Tight algorithmic double-exponential bounds for treewidth

metric-based and identification-based graph problems

Florent Foucaud joint works with:

Esther Galby, Liana Khazaliya, Shaohua Li, Fionn Mc Inerney, Roohani Sharma, Prafullkumar Tale (ICALP 2024)

Dipayan Chakraborty, Diptapriyo Majumdar, Prafullkumar Tale (ISAAC 2024)

LINVERSITÉ Clermont Auvergne

January 2025

Treewidth

A tree decomposition of a graph G = (V, E) is a tree T with nodes (bags) X_1, \ldots, X_n , where each X_i is a subset of V, satisfying

- $I X_1 \cup X_2 \cup \cdots \cup X_n = V;$
- Solution (2) S
- So for all $uv \in E$, there exists a bag containing both u and v.

Treewidth

A tree decomposition of a graph G = (V, E) is a tree T with nodes (bags) X_1, \ldots, X_n , where each X_i is a subset of V, satisfying

- $I X_1 \cup X_2 \cup \cdots \cup X_n = V;$
- Solution for all $v \in V$, the bags containing v form a **connected** subtree of T;
- **3** for all $uv \in E$, there exists a bag containing both u and v.

The width of a tree decomposition is the size of the largest bag minus one.

Treewidth

The treewidth tw(G) of G is the minimum width over all tree decompositions of G.

Fixed parameter tractable (FPT)

Given a problem Π with input \mathcal{I} and a parameter k, Π is FPT parameterized by k if it can be solved in time $f(k) \cdot |\mathcal{I}|^{O(1)}$, where f is a computable function.

Treewidth: the King of Structural Parameters

Fixed parameter tractable (FPT)

Given a problem Π with input \mathcal{I} and a parameter k, Π is FPT parameterized by k if it can be solved in time $f(k) \cdot |\mathcal{I}|^{O(1)}$, where f is a computable function.

Many NP-hard problems are FPT parameterized by treewidth via dynamic programming on the tree decomposition.

In particular, graph problems expressible in Monadic Second-Order (MSO) logic are FPT parameterized by the treewidth plus the length of the MSO formula [Courcelle, 1990].

For a given signature (e.g graphs) τ , MSO has:

- element-variables (x, y, z, ...) and set-variables (X, Y, Z, ...)
- relations = (equation), $x \in X$ (membership), relations from τ
- quantifiers \exists , \forall and operators \land , \lor , \neg

Treewidth: the King of Structural Parameters

Fixed parameter tractable (FPT)

Given a problem Π with input \mathcal{I} and a parameter k, Π is FPT parameterized by k if it can be solved in time $f(k) \cdot |\mathcal{I}|^{O(1)}$, where f is a computable function.

Many NP-hard problems are FPT parameterized by treewidth via dynamic programming on the tree decomposition.

In particular, graph problems expressible in Monadic Second-Order (MSO) logic are FPT parameterized by the treewidth plus the length of the MSO formula [Courcelle, 1990]. However, f(tw) may be a tower of exponentials!

For a given signature (e.g graphs) τ , MSO has:

- element-variables (x, y, z, ...) and set-variables (X, Y, Z, ...)
- relations = (equation), $x \in X$ (membership), relations from τ
- quantifiers \exists , \forall and operators \land , \lor , \neg

Treewidth: the King of Structural Parameters

Fixed parameter tractable (FPT)

Given a problem Π with input \mathcal{I} and a parameter k, Π is FPT parameterized by k if it can be solved in time $f(k) \cdot |\mathcal{I}|^{O(1)}$, where f is a computable function.

Many NP-hard problems are FPT parameterized by treewidth via dynamic programming on the tree decomposition.

In particular, graph problems expressible in Monadic Second-Order (MSO) logic are FPT parameterized by the treewidth plus the length of the MSO formula [Courcelle, 1990]. However, f(tw) may be a tower of exponentials!

For a given signature (e.g graphs) τ , MSO has:

- element-variables (x, y, z, ...) and set-variables (X, Y, Z, ...)
- relations = (equation), $x \in X$ (membership), relations from τ
- quantifiers \exists , \forall and operators \land , \lor , \neg

ETH-based conditional lower bounds on f(tw) for FPT algorithms

Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1990]

Roughly, *n*-variable 3-SAT cannot be solved in time $2^{o(n)}$.

Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1990]

Roughly, *n*-variable 3-SAT cannot be solved in time $2^{o(n)}$.

Conditional lower bounds for f(tw) are usually of the form $2^{o(tw)}$, or even $2^{o(tw \log tw)}$ or $2^{o(poly(tw))}$.

Rarer results: Unless the ETH fails,

• QSAT (PSPACE-complete) with k alternations admits a lower bound of a tower of exponents of height k in the tw of the primal graph [Fichte, Hecher, Pfandler, 2020];

• *k*-CHOOSABILITY (Π_2^p -complete) and *k*-CHOOSABILITY DELETION (Σ_3^p -complete) admit double- and triple-exponential lower bounds in tw, resp. [Marx, Mitsou, 2016];

• $\exists \forall$ -CSP (Σ_2^p -complete) admits a double-exponential lower bound in the vertex cover number [Lampis, Mitsou, 2017].

Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1990]

Roughly, *n*-variable 3-SAT cannot be solved in time $2^{o(n)}$.

Conditional lower bounds for f(tw) are usually of the form $2^{o(tw)}$, or even $2^{o(tw \log tw)}$ or $2^{o(poly(tw))}$.

Rarer results: Unless the ETH fails,

• QSAT (PSPACE-complete) with k alternations admits a lower bound of a tower of exponents of height k in the tw of the primal graph [Fichte, Hecher, Pfandler, 2020];

• *k*-CHOOSABILITY (Π_2^p -complete) and *k*-CHOOSABILITY DELETION (Σ_3^p -complete) admit double- and triple-exponential lower bounds in tw, resp. [Marx, Mitsou, 2016];

• $\exists \forall$ -CSP (Σ_2^p -complete) admits a double-exponential lower bound in the vertex cover number [Lampis, Mitsou, 2017].

Common theme: problems are hard for complexity classes higher than NP.

We prove the first (conditional) double-exponential lower bounds in the treewidth and vertex cover number for NP-complete problems.

We develop a **technique** and use it to prove such lower bounds for 3 NP-complete problems:

Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2024]

STRONG METRIC DIMENSION:

- can be solved in $2^{2^{O(vc)}} \cdot n^{O(1)}$ time
- no $2^{2^{o(vc)}} \cdot n^{O(1)}$ time algorithm assuming the ETH

Metric dimension of a graph G = (V, E) [Slater '75 + Harary, Melter '76]

 $S \subseteq V$ is a resolving set of G if $\forall u, v \in V$, $\exists z \in S$ with $d(z, u) \neq d(z, v)$. The minimum size of a resolving set of G is the metric dimension of G.

Metric dimension of a graph G = (V, E) [Slater '75 + Harary, Melter '76]

 $S \subseteq V$ is a resolving set of G if $\forall u, v \in V$, $\exists z \in S$ with $d(z, u) \neq d(z, v)$. The minimum size of a resolving set of G is the metric dimension of G.

Metric dimension of a graph G = (V, E) [Slater '75 + Harary, Melter '76]

 $S \subseteq V$ is a resolving set of G if $\forall u, v \in V$, $\exists z \in S$ with $d(z, u) \neq d(z, v)$. The minimum size of a resolving set of G is the metric dimension of G.

Vertices 4 and 6 are not resolved by 5 nor 8.

Metric dimension of a graph G = (V, E) [Slater '75 + Harary, Melter '76]

 $S \subseteq V$ is a resolving set of G if $\forall u, v \in V$, $\exists z \in S$ with $d(z, u) \neq d(z, v)$. The minimum size of a resolving set of G is the metric dimension of G.

Metric dimension of a graph G = (V, E) [Slater '75 + Harary, Melter '76]

 $S \subseteq V$ is a resolving set of G if $\forall u, v \in V$, $\exists z \in S$ with $d(z, u) \neq d(z, v)$. The minimum size of a resolving set of G is the metric dimension of G.

METRIC DIMENSION

Input: an undirected graph G = (V, E) and an integer $k \ge 1$ **Question:** Is $MD(G) \le k$?

Metric dimension of a graph G = (V, E) [Slater '75 + Harary, Melter '76]

 $S \subseteq V$ is a resolving set of G if $\forall u, v \in V$, $\exists z \in S$ with $d(z, u) \neq d(z, v)$. The minimum size of a resolving set of G is the metric dimension of G.

A lower parameter is connected to a higher one if it is upper bounded by a function of the higher one

From NP-hardness results on previous slide

W[2]-hard parameterised by solution size [Hartung, Nichterlein '13] FPT parameterised by Vertex Cover

[Epstein, Levin, Woeginger '12]

[Eppstein '15]

FPT parameterised by clique-width + diameter [Gima, Hanaka, Giyomi, Kobayashi, Otachi '21]

FPT parameterised by treelength + max degree [Belmonte, Fomin, Golovach, Ramanujan '17]

Q1: Complexity parameterised by treewidth? [Eppstein '15], [Belmonte et al '17], [Díaz, Potonen, Serna, van Leeuwen '17]
Q2: Complexity parameterised by Feedback Vertex Set? [Hartung, Nichterlein '13]

Q1: Complexity parameterised by treewidth? [Eppstein '15], [Belmonte et al '17], [Díaz, Potonen, Serna, van Leeuwen '17]
Q2: Complexity parameterised by Feedback Vertex Set? [Hartung, Nichterlein '13]

Q1 answered first by [Bonnet, Purohit '21].

Q1: Complexity parameterised by treewidth? [Eppstein '15], [Belmonte et al '17], [Díaz, Potonen, Serna, van Leeuwen '17] Q2: Complexity parameterised by Feedback Vertex Set? [Hartung, Nichterlein '13]

Q1 answered first by [Bonnet, Purohit '21]. Then, improved by [Li, Pilipczuk '22]

Q1: Complexity parameterised by treewidth? [Eppstein '15], [Belmonte et al '17], [Díaz, Potonen, Serna, van Leeuwen '17] Q2: Complexity parameterised by Feedback Vertex Set? [Hartung, Nichterlein '13]

 $\ensuremath{\textbf{Q2}}$ answered for the combined parameter Feedback Vertex Set + Pathwidth

[Galby, Khazaliya, Mc Inerney, Sharma, Tale '23]

6/19

Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2024]

Unless the ETH fails, METRIC DIMENSION does not admit algorithms running in time $2^{f(\text{diam})^{o(tw)}} \cdot n^{O(1)}$, for any computable function f.

Reduction.

3-PARTITIONED 3-SAT: $\varphi \rightarrow METRIC DIMENSION: (G, k)$ tw(G) = log(n)

diam(G) = const

3-PARTITIONED 3-SAT [LAMPIS, MELISSINOS, VASILAKIS, 2023] Input: 3-CNF formula φ with a partition of its variables into 3 disjoint sets X^{α} , X^{β} , and X^{γ} such that $|X^{\alpha}| = |X^{\beta}| = |X^{\gamma}| = n$ and each clause contains at most one variable from each of X^{α} , X^{β} , and X^{γ} Question: Is ϕ satisfiable?

Theorem [Lampis, Melissinos, Vasilakis, 2023]

3-PARTITIONED 3-SAT has no $2^{o(n)}$ time algorithm assuming the ETH

Encode SAT via small separators

Set-Representation Gadget

Set-Representation Gadget

$(x_1^{\alpha} \vee x_3^{\beta} \vee \overline{x_4}^{\gamma})$

 F_p : collection of subsets of $\{1, \ldots, 2p\}$ of size p.

No set in F_p is contained in another set in F_p (Sperner family).

There exists $p = O(\log n)$ s.t. $\binom{2p}{p} \geq 2n$. We define a 1-to-1 function

set-rep : $\{1, \ldots, 2n\} \rightarrow F_p$.

 $\bullet C_3$

 C_1

 t_2^{α} is the **only** vertex in A^{α} that does not share a common neighbour with c1

Set-Representation Gadget

$(x_1^{\alpha} \vee x_3^{\beta} \vee \overline{x_4}^{\gamma})$

 F_p : collection of subsets of $\{1, \ldots, 2p\}$ of size p.

No set in F_p is contained in another set in F_p (Sperner family).

• C_2^* There exists $p = O(\log n)$ s.t. $\binom{2p}{p} \geq 2n$. We define a 1-to-1 function

set-rep : $\{1, \ldots, 2n\} \rightarrow F_p$.

● C₃

• c_3^* t_2^{α} is the **only** vertex in A^{α} that does not share a common neighbour with c1

Observation. For any twins $u, v \in V(G)$ and any resolving set S of G, $S \cap \{u, v\} \neq \emptyset$.

Purple edges represent all possible edges

• For any resolving set S, $|S \cap \text{bits}(X)| \ge \log(|X|) + 1$

- |S ∩ bits(X)| distinguishes each vertex in X ∪ bit-rep(X) from every other vertex in G
- nullifier(X) guarantees that the rest part of V(G) is not affected by the gadget

Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2024]

METRIC DIMENSION has no $2^{f(\text{diam})^{o(tw)}} \cdot n^{O(1)}$ time algorithm assuming the ETH

GEODETIC SET **Input:** An undirected simple graph *G* **Question:** Does there exist $S \subseteq V(G)$ such that $|S| \leq k$ and, for any vertex $u \in V(G)$, there are two vertices $s_1, s_2 \in S$ such that a shortest path from s_1 to s_2 contains u?

Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2024]

GEODETIC SET has no $2^{f(\text{diam})^{o(tw)}} \cdot n^{O(1)}$ time algorithm assuming the ETH

Geodetic Set and Strong MDim

GEODETIC SET **Input:** An undirected simple graph G **Question:** Does there exist $S \subseteq V(G)$ such that $|S| \leq k$ and, for any vertex $u \in V(G)$, there are two vertices $s_1, s_2 \in S$ such that a shortest path from s_1 to s_2 contains u?

STRONG METRIC DIMENSION **Input:** An undirected simple graph *G* **Question:** Does there exist $S \subseteq V(G)$ such that $|S| \leq k$ and, for any pair of vertices $u, v \in V(G)$, there exists a vertex $w \in S$ such that either *u* lies on some shortest path between *v* and *w*, or *v* lies on some shortest path between *u* and *w*?

Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2024]

STRONG METRIC DIMENSION has no $2^{2^{o(vc)}} \cdot n^{O(1)}$ time algorithm, assuming the ETH

METRIC DIMENSION and GEODETIC SET:

- can be solved in $2^{\operatorname{diam}^{O(\operatorname{tw})}} \cdot n^{O(1)}$ time
- no $2^{f(\text{diam})^{o(tw)}} \cdot n^{O(1)}$ time algorithm assuming the ETH

Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2024]

STRONG METRIC DIMENSION:

- can be solved in $2^{2^{O(vc)}} \cdot n^{O(1)}$ time
- no $2^{2^{o(vc)}} \cdot n^{O(1)}$ time algorithm assuming the ETH

Theorem [Chalopin, Chepoi, Mc Inerney, Ratel, COLT 2024]

POSITIVE NON-CLASHING TEACHING DIMENSION for Balls in Graphs • no $2^{2^{o(vc)}} \cdot n^{O(1)}$ time algorithm assuming the ETH

Theorem [Chakraborty, F., Majumdar, Tale, ISAAC 2024]

LOCATING-DOMINATING SET and TEST COVER have

• no $2^{2^{o(tw)}} \cdot n^{O(1)}$ time algorithm assuming the ETH

Open questions for Metric Dimension

- Poly-time for unit interval graphs / bipartite permutation graphs?
- XP or para-NP-hard parameterised by Feedback Vertex Set?
- W[1]-hard or FPT parameterised by Feedback Edge Set?
- W[1]-hard or FPT for Distance to Disjoint Paths?
- W[1]-hard or FPT for Feedback Vertex Set + solution size?

Open questions for Geodetic Set

- XP or para-NP-hard parameterised by Treewidth / Pathwidth / FVS / Bandwidth?
- W[1]-hard or FPT parameterised by Bandwidth?
- W[1]-hard or FPT for Distance to Disjoint Paths?