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Treewidth

A tree decomposition of a graph G = (V ,E) is a
tree T with nodes (bags) X1, . . . ,Xn, where each Xi

is a subset of V , satisfying

1 X1 ∪ X2 ∪ · · · ∪ Xn = V ;

2 for all v ∈ V , the bags containing v form a
connected subtree of T ;

3 for all uv ∈ E , there exists a bag containing
both u and v .

The width of a tree decomposition is the size of the
largest bag minus one.

Treewidth

The treewidth tw(G) of G is the minimum width
over all tree decompositions of G .
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Treewidth: the King of Structural Parameters

Fixed parameter tractable (FPT)

Given a problem Π with input I and a parameter k, Π is FPT parameterized by k if it can
be solved in time f (k) · |I|O(1), where f is a computable function.

Many NP-hard problems are FPT parameterized by treewidth via dynamic programming on
the tree decomposition.

In particular, graph problems expressible in Monadic Second-Order (MSO) logic are FPT
parameterized by the treewidth plus the length of the MSO formula [Courcelle, 1990].

However, f (tw) may be a tower of exponentials!

For a given signature (e.g graphs) τ , MSO has:

element-variables (x , y , z, . . . ) and
set-variables (X ,Y ,Z , . . . )

relations = (equation), x ∈ X (membership),
relations from τ

quantifiers ∃, ∀ and operators ∧, ∨, ¬ treewidth

pathwidth

clique-width

feedback vertex set

treedepth

vertex cover

distance to disjoint paths
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ETH-based conditional lower bounds on f (tw) for FPT algorithms

Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1990]

Roughly, n-variable 3-SAT cannot be solved in time 2o(n).

Conditional lower bounds for f (tw) are usually of the form 2o(tw), or even 2o(tw log tw) or
2o(poly(tw)).

Rarer results: Unless the ETH fails,

• QSAT (PSPACE-complete) with k alternations admits a lower bound of a tower of
exponents of height k in the tw of the primal graph [Fichte, Hecher, Pfandler, 2020];

• k-Choosability (Πp
2-complete) and k-Choosability Deletion (Σp

3-complete)
admit double- and triple-exponential lower bounds in tw, resp. [Marx, Mitsou, 2016];

• ∃∀-CSP (Σp
2-complete) admits a double-exponential lower bound in the vertex cover

number [Lampis, Mitsou, 2017].

P

ΣP
1 = NP ΠP

1 = coNP

∆P
2 = PNP

ΣP
2 = NPNP ΠP

2 = coNPNP

PSPACE
.
.
.

Common theme: problems are hard for complexity classes higher than NP.
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Our results (ICALP 2024)

We prove the first (conditional) double-exponential lower bounds in the treewidth and
vertex cover number for NP-complete problems.

We develop a technique and use it to prove such lower bounds for 3 NP-complete
problems:

Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2024]

Metric Dimension and Geodetic Set:

can be solved in 2diam
O(tw) · nO(1) time

no 2f (diam)
o(tw) · nO(1) time algorithm assuming the ETH

Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2024]

Strong Metric Dimension:

can be solved in 22
O(vc) · nO(1) time

no 22
o(vc) · nO(1) time algorithm assuming the ETH

Florent Foucaud Tight double-exponential bounds for treewidth

January 2025 4
/
19



5/19

Metric dimension

Metric dimension of a graph G = (V ,E) [Slater ’75 + Harary, Melter ’76]

S ⊆ V is a resolving set of G if ∀u, v ∈ V , ∃z ∈ S with d(z, u) ̸= d(z, v). The
minimum size of a resolving set of G is the metric dimension of G .

1

2

3

4

4

5

5

6

6

7

8

8

9

10

11

12

(5, 2)

(5, 1)

(4, 3)

(4, 2)

(3, 2) (2, 2)

(3, 1)

(4, 0)

(4, 1)

(1, 3)

(2, 4)

(0, 4)

Vertices 4 and 6 are not resolved by 5 nor 8.

Metric Dimension

Input: an undirected graph G = (V ,E) and an integer k ≥ 1
Question: Is MD(G) ≤ k?
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Parameterized complexity of Metric Dimension

Vertex Cover
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Metric
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Cograph
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Cograph
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Vertex Set
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Vertex Set

Pathwidth

PathwidthPathwidth

Maximum
Degree

Maximum
Degree
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Degree

Distance to
Perfect

Distance to
Perfect
Distance to
Perfect

Treewidth

TreewidthTreewidthTreewidth

FPT (f (k) · nO(1)-time algorithm)

XP (nf (k)-time algorithm)

W[1]-hard (not FPT unless FPT=W[1])

para-NP-hard (not XP unless P=NP)

n: size of input

k: size of parameter

A lower parameter is connected to a higher one if it is upper bounded by a function of the higher one

From NP-hardness results on previous slideW[2]-hard parameterised by solution size [Hartung, Nichterlein ’13]

FPT parameterised by Vertex Cover

[Eppstein ’15][Epstein, Levin, Woeginger ’12]FPT parameterised by clique-width + diameter [Gima, Hanaka, Giyomi, Kobayashi, Otachi ’21]FPT parameterised by treelength + max degree [Belmonte, Fomin, Golovach, Ramanujan ’17]

Q2: Complexity parameterised by Feedback Vertex Set? [Hartung, Nichterlein ’13]

Q1: Complexity parameterised by treewidth? [Eppstein ’15], [Belmonte et al ’17], [D́ıaz, Potonen, Serna, van Leeuwen ’17]

Q1 answered first by [Bonnet, Purohit ’21].Q1 answered first by [Bonnet, Purohit ’21]. Then, improved by [Li, Pilipczuk ’22]Q2 answered for the combined parameter Feedback Vertex Set + Pathwidth

[Galby, Khazaliya, Mc Inerney, Sharma, Tale ’23]
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Hardness for Metric Dimension

Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2024]

Unless the ETH fails, Metric Dimension does not admit algorithms

running in time 2f (diam)
o(tw) · nO(1), for any computable function f .

Reduction.
3-Partitioned 3-SAT: φ → Metric Dimension: (G , k)

tw(G) = log(n)

diam(G) = const

Florent Foucaud Tight double-exponential bounds for treewidth
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3-Partitioned 3-SAT

3-Partitioned 3-SAT [Lampis, Melissinos, Vasilakis, 2023]

Input: 3-CNF formula φ with a partition of its variables into 3 disjoint
sets Xα, Xβ , and X γ such that |Xα| = |Xβ | = |X γ | = n and each
clause contains at most one variable from each of Xα, Xβ , and X γ

Question: Is ϕ satisfiable?

Theorem [Lampis, Melissinos, Vasilakis, 2023]

3-Partitioned 3-SAT has no 2o(n) time algorithm assuming the ETH

Florent Foucaud Tight double-exponential bounds for treewidth

January 2025 8
/
19



9/19

Encode SAT via small separators

(xα1 ∨ xβ3 ∨ x4
γ) ∧ (x1

α ∨ x4
γ) ∧ (x3

β ∨ x4
γ)

tα2i represents x
α
i

f α2i−1 represents xα
i

Aα

Aγ

Aβ 

c1

c2

c3

t2
α

f1
α

t6
β

f5
β

t8
γ

f7
γ

(xα1 ∨ xβ3 ∨ x4
γ)

(x1
α ∨ x4γ)

(x3
β ∨ x4

γ)

Florent Foucaud Tight double-exponential bounds for treewidth
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Set-Representation Gadget

(xα1 ∨ xβ3 ∨ x4
γ) ∧ (x1

α ∨ x4
γ) ∧ (x3
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γ)
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α
i
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i
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Aγ

Aβ 

c1

c2

c3

t2
α

f1
α

t6
β

f5
β

t8
γ

f7
γ

Vα

Vβ
O(log n)

Vγ

set-rep

set-rep

set-rep

O(log n)

O(log n)

(xα1 ∨ xβ3 ∨ x4
γ)

(x1
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Set-Representation Gadget

Aα

Aγ

Aβ 

c1

c2

c3

t2
α

f1
α

t6
β

f5
β

t8
γ

f7
γ

Vα

Vβ
O(log n)

Vγ

set-rep

set-rep

set-rep

O(log n)

O(log n)

(xα1 ∨ xβ3 ∨ x4
γ)

Fp : collection of subsets of
{1, . . . , 2p} of size p.

No set in Fp is contained in another set
in Fp (Sperner family).

There exists p = O(log n) s.t.(2p
p

)
≥ 2n. We define a 1-to-1 function

set-rep : {1, . . . , 2n} → Fp .

tα2 is the only vertex in Aα that

does not share a common

neighbour with c1

Florent Foucaud Tight double-exponential bounds for treewidth
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Bit-representation Gadget

Observation. For any twins u, v ∈ V (G) and any resolving set S of G , S ∩ {u, v} ̸= ∅.

bit-rep(X)

bits(X)

nullifier(X)

X

xi

y*

according to bin(i)

H

G'

N(X)

For any resolving set S ,
|S ∩ bits(X )| ≥ log(|X |) + 1

|S ∩ bits(X )| distinguishes
each vertex in X ∪bit-rep(X )
from every other vertex in G

nullifier(X ) guarantees that
the rest part of V (G) is not
affected by the gadget

Purple edges represent all possible edges

Florent Foucaud Tight double-exponential bounds for treewidth

January 2025 12
/
19



13/19

Lower bound for Metric Dimension parameterized by tw

Vα

t2i
α

f2i-1
α

Aα

xi
α,°

xi
α,*

Xα
C

cq

cq*

nullifier(Xα) nullifier(Aα) nullifier(Vα) nullifier(С)

bit-rep(С)bit-rep(Vα)bit-rep(Aα)bit-rep(Xα)

Purple — all possible edges
Blue — set-rep
Red — complementary to blue

ai

aj

cq

cq*

O(log n)

Note: tw(G) = log(n)
diam(G) = const

Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2024]

Metric Dimension has no 2f (diam)
o(tw) · nO(1) time algorithm assuming

the ETH

Florent Foucaud Tight double-exponential bounds for treewidth
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Geodetic Set and Strong MDim

Geodetic Set
Input: An undirected simple graph G
Question: Does there exist S ⊆ V (G) such that |S | ≤ k and, for any vertex
u ∈ V (G), there are two vertices s1, s2 ∈ S such that a shortest path from s1 to s2
contains u?

Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2024]

Geodetic Set has no 2f (diam)
o(tw) · nO(1) time algorithm assuming the ETH

Florent Foucaud Tight double-exponential bounds for treewidth
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Geodetic Set
Input: An undirected simple graph G
Question: Does there exist S ⊆ V (G) such that |S| ≤ k and, for any vertex u ∈ V (G), there
are two vertices s1, s2 ∈ S such that a shortest path from s1 to s2 contains u?

Vα

g3

Florent Foucaud Tight double-exponential bounds for treewidth
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Strong Metric Dimension

Strong Metric Dimension
Input: An undirected simple graph G
Question: Does there exist S ⊆ V (G) such that |S| ≤ k and, for any pair of vertices
u, v ∈ V (G), there exists a vertex w ∈ S such that either u lies on some shortest
path between v and w , or v lies on some shortest path between u and w?

Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2024]

Strong Metric Dimension has no 22
o(vc) · nO(1) time algorithm, assuming the ETH

Florent Foucaud Tight double-exponential bounds for treewidth
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Match with the Algorithms

Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2024]

Metric Dimension and Geodetic Set:

can be solved in 2diam
O(tw) · nO(1) time

no 2f (diam)
o(tw) · nO(1) time algorithm assuming the ETH

Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2024]

Strong Metric Dimension:

can be solved in 22
O(vc) · nO(1) time

no 22
o(vc) · nO(1) time algorithm assuming the ETH

Florent Foucaud Tight double-exponential bounds for treewidth
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Other applications of the technique

Theorem [Chalopin, Chepoi, Mc Inerney, Ratel, COLT 2024]

Positive Non-Clashing Teaching Dimension for Balls in Graphs

no 22
o(vc) · nO(1) time algorithm assuming the ETH

Theorem [Chakraborty, F., Majumdar, Tale, ISAAC 2024]

Locating-Dominating Set and Test Cover have

no 22
o(tw) · nO(1) time algorithm assuming the ETH

Florent Foucaud Tight double-exponential bounds for treewidth
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Open questions for Metric Dimension

Vertex Cover
Max Leaf
Number

Feedback
Edge Set

Distance
to Clique

Minimum
Clique Cover

Distance to
Co-Cluster

Distance
to Cluster

Distance to Dis-
joint Paths

Treedepth Bandwidth
Metric
Dimension

Maximum
Independent
Set

Distance to
Cograph

Distance to
Interval

Feedback
Vertex Set

Pathwidth
Maximum
Degree

Distance to
Perfect

Treewidth

FPT (f (k) · nO(1)-time algorithm)

XP (nf (k)-time algorithm)

W[1]-hard (not FPT unless FPT=W[1])

para-NP-hard (not XP unless P=NP)

n: size of input

k: size of parameter

Poly-time for unit interval graphs / bipartite permutation graphs?

XP or para-NP-hard parameterised by Feedback Vertex Set?

W[1]-hard or FPT parameterised by Feedback Edge Set?

W[1]-hard or FPT for Distance to Disjoint Paths?

W[1]-hard or FPT for Feedback Vertex Set + solution size?

Florent Foucaud Tight double-exponential bounds for treewidth
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Open questions for Geodetic Set

Vertex Cover
Max Leaf
Number

Feedback
Edge Set

Distance
to Clique

Minimum
Clique Cover

Distance to
Co-Cluster

Distance
to Cluster

Distance to Dis-
joint Paths

Treedepth Bandwidth
Geodetic
Set

Maximum
Independent
Set

Distance to
Cograph

Distance to
Interval

Feedback
Vertex Set

Pathwidth
Maximum
Degree

Distance to
Perfect

Treewidth

FPT (f (k) · nO(1)-time algorithm)

XP (nf (k)-time algorithm)

W[1]-hard (not FPT unless FPT=W[1])

para-NP-hard (not XP unless P=NP)

n: size of input

k: size of parameter

XP or para-NP-hard parameterised by Treewidth / Pathwidth / FVS / Bandwidth?

W[1]-hard or FPT parameterised by Bandwidth?

W[1]-hard or FPT for Distance to Disjoint Paths?

Florent Foucaud Tight double-exponential bounds for treewidth
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