Tight algorithmic double-exponential bounds for treewidth

metric-based and identification-based graph problems

Florent Foucaud joint works with:

Esther Galby, Liana Khazaliya, Shaohua Li, Fionn Mc Inerney, Roohani Sharma, Prafullkumar Tale (ICALP 2024)

Dipayan Chakraborty, Diptapriyo Majumdar, Prafullkumar Tale (ISAAC 2024)

LIMOS CON UNIVERSITÉ

January 2025

Treewidth

A tree decomposition of a graph $G = (V, E)$ is a tree T with nodes (bags) X_1, \ldots, X_n , where each X_i is a subset of V , satisfying

- 1 $X_1 \cup X_2 \cup \cdots \cup X_n = V$:
- 2 for all $v \in V$, the bags containing v form a connected subtree of T;
- **3** for all $uv \in E$, there exists a bag containing both u and v .

Treewidth

A tree decomposition of a graph $G = (V, E)$ is a tree T with nodes (bags) X_1, \ldots, X_n , where each X_i is a subset of V , satisfying

- 1 $X_1 \cup X_2 \cup \cdots \cup X_n = V$:
- 2 for all $v \in V$, the bags containing v form a connected subtree of T;
- 3 for all $uv \in E$, there exists a bag containing both u and v.

The width of a tree decomposition is the size of the largest bag minus one.

Treewidth

The treewidth $tw(G)$ of G is the minimum width over all tree decompositions of G.

Fixed parameter tractable (FPT)

Given a problem Π with input $\mathcal I$ and a parameter k, Π is FPT parameterized by k if it can be solved in time $f(k) \cdot |\mathcal{I}|^{O(1)}$, where f is a computable function.

Fixed parameter tractable (FPT)

Given a problem Π with input $\mathcal I$ and a parameter k, Π is FPT parameterized by k if it can be solved in time $f(k) \cdot |\mathcal{I}|^{O(1)}$, where f is a computable function.

Many NP-hard problems are FPT parameterized by treewidth via dynamic programming on the tree decomposition.

In particular, graph problems expressible in Monadic Second-Order (MSO) logic are FPT parameterized by the treewidth plus the length of the MSO formula [Courcelle, 1990].

For a given signature (e.g graphs) τ , MSO has:

- \bullet element-variables (x, y, z, \dots) and set-variables (X, Y, Z, \dots)
- relations = (equation), $x \in X$ (membership), relations from τ
- quantifiers ∃, ∀ and operators ∧, ∨, ¬

Fixed parameter tractable (FPT)

Given a problem Π with input $\mathcal I$ and a parameter k, Π is FPT parameterized by k if it can be solved in time $f(k) \cdot |\mathcal{I}|^{O(1)}$, where f is a computable function.

Many NP-hard problems are FPT parameterized by treewidth via dynamic programming on the tree decomposition.

In particular, graph problems expressible in Monadic Second-Order (MSO) logic are FPT parameterized by the treewidth plus the length of the MSO formula [Courcelle, 1990]. However, $f(tw)$ may be a tower of exponentials!

For a given signature (e.g graphs) τ , MSO has:

- \bullet element-variables (x, y, z, \dots) and set-variables (X, Y, Z, \dots)
- relations = (equation), $x \in X$ (membership), relations from τ
- quantifiers ∃, ∀ and operators ∧, ∨, ¬

Treewidth: the King of Structural Parameters

Fixed parameter tractable (FPT)

Given a problem Π with input $\mathcal I$ and a parameter k, Π is FPT parameterized by k if it can be solved in time $f(k) \cdot |I|^{O(1)}$, where f is a computable function.

Many NP-hard problems are FPT parameterized by treewidth via dynamic programming on the tree decomposition.

In particular, graph problems expressible in Monadic Second-Order (MSO) logic are FPT parameterized by the treewidth plus the length of the MSO formula [Courcelle, 1990]. However, $f(tw)$ may be a tower of exponentials!

For a given signature (e.g graphs) τ , MSO has:

- \bullet element-variables (x, y, z, \dots) and set-variables (X, Y, Z, \dots)
- relations = (equation), $x \in X$ (membership), relations from τ
- quantifiers ∃, ∀ and operators ∧, ∨, ¬

ETH-based conditional lower bounds on $f(tw)$ for FPT algorithms

Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1990]

Roughly, *n*-variable 3-SAT cannot be solved in time $2^{o(n)}$.

Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1990]

Roughly, *n*-variable 3-SAT cannot be solved in time $2^{o(n)}$.

Conditional lower bounds for $f(tw)$ are usually of the form $2^{o(tw)}$, or even $2^{o(tw \log tw)}$ or $2^{o(poly(tw))}$.

Rarer results: Unless the ETH fails,

• QSAT (PSPACE-complete) with k alternations admits a lower bound of a tower of exponents of height k in the tw of the primal graph [Fichte, Hecher, Pfandler, 2020];

• k-CHOOSABILITY (Π_2^p -complete) and k-CHOOSABILITY DELETION (Σ_3^p -complete) admit double- and triple-exponential lower bounds in tw, resp. [Marx, Mitsou, 2016];

 \bullet ∃∀-CSP (Σ^p_2 -complete) admits a double-exponential lower bound in the vertex cover number [Lampis, Mitsou, 2017].

PSPACE

Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1990]

Roughly, *n*-variable 3-SAT cannot be solved in time $2^{o(n)}$.

Conditional lower bounds for $f(tw)$ are usually of the form $2^{o(tw)}$, or even $2^{o(tw \log tw)}$ or $2^{o(poly(tw))}$.

Rarer results: Unless the ETH fails,

• QSAT (PSPACE-complete) with k alternations admits a lower bound of a tower of exponents of height k in the tw of the primal graph [Fichte, Hecher, Pfandler, 2020];

• k-CHOOSABILITY (Π_2^p -complete) and k-CHOOSABILITY DELETION (Σ_3^p -complete) admit double- and triple-exponential lower bounds in tw, resp. [Marx, Mitsou, 2016];

 \bullet ∃∀-CSP (Σ^p_2 -complete) admits a double-exponential lower bound in the vertex cover number [Lampis, Mitsou, 2017].

PSPACE

Common theme: problems are hard for complexity classes higher than NP.

We prove the first (conditional) double-exponential lower bounds in the treewidth and vertex cover number for NP-complete problems.

We develop a technique and use it to prove such lower bounds for 3 NP-complete problems:

Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2024]

STRONG METRIC DIMENSION:

- can be solved in $2^{2^{O(vc)}} \cdot n^{O(1)}$ time
- no $2^{2^{o(vc)}} \cdot n^{O(1)}$ time algorithm assuming the ETH

Metric dimension of a graph $G = (V, E)$ [Slater '75 + Harary, Melter '76]

 $S \subseteq V$ is a resolving set of G if $\forall u, v \in V$, $\exists z \in S$ with $d(z, u) \neq d(z, v)$. The minimum size of a resolving set of G is the metric dimension of G.

Metric dimension of a graph $G = (V, E)$ [Slater '75 + Harary, Melter '76]

 $S \subseteq V$ is a resolving set of G if $\forall u, v \in V$, $\exists z \in S$ with $d(z, u) \neq d(z, v)$. The minimum size of a resolving set of G is the metric dimension of G.

Metric dimension of a graph $G = (V, E)$ [Slater '75 + Harary, Melter '76]

 $S \subseteq V$ is a resolving set of G if $\forall u, v \in V$, $\exists z \in S$ with $d(z, u) \neq d(z, v)$. The minimum size of a resolving set of G is the metric dimension of G.

Vertices 4 and 6 are not resolved by 5 nor 8.

Metric dimension of a graph $G = (V, E)$ [Slater '75 + Harary, Melter '76]

 $S \subseteq V$ is a resolving set of G if $\forall u, v \in V$, $\exists z \in S$ with $d(z, u) \neq d(z, v)$. The minimum size of a resolving set of G is the metric dimension of G.

Metric dimension of a graph $G = (V, E)$ [Slater '75 + Harary, Melter '76]

 $S \subset V$ is a resolving set of G if $\forall u, v \in V$, $\exists z \in S$ with $d(z, u) \neq d(z, v)$. The minimum size of a resolving set of G is the metric dimension of G.

Metric Dimension

Input: an undirected graph $G = (V, E)$ and an integer $k \ge 1$ Question: Is $MD(G) \leq k$?

Metric dimension of a graph $G = (V, E)$ [Slater '75 + Harary, Melter '76]

 $S \subseteq V$ is a resolving set of G if $\forall u, v \in V$, $\exists z \in S$ with $d(z, u) \neq d(z, v)$. The minimum size of a resolving set of G is the metric dimension of G.

A lower parameter is connected to a higher one if it is upper bounded by a function of the higher one

From NP-hardness results on previous slide

W[2]-hard parameterised by solution size [Hartung, Nichterlein '13] FPT parameterised by Vertex Cover

[Epstein, Levin, Woeginger '12]

[Eppstein '15]

FPT parameterised by clique-width + diameter [Gima, Hanaka, Giyomi, Kobayashi, Otachi '21]

FPT parameterised by treelength + max degree [Belmonte, Fomin, Golovach, Ramanujan '17]

Q2: Complexity parameterised by Feedback Vertex Set? [Hartung, Nichterlein '13] Q1: Complexity parameterised by treewidth? [Eppstein '15], [Belmonte et al '17], [Díaz, Potonen, Serna, van Leeuwen '17]

Q2: Complexity parameterised by Feedback Vertex Set? [Hartung, Nichterlein '13] Q1: Complexity parameterised by treewidth? [Eppstein '15], [Belmonte et al '17], [Díaz, Potonen, Serna, van Leeuwen '17]

Q1 answered first by [Bonnet, Purohit '21].

Q2: Complexity parameterised by Feedback Vertex Set? [Hartung, Nichterlein '13] Q1: Complexity parameterised by treewidth? [Eppstein '15], [Belmonte et al '17], [Díaz, Potonen, Serna, van Leeuwen '17]

Q1 answered first by [Bonnet, Purohit '21]. Then, improved by [Li, Pilipczuk '22]

Q2: Complexity parameterised by Feedback Vertex Set? [Hartung, Nichterlein '13] Q1: Complexity parameterised by treewidth? [Eppstein '15], [Belmonte et al '17], [Díaz, Potonen, Serna, van Leeuwen '17]

 $Q2$ answered for the combined parameter Feedback Vertex Set + Pathwidth

[Galby, Khazaliya, Mc Inerney, Sharma, Tale '23]

6/19

Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2024]

Unless the ETH fails, METRIC DIMENSION does not admit algorithms running in time $2^{f(\text{diam})^{o(\text{tw})}} \cdot n^{O(1)}$, for any computable function f .

Reduction.

3-PARTITIONED 3-SAT: $\varphi \rightarrow$ METRIC DIMENSION: (G, k) $tw(G) = log(n)$

 $diam(G) = const$

3-Partitioned 3-SAT [Lampis, Melissinos, Vasilakis, 2023] **Input:** 3-CNF formula φ with a partition of its variables into 3 disjoint sets X^α , X^β , and X^γ such that $|X^\alpha|=|X^\beta|=|X^\gamma|=n$ and each clause contains at most one variable from each of X^α , X^β , and X^γ **Question:** Is ϕ satisfiable?

Theorem [Lampis, Melissinos, Vasilakis, 2023]

3- $\mathrm{PARTITIONED\ 3-SAT\ has\ no\ 2}^{o(n)}$ time algorithm assuming the ETH

Encode SAT via small separators

Set-Representation Gadget

Set-Representation Gadget

$\left(x_1^{\alpha} \vee x_3^{\beta} \vee \overline{x_4}^{\gamma}\right)$

 F_p : collection of subsets of $\{1, \ldots, 2p\}$ of size p.

No set in F_p is contained in another set in F_p (Sperner family).

There exists $p = O(\log n)$ s.t. $\binom{2p}{p} \geq 2n$. We define a 1-to-1 function

set-rep : $\{1, \ldots, 2n\} \rightarrow F_p$.

 c_3

*c*1

 t_2^{α} is the only vertex in A^{α} that does not share a common neighbour with c_1

Set-Representation Gadget

$(x_1^{\alpha} \vee x_3^{\beta} \vee \overline{x_4}^{\gamma})$

 F_p : collection of subsets of $\{1, \ldots, 2p\}$ of size p.

No set in F_p is contained in another set in F_p (Sperner family).

 ${c_2}^*$ There exists $p = O(\log n)$ s.t. $\binom{2p}{p} \ge 2n$. We define a 1-to-1 function

set-rep : $\{1, \ldots, 2n\} \rightarrow F_p$.

 c_3 ^{*} t_2^{α} is the only vertex in A^{α} that does not share a common neighbour with c_1

Observation. For any twins $u, v \in V(G)$ and any resolving set S of G, $S \cap \{u, v\} \neq \emptyset$.

Purple edges represent all possible edges

 \bullet For any resolving set S, $|S \cap \text{bits}(X)| \geq \log(|X|) + 1$

- \bullet |S ∩ bits(X)| distinguishes each vertex in $X \cup \text{bit-rep}(X)$ from every other vertex in G
- \bullet nullifier(X) guarantees that the rest part of $V(G)$ is not affected by the gadget

Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2024]

 METRIC $\operatorname{DIMENSION}$ has no $2^{f(\operatorname{diam})^{o(\text{tw})}} \cdot n^{O(1)}$ time algorithm assuming the ETH

GEODETIC SET Input: An undirected simple graph G Question: Does there exist $S \subseteq V(G)$ such that $|S| \leq k$ and, for any vertex $u \in V(G)$, there are two vertices $s_1, s_2 \in S$ such that a shortest path from s_1 to s_2 contains u?

Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2024]

GEODETIC SET has no $2^{f(\text{diam})^{o(\text{tw})}} \cdot n^{O(1)}$ time algorithm assuming the ETH

Geodetic Set and Strong MDim

GEODETIC SET Input: An undirected simple graph G Question: Does there exist $S \subseteq V(G)$ such that $|S| \leq k$ and, for any vertex $u \in V(G)$, there are two vertices $s_1, s_2 \in S$ such that a shortest path from s_1 to s_2 contains u?

Strong Metric Dimension Input: An undirected simple graph G Question: Does there exist $S \subseteq V(G)$ such that $|S| \leq k$ and, for any pair of vertices $u, v \in V(G)$, there exists a vertex $w \in S$ such that either u lies on some shortest path between v and w , or v lies on some shortest path between u and w ?

Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2024]

STRONG METRIC DIMENSION has no $2^{2^{o(vc)}} \cdot n^{O(1)}$ time algorithm, assuming the <code>ETH</code>

Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, 2024]

STRONG METRIC DIMENSION:

- can be solved in $2^{2^{O(vc)}} \cdot n^{O(1)}$ time
- no $2^{2^{o(vc)}} \cdot n^{O(1)}$ time algorithm assuming the ETH

Theorem [Chalopin, Chepoi, Mc Inerney, Ratel, COLT 2024]

POSITIVE NON-CLASHING TEACHING DIMENSION for Balls in Graphs no $2^{2^{o(vc)}} \cdot n^{O(1)}$ time algorithm assuming the ETH

Theorem [Chakraborty, F., Majumdar, Tale, ISAAC 2024]

LOCATING-DOMINATING SET and TEST COVER have

no $2^{2^{o({\sf{tw}})}}\cdot n^{O(1)}$ time algorithm assuming the ETH

Open questions for Metric Dimension

- Poly-time for unit interval graphs / bipartite permutation graphs?
- XP or para-NP-hard parameterised by Feedback Vertex Set?
- \bullet W[1]-hard or FPT parameterised by Feedback Edge Set?
- W[1]-hard or FPT for Distance to Disjoint Paths?
- \bullet W[1]-hard or FPT for Feedback Vertex Set + solution size?

Open questions for Geodetic Set

- XP or para-NP-hard parameterised by Treewidth / Pathwidth / FVS / Bandwidth?
- W[1]-hard or FPT parameterised by Bandwidth?
- W[1]-hard or FPT for Distance to Disjoint Paths?