertices, no twins. Then γL(G)≤ n

2
.

Conjecture (Garijo, González & Márquez, 2014+)

Conjecture true if G has no 4-cycles, or if G is bipartite.

Theorem (Garijo, González & Márquez, 2014+)

Conjecture true if G is line graph.

Theorem (F., Henning, Löwenstein, Sasse, 2014+)

Conjecture true if G is cubic graph.

Theorem (F., Henning, 2014+)

Remark: Nontrivial proofs using very di�erent techniques!
→ Conjecture seems di�cult.
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Lower bounds on the location-domination number
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Lower bounds

G graph of order n, γL(G) = k. Then n ≤ 2k +k−1, i.e. γL(G) = Ω(logn).

Theorem (Slater, 1980's)
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Lower bounds

G graph of order n, γL(G) = k. Then n ≤ 2k +k−1, i.e. γL(G) = Ω(logn).

Theorem (Slater, 1980's)

Tight example (k = 4):
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Lower bounds

G graph of order n, γL(G) = k. Then n ≤ 2k +k−1, i.e. γL(G) = Ω(logn).

Theorem (Slater, 1980's)

G tree of order n, γL(G) = k. Then n ≤ 3k−1, i.e. γL(G)≥ n+1

3
.

Theorem (Slater, 1980's)

G planar graph, order n, γL(G) = k. Then n ≤ 7k−10, i.e. γL(G)≥ n+10

7
.

Theorem (Rall & Slater, 1980's)
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Interval graphs

Intersection graph of intervals of the real line.

De�nition - Interval graph

I1 I4

I2 I5

I3
1

2

3

4 5
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Lower bound for interval graphs

G interval graph of order n, γL(G) = k.

Then n ≤ k(k+3)
2

, i.e. γL(G) = Ω(
√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
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Lower bound for interval graphs

G interval graph of order n, γL(G) = k.

Then n ≤ k(k+3)
2

, i.e. γL(G) = Ω(
√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

1 2

3

4

1−1 2−3

1−2 2−4

1−4

1−3 3−4

Locating-dominating D of size k.

De�ne zones using the right points of intervals in D.

Each vertex intersects a consecutive set of intervals of D when ordered by
left points.

→ n ≤ ∑
k

i=1
(k− i) +k = k(k+3)

2
.
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Lower bound for interval graphs

G interval graph of order n, γL(G) = k.

Then n ≤ k(k+3)
2

, i.e. γL(G) = Ω(
√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Tight:
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Permutation graphs

Given two parallel lines A and B:
intersection graph of segments joining A and B.

De�nition - Permutation graph
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Lower bound for permutation graphs

G permutation graph of order n, γL(G) = k.
Then n ≤ k2 +k−2, i.e. γL(G) = Ω(

√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Locating-sominating set D of size k: k +1 �top zones� and k +1 �bottom
zones�

Only one segment in V \D for one pair of zones

→ n ≤ (k +1)2 +k

Careful counting for the precise bound

Tight:
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Part II: metric dimension
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Determination of Position in 3D euclidean space

GPS: need to know the exact position of 4 satellites + distance to them

Does the �GPS� approach also work in undirected unweighted graphs?

Question
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Metric dimension

Now, w ∈ V (G) distinguishes {u,v} if dist(w ,u) 6= dist(w ,v)

R ⊆ V (G) resolving set of G :

∀u 6= v in V (G), there exists w ∈ R that distinguishes {u,v}.

De�nition - Resolving set (Slater, 1975 - Harary & Melter, 1976)
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Metric dimension

Now, w ∈ V (G) distinguishes {u,v} if dist(w ,u) 6= dist(w ,v)

R ⊆ V (G) resolving set of G :

∀u 6= v in V (G), there exists w ∈ R that distinguishes {u,v}.

De�nition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

w

MD(G): metric dimension of G , minimum size of a resolving set of G .

Florent Foucaud Identi�cation problems in graphs 19 / 23



Relation with locating-dominating sets

• Any locating-dominating set is a resolving set, hence MD(G)≤ γL(G).

• A locating-dominating set can be seen as a �distance-1-resolving set�.

Remark
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Bounds with diameter

Example of path: no bound n ≤ f (MD(G)) possible.

G of order n, diameter D, MD(G) = k. Then n ≤Dk +k.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)

(diameter: maximum distance between two vertices)

G permutation graph or interval graph of order n, MD(G) = k,
diameter D. Then n = O(Dk2) i.e. k = Ω

(√
n

D

)
.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

→ Proofs are similar as for locating-dominating sets.

→ Bounds are tight (up to constant factors).
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Perspectives

Future work:

Solve the conjecture: γL(G)≤ n

2
if G twin-free?

Investigate bounds for other �geometric� graphs, for MD and γL

THANKS FOR YOUR ATTENTION
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