The complexity of homomorphisms of signed graphs

Florent Foucaud (U. of Johannesburg + U. Paris-Dauphine)

joint work (in progress) with:

Richard Brewster (Thompson Rivers U., Kamloops) Pavol Hell (Simon Fraser U., Vancouver) Reza Naserasr (U. Paris-Sud, Orsay)

June 15th 2014

Graph homomorphisms

Definition - Graph homomorphism of G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \rightarrow H$.

Target graph: $H = C_5$

Graph homomorphisms

Definition - Graph homomorphism of G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \rightarrow H$.

Target graph:
$$H = C_5$$

Homomorphisms generalize proper vertex-colourings:

 $G \to K_k \iff G$ is *k*-colourable

Signature Σ **of graph G:** assignment of + or - sign to each edge of *G*.

 $\Sigma: \ \text{set of} \ - \ \text{edges}.$

Signature Σ of graph G: assignment of + or - sign to each edge of G. Σ : set of - edges. $\Sigma = \{12, 34\}$

2-edge-coloured graph (G, Σ): Graph G with signature Σ .

Signature Σ of graph G: assignment of + or - sign to each edge of G. Σ : set of - edges. $\Sigma = \{12, 34\}$

2-edge-coloured graph (G, Σ): Graph G with signature Σ .

Re-signing operation at v: switch sign of each edge incident to v

Signature Σ of graph G: assignment of + or - sign to each edge of G. Σ : set of - edges. $\Sigma = \{12, 34\}$

2-edge-coloured graph (G, \Sigma): Graph G with signature Σ .

Re-signing operation at v: switch sign of each edge incident to v

 Σ , Σ' equivalent ($\Sigma \equiv \Sigma'$) if one can be obtained from the other via re-signings.

Signature Σ of graph G: assignment of + or - sign to each edge of G. Σ : set of - edges. $\Sigma = \{12, 34\}$

2-edge-coloured graph (G, Σ): Graph G with signature Σ .

Re-signing operation at v: switch sign of each edge incident to v

 Σ , Σ' equivalent ($\Sigma \equiv \Sigma'$) if one can be obtained from the other via re-signings.

Signed graph [G, Σ]: *G* with equivalence class *C* of signatures ($\Sigma \in C$).

Balance and unbalance

Unbalanced cycle: Cycle with an odd number of negative edges.

Balance and unbalance

Unbalanced cycle: Cycle with an odd number of negative edges.

Remark: Re-signing preserves the balance of a cycle.

Balance and unbalance

Unbalanced cycle: Cycle with an odd number of negative edges.

Remark: Re-signing preserves the balance of a cycle.

Theorem (Zaslavsky, 1982)

Two signatures are **equivalent** if and only if they induce the **same set of unbalanced cycles**.

Loops and digons

Loops are invariant under re-signing. Justification:

- sign changes twice;
- balance is preserved.

Loops and digons

Loops are invariant under re-signing. Justification:

- sign changes twice;
- balance is preserved.

Digon: subgraph on 2 vertices with two parallel edges (+/-).

2-edge-coloured graph homomorphisms

Studied by Alon & Marshall, Brewster, Nesetřil & Raspaud...

Definition - Homomorphism of (G, Σ) to (H, Π)

Homomorphism $f : G \rightarrow H$ that preserves edge-colors.

2-edge-coloured graph homomorphisms

Studied by Alon & Marshall, Brewster, Nesetřil & Raspaud...

Definition - Homomorphism of (G, Σ) to (H, Π)

Homomorphism $f : G \rightarrow H$ that preserves edge-colors.

Concept recently developed by Naserasr, Rollova, Sopena in 2012.

Definition - Signed graph homomorphism $[G, \Sigma] \rightarrow [H, \Pi]$

Concept recently developed by Naserasr, Rollova, Sopena in 2012.

Definition - Signed graph homomorphism $[G, \Sigma] \rightarrow [H, \Pi]$

Concept recently developed by Naserasr, Rollova, Sopena in 2012.

Definition - Signed graph homomorphism $[G, \Sigma] \rightarrow [H, \Pi]$

Concept recently developed by Naserasr, Rollova, Sopena in 2012.

Definition - Signed graph homomorphism $[G, \Sigma] \rightarrow [H, \Pi]$

Concept recently developed by Naserasr, Rollova, Sopena in 2012.

Definition - Signed graph homomorphism $[G, \Sigma] \rightarrow [H, \Pi]$

Homomorphism $f : G \to H$ such that there exists $\Sigma' \equiv \Sigma$ and $(G, \Sigma') \to (H, \Pi)$ [as 2-edge colored graphs].

Note: we can assume target signature is **fixed** \rightarrow **no re-signing at target**.

H-Colouring

INSTANCE: A graph G. QUESTION: is it true that $G \rightarrow H$?

H-Colouring

INSTANCE: A graph G. QUESTION: is it true that $G \rightarrow H$?

Theorem (Karp, 1972)

 K_3 -COLOURING is NP-complete.

Theorem (Hell, Nešetřil, 1990)

H-COLOURING is polynomial (trivial) if H is bipartite or has a loop. Otherwise, NP-complete.

Theorem (Hell, Nešetřil, 1990)

H-COLOURING is polynomial (trivial) if H is bipartite or has a loop. Otherwise, NP-complete.

Conjecture (Feder-Vardi, 1998: Dichotomy conjecture for CSP's)

For any **relational structure** *S*, *S*-COLOURING (i.e. *S*-CSP) is either NP-complete or polynomial-time solvable. (Equivalently: dichotomy for digraph-homomorphisms and for MMSNP)

Ladner, 1975: unless P=NP, no dichotomy for NP.

Theorem (Hell, Nešetřil, 1990)

H-COLOURING is polynomial (trivial) if H is bipartite or has a loop. Otherwise, NP-complete.

Conjecture (Feder-Vardi, 1998: Dichotomy conjecture for CSP's)

For any **relational structure** *S*, *S*-COLOURING (i.e. *S*-CSP) is either NP-complete or polynomial-time solvable. (Equivalently: dichotomy for digraph-homomorphisms and for MMSNP)

Ladner, 1975: unless P=NP, no dichotomy for NP.

Proposition

Dichotomy conjecture is equivalent to dichotomy for 2-edge-coloured graphs.

 $[H,\Pi]$ -Colouring

INSTANCE: A signed graph $[G, \Sigma]$. QUESTION: does $[G, \Sigma] \rightarrow [H, \Pi]$?

 $[H,\Pi]$ -Colouring

INSTANCE: A signed graph $[G, \Sigma]$. QUESTION: does $[G, \Sigma] \rightarrow [H, \Pi]$?

Remark: if $\Pi \equiv \emptyset$ (all positive) or $\Pi \equiv E(H)$ (all negative), $[H, \Pi]$ -COLOURING has same complexity as *H*-COLOURING.

 $[H,\Pi]$ -Colouring

INSTANCE: A signed graph $[G, \Sigma]$. QUESTION: does $[G, \Sigma] \rightarrow [H, \Pi]$?

Remark: if $\Pi \equiv \emptyset$ (all positive) or $\Pi \equiv E(H)$ (all negative), $[H, \Pi]$ -COLOURING has same complexity as *H*-COLOURING.

Proposition (signed C_5)

For every $\Pi \subseteq E(C_5)$, $[C_5, \Pi]$ -Colouring is NP-complete.

Proof: Either $\Pi \equiv \emptyset$ or $\Pi \equiv E(C_5)$. Both (C_5, \emptyset) -COLOURING and $(C_5, E(C_5))$ -COLOURING are NP-complete.

 $[H,\Pi]$ -Colouring

INSTANCE: A signed graph $[G, \Sigma]$. QUESTION: does $[G, \Sigma] \rightarrow [H, \Pi]$?

Remark: if $\Pi \equiv \emptyset$ (all positive) or $\Pi \equiv E(H)$ (all negative), $[H, \Pi]$ -COLOURING has same complexity as *H*-COLOURING.

Proposition (signed C_5)

For every $\Pi \subseteq E(C_5)$, $[C_5, \Pi]$ -Colouring is NP-complete.

Proof: Either $\Pi \equiv \emptyset$ or $\Pi \equiv E(C_5)$. Both (C_5, \emptyset) -COLOURING and $(C_5, E(C_5))$ -COLOURING are NP-complete.

Proposition (2-edge-coloured C_5)

 (C_5, Π) -COLOURING is NP-complete if $\Pi = \emptyset$ or $\Pi = E(C_5)$; poly-time otherwise.

(Trivial) poly-time cases

 $[H,\Pi]$ -Colouring

INSTANCE: A signed graph $[G, \Sigma]$. QUESTION: does $[G, \Sigma] \rightarrow [H, \Pi]$?

Proposition

 $[H,\Pi]$ -COLOURING is poly-time if:

(a) If H is bipartite and $\Pi \equiv \emptyset \equiv E(H)$ (i.e. $[H, \Pi]$ retracts to an edge);

(b) If $[H, \Pi]$ retracts to a single vertex with loop(s);

(c) If H is bipartite and $[H, \Pi]$ contains (retracts to) a digon.

(Trivial) poly-time cases

 $[H,\Pi]$ -Colouring

INSTANCE: A signed graph $[G, \Sigma]$. QUESTION: does $[G, \Sigma] \rightarrow [H, \Pi]$?

Proposition

 $[H,\Pi]$ -COLOURING is poly-time if:

(a) If H is bipartite and $\Pi \equiv \emptyset \equiv E(H)$ (i.e. $[H, \Pi]$ retracts to an edge);

(b) If $[H, \Pi]$ retracts to a single vertex with loop(s);

(c) If H is bipartite and $[H, \Pi]$ contains (retracts to) a digon.

Proof. Input $[G, \Sigma]$.

(a) YES \Leftrightarrow *G* bipartite and $\Sigma \equiv \emptyset$.

(b) YES $\Leftrightarrow \Sigma \equiv \emptyset$ (+ loop), $\Sigma \equiv E(G)$ (- loop), or always true (both loops).

(c) YES \Leftrightarrow *G* is bipartite.

Construction of targets that are **invariant under re-signing** (Zaslavsky, Brewster and Graves, Klostermeyer and MacGillivray ...)

Construction of targets that are **invariant under re-signing** (Zaslavsky, Brewster and Graves, Klostermeyer and MacGillivray ...)

Construction of targets that are invariant under re-signing (Zaslavsky, Brewster and Graves, Klostermeyer and MacGillivray ...) (H, Π) $P(H, \Pi)$

Construction of targets that are **invariant under re-signing** (Zaslavsky, Brewster and Graves, Klostermeyer and MacGillivray ...)

 \rightarrow For every $\Pi' \equiv \Pi$, $P(H, \Pi)$ contains (H, Π') as a subgraph.

Construction of targets that are **invariant under re-signing** (Zaslavsky, Brewster and Graves, Klostermeyer and MacGillivray ...)

 \rightarrow For every $\Pi' \equiv \Pi$, $P(H, \Pi)$ contains (H, Π') as a subgraph.

Theorem $[G, \Sigma] \rightarrow [H, \Pi] \text{ if and only if } (G, \Sigma) \rightarrow P(H, \Pi).$ $[BC_k]$: class of balanced k-cycles. $[UC_k]$: class of unbalanced k-cycles.

- $[BC_{2k+1}]$ -COLOURING equivalent to $[C_{2k+1}, \emptyset]$ -COLOURING: NP-c.
- $[UC_{2k+1}]$ -COLOURING equivalent to $[C_{2k+1}, E(C_{2k+1})]$ -COLOURING: NP-c.
- $[BC_{2k}]$ -COLOURING equivalent to $[K_2, \emptyset]$ -COLOURING: poly-time.

Theorem (F., Naserasr, 2012)

 $[UC_{2k}]$ -COLOURING is NP-complete for every $k \geq 2$.

Theorem (Brewster, F., Hell, Naserasr)

If $[H,\Pi]$ is digon-free and has an unbalanced even cycle, then $[H,\Pi]$ -COLOURING is NP-complete. True even with the presence of (single) loops. **Theorem** (Brewster, F., Hell, Naserasr)

If $[H,\Pi]$ is digon-free and has an unbalanced even cycle, then $[H,\Pi]$ -COLOURING is NP-complete. True even with the presence of (single) loops.

Indicator-construction: classic tool for reductions (see e.g. Hell-Nešetřil).

- Indicator: subgraph *I* with two distinguished vertices *i*, *j*.
- H^* : graph on V(H) with an edge uv iff $f: I \to H$ with f(i) = u, f(j) = v.
- *G: replace each edge of G by a copy of I.

Proposition

$$G \to H^* \iff {}^*G \to H$$

Theorem (Brewster, F., Hell, Naserasr)

If $[H,\Pi]$ is digon-free and has an unbalanced even cycle, then $[H,\Pi]$ -COLOURING is NP-complete. True even with the presence of (single) loops.

Proof: Use indicator-gadget on $P(H, \Pi)$:

Theorem (Brewster, F., Hell, Naserasr)

 $[H,\Pi]$ -COLOURING is NP-complete if $[H,\Pi]$ is non-bipartite and:

(a) no loops, no digon;

(b) (single) loops but no digon;

(c) a digon and only one kind of (single) loops.

- $P(H, \Pi)$ has a + odd cycle and no + loop (or vice-versa), or
- $P(H,\Pi)^*$ has an odd cycle and no loop

Theorem (Brewster, F., Hell, Naserasr)

 $[H,\Pi]$ -COLOURING is NP-complete if $[H,\Pi]$ is non-bipartite and:

(a) no loops, no digon;

(b) (single) loops but no digon;

(c) a digon and only one kind of (single) loops.

- $P(H, \Pi)$ has a + odd cycle and no + loop (or vice-versa), or
- $P(H, \Pi)^*$ has an odd cycle and no loop

Theorem (Brewster, F., Hell, Naserasr)

 $[H,\Pi]$ -COLOURING is NP-complete if $[H,\Pi]$ is non-bipartite and:

(a) no loops, no digon;

(b) (single) loops but no digon;

(c) a digon and only one kind of (single) loops.

- $P(H, \Pi)$ has a + odd cycle and no + loop (or vice-versa), or
- $P(H, \Pi)^*$ has an odd cycle and no loop

Theorem (Brewster, F., Hell, Naserasr)

 $[H,\Pi]$ -COLOURING is NP-complete if $[H,\Pi]$ is non-bipartite and:

(a) no loops, no digon;

(b) (single) loops but no digon;

(c) a digon and only one kind of (single) loops.

- $P(H, \Pi)$ has a + odd cycle and no + loop (or vice-versa), or
- $P(H, \Pi)^*$ has an odd cycle and no loop

Theorem (Brewster, F., Hell, Naserasr)

 $[H,\Pi]$ -COLOURING is NP-complete if $[H,\Pi]$ is non-bipartite and:

(a) no loops, no digon;

(b) (single) loops but no digon;

(c) a digon and only one kind of (single) loops.

- $P(H, \Pi)$ has a + odd cycle and no + loop (or vice-versa), or
- $P(H, \Pi)^*$ has an odd cycle and no loop

Theorem (Brewster, F., Hell, Naserasr)

 $[H,\Pi]$ -COLOURING is NP-complete if $[H,\Pi]$ is non-bipartite and:

(a) no loops, no digon;

(b) (single) loops but no digon;

(c) a digon and only one kind of (single) loops.

- $P(H, \Pi)$ has a + odd cycle and no + loop (or vice-versa), or
- $P(H, \Pi)^*$ has an odd cycle and no loop

Theorem (Brewster, F., Hell, Naserasr)

 $[H,\Pi]$ -COLOURING is NP-complete if $[H,\Pi]$ is non-bipartite and:

(a) no loops, no digon;

(b) (single) loops but no digon;

(c) a digon and only one kind of (single) loops.

- $P(H, \Pi)$ has a + odd cycle and no + loop (or vice-versa), or
- $P(H, \Pi)^*$ has an odd cycle and no loop

Theorem (Brewster, F., Hell, Naserasr)

 $[H,\Pi]$ -COLOURING is NP-complete if $[H,\Pi]$ is non-bipartite and:

(a) no loops, no digon;

(b) (single) loops but no digon;

(c) a digon and only one kind of (single) loops.

- $P(H, \Pi)$ has a + odd cycle and no + loop (or vice-versa), or
- $P(H, \Pi)^*$ has an odd cycle and no loop

Theorem (Brewster, F., Hell, Naserasr)

 $[H,\Pi]$ -COLOURING is NP-complete if $[H,\Pi]$ is non-bipartite and: (a) no loops, no digon;

(b) (single) loops but no digon;

(c) a digon and only one kind of (single) loops.

- $P(H, \Pi)$ has a + odd cycle and no + loop (or vice-versa), or
- $P(H, \Pi)^*$ has an odd cycle and no loop

• Besides trivially poly-time cases, everything (we know of) is NP-complete.

• Besides trivially poly-time cases, everything (we know of) is NP-complete.

• missing cases: targets with digons and both kinds of loops.

• Besides trivially poly-time cases, everything (we know of) is NP-complete.

• missing cases: targets with digons and both kinds of loops.

• Sharp contrast to 2-edge-coloured graphs, where dichotomy is very difficult.