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Locating a burglar in a museum
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Locating a burglar in a museum

N[v ] = N(v)∪{v}

C ⊆ V (G) is an identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998):

for every u ∈ V , N[v ]∩C 6= /0 (domination).

∀u 6= v of V , N[u]∩C 6= N[v ]∩C (separation).
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for every u ∈ V , N[v ]∩C 6= /0 (domination).

∀u 6= v of V , N[u]∩C 6= N[v ]∩C (separation).

γ ID(G): identifying code number , minimum size of an identifying code of G .
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Remarks

• Special case of test covers in hypergraphs
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Remarks

• Special case of test covers in hypergraphs

• Not always exists!
G has identifying code ⇐⇒ ∀ u,v , N[u] 6= N[v ] (twin�free graph)

Let G be a nonempty graph on n vertices, then

dlog2(n+1)e ≤ γ
ID(G)≤ n−1

Theorem (Karpovsky, Chakrabarty, Levitin, 1998 + Gravier & Moncel 2007)
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• Not always exists!
G has identifying code ⇐⇒ ∀ u,v , N[u] 6= N[v ] (twin�free graph)

Let G be a nonempty graph on n vertices, then

dlog2(n+1)e ≤ γ
ID(G)≤ n−1

Theorem (Karpovsky, Chakrabarty, Levitin, 1998 + Gravier & Moncel 2007)

γ ID(G) = log2(n+1) γ ID(G) = n−1
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Interval graphs

Intersection graph of intervals of the real line.

De�nition - Interval graph

I1 I4

I2 I5

I3
1

2

3

4 5
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Bound for interval graphs

If G is an interval graph on n vertices, then γ ID(G) >
√
2n.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
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Bound for interval graphs

If G is an interval graph on n vertices, then γ ID(G) >
√
2n.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

1 2

3

4

1−1 2−3

1−2 2−4

1−4

1−3 3−4

Identifying code of size k.

De�ne zones using the right points of code intervals.

Each vertex intersects a consecutive set of code vertices when ordered by
left points.

→ n ≤ ∑
k
i=1

(k− i) < k
2

2
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Bound for interval graphs

If G is an interval graph on n vertices, then γ ID(G) >
√
2n.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Tight:
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Permutation graphs

Given two parallel lines A and B:
intersection graph of segments joining A and B.

De�nition - Permutation graph
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Bound for permutation graphs

If G is a permutation graph on n vertices, then γ ID(G)≥
√
n+2.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

same neighborhood in the code!

Identifying code of size k: k +1 �top zones� and k +1 �bottom zones�

Only one segment for one pair of zones

→ n ≤ (k +1)2 +k

Careful counting for the precise bound

Tight:
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Bounds for subclasses of interval/permutation

Let G be a graph on n vertices.

If G is unit interval, then γ ID(G)≥ n+1

2
.

If G is bipartite permutation, then γ ID(G)≥ n−2
3

.

If G is a cograph, then γ ID(G)≥ n+2

2
.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
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Vapnis-Chervonenkis dimension

Set X ⊆ V (G) is shattered:
for every subset S ⊆ X , there is a vertex v with N[v ]∩X = S

V-C dimension of G : maximum size of a shattered set in G

Let G be a graph with n vertices, V-C dimension ≤ c. Then γ ID(G)≥ n1/c .

Theorem (Bousquet, Lagoutte, Li, Parreau, Thomassé, Trunck, 2014+)

→ interval graphs (c = 2), line graphs (c = 4), permutation graphs (c = 3),
unit disk graphs (c = 3), planar graphs (c = 4)...

But better bounds exist:

planar graphs: γ ID(G)≥ n

7
(Slater & Rall, 1984)

line graphs: γ ID(G)≥ 3
√
2n

4
(F., Gravier, Naserasr, Parreau, Valicov, 2013)
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Complexity of IDENTIFYING CODE

INPUT: Graph G , integer k.
QUESTION: Is there an identifying code of G of size k?

IDENTIFYING CODE

• polynomial for graphs of bounded clique-width via MSOL (Courcelle)

• NP-complete for:

bipartite (Charon, Hudry, Lobstein, 2003)
planar bipartite unit disk (Müller & Sereni, 2009)
planar arbitrary girth (Auger, 2010)
planar bipartite subcubic (F. 2013)
co-bipartite, split (F. 2013)
line (F., Gravier, Naserasr, Parreau, Valicov, 2013)
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Complexity of IDENTIFYING CODE

INPUT: Graph G , integer k.
QUESTION: Is there an identifying code of G of size k?

IDENTIFYING CODE

• O(log∆)-approximable (SET COVER)

• constant c-approximation for:

planar, c = 7 (Slater, Rall, 1984)
line, c = 4 (F., Gravier, Naserasr, Parreau, Valicov, 2013)
interval, c = 2 (Bousquet, Lagoutte, Parreau, Thomassé, Trunck, 2014+)
unit interval, PTAS

• hard to approximate within o(logn) for:

general graphs (Laifenfeld, Trachtenberg + Suomela 2007)
bipartite, split, co-bipartite (F. 2013)

• APX-hard for:

line (F., Gravier, Naserasr, Parreau, Valicov, 2013)
subcubic bipartite (F. 2013)
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Complexity of IDENTIFYING CODE

INPUT: Graph G , integer k.
QUESTION: Is there an identifying code of G of size k?

IDENTIFYING CODE

• Trivially FPT for parameter k because n ≤ 2k → whole graph is kernel.

• Trivial polynomial kernel for interval, permutation, line, planar...
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Complexity - Interval and permutation graphs

IDENTIFYING CODE is NP-complete for graphs that are both interval and
permutation.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Reduction from 3-DIMENSIONAL MATCHING:

INPUT: A, B, C sets and T ⊂ A×B×C triples

QUESTION: is there a perfect 3-dimensional matching M ⊂T , i.e., each element
of A∪B ∪C appears exactly once in M?

Main idea: an interval can separate pairs of intervals far away from each other
(without a�ecting what lies in between)

Florent Foucaud Identifying codes and metric dimension on selected graph classes 12 / 31



Complexity - Interval and permutation graphs

IDENTIFYING CODE is NP-complete for graphs that are both interval and
permutation.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Reduction from 3-DIMENSIONAL MATCHING:

INPUT: A, B, C sets and T ⊂ A×B×C triples

QUESTION: is there a perfect 3-dimensional matching M ⊂T , i.e., each element
of A∪B ∪C appears exactly once in M?

Main idea: an interval can separate pairs of intervals far away from each other
(without a�ecting what lies in between)

Florent Foucaud Identifying codes and metric dimension on selected graph classes 12 / 31



Complexity - Interval and permutation graphs

IDENTIFYING CODE is NP-complete for graphs that are both interval and
permutation.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Reduction from 3-DIMENSIONAL MATCHING:

INPUT: A, B, C sets and T ⊂ A×B×C triples

QUESTION: is there a perfect 3-dimensional matching M ⊂T , i.e., each element
of A∪B ∪C appears exactly once in M?

Main idea: an interval can separate pairs of intervals far away from each other
(without a�ecting what lies in between)

Florent Foucaud Identifying codes and metric dimension on selected graph classes 12 / 31



Complexity - gadgets

Dominating gadget: ensure all intervals are dominated and most, separated.

P
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Complexity - transmitters

Transmitter gadget: to separate {uv1,uv2} and {vw1,vw2}, either:
1. take only v into solution, or
2. take both u,w � and separate pairs {x1,x2}, {y1,y2}, {z1,z2} �for free�.

x1

x2

u

uv1

uv2

v

y1

y2

vw1

vw2

w

z1

z2

P(u)

P(uv)

P(v)

P(vw)

P(w)

x1

x2
y1

y2
z1

z2

Tr({x1,x2}, {y1,y2}, {z1,z2})
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Complexity - reduction

3DM instance on 3n elements, m triples.

∃ 3-dimensional matching ⇐⇒ γ ID(G)≤ 94m+10n

. . .

P(p) P(q) P(r) P(s) P(a) P(b) P(c)

Tr(p,q) Tr(r ,s)

Tr(p, r ,b)

Tr(q, r ,c)

Tr(s,a)

three element gadgets for a,b and c

triple gadget for triple {a,b,c}

p q r s
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Complexity of IDENTIFYING CODE

trees cographs

bounded clique-width

bounded tree-width

unit interval

permutation

bipartite permutation

interval
co-bipartite

line of bipartite

bipartite

planar bipartite

split

co-comparability

quasi-line

line

comparability chordal

claw-freeperfect

polynomial

NP-complete

OPEN
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Unit interval graphs

Ladder graph Lm: grid graph P22Pm.

Cycle cover of graph G : set S of cycles of G s.t.
⋃
S∈S E(S) = E(G).

INPUT: integer m, integer k, set S of cycles of Lm.
QUESTION: Is there a cycle cover S ′ ⊆S of Lm of size k?

LADDER CYCLE COVER

IDENTIFYING CODE on unit interval graphs
reduces to LADDER CYCLE COVER.

Proposition (F., Mertzios, Naserasr, Parreau, Valicov)

Is LADDER CYCLE COVER polynomial-time solvable?

Question

Florent Foucaud Identifying codes and metric dimension on selected graph classes 17 / 31



Unit interval graphs

Ladder graph Lm: grid graph P22Pm.

Cycle cover of graph G : set S of cycles of G s.t.
⋃
S∈S E(S) = E(G).

INPUT: integer m, integer k, set S of cycles of Lm.
QUESTION: Is there a cycle cover S ′ ⊆S of Lm of size k?

LADDER CYCLE COVER

IDENTIFYING CODE on unit interval graphs
reduces to LADDER CYCLE COVER.

Proposition (F., Mertzios, Naserasr, Parreau, Valicov)

Is LADDER CYCLE COVER polynomial-time solvable?

Question

Florent Foucaud Identifying codes and metric dimension on selected graph classes 17 / 31



Unit interval graphs

Ladder graph Lm: grid graph P22Pm.

Cycle cover of graph G : set S of cycles of G s.t.
⋃
S∈S E(S) = E(G).

INPUT: integer m, integer k, set S of cycles of Lm.
QUESTION: Is there a cycle cover S ′ ⊆S of Lm of size k?

LADDER CYCLE COVER

IDENTIFYING CODE on unit interval graphs
reduces to LADDER CYCLE COVER.

Proposition (F., Mertzios, Naserasr, Parreau, Valicov)

Is LADDER CYCLE COVER polynomial-time solvable?

Question

Florent Foucaud Identifying codes and metric dimension on selected graph classes 17 / 31



Unit interval graphs

Ladder graph Lm: grid graph P22Pm.

Cycle cover of graph G : set S of cycles of G s.t.
⋃
S∈S E(S) = E(G).

INPUT: integer m, integer k, set S of cycles of Lm.
QUESTION: Is there a cycle cover S ′ ⊆S of Lm of size k?

LADDER CYCLE COVER

IDENTIFYING CODE on unit interval graphs
reduces to LADDER CYCLE COVER.

Proposition (F., Mertzios, Naserasr, Parreau, Valicov)

Is LADDER CYCLE COVER polynomial-time solvable?

Question

Florent Foucaud Identifying codes and metric dimension on selected graph classes 17 / 31



Part II: metric dimension
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Determination of Position in 3D euclidean space

GPS: need to know the exact position of 4 satellites + distance to them

Does the �GPS� approach also work in undirected unweighted graphs?

Question
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Metric dimension

Now, w ∈ V (G) separates {u,v} if dist(w ,u) 6= dist(w ,v)

R ⊆ V (G) resolving set of G :

∀u 6= v in V (G), there exists w ∈ R that separates {u,v}.

De�nition - Resolving set (Slater, 1975 - Harary & Melter, 1976)
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Metric dimension

Now, w ∈ V (G) separates {u,v} if dist(w ,u) 6= dist(w ,v)

R ⊆ V (G) resolving set of G :

∀u 6= v in V (G), there exists w ∈ R that separates {u,v}.

De�nition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

w

MD(G): metric dimension of G , minimum size of a resolving set of G .
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Trees

MD(G) = 1 ⇔ G is a path

Proposition
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree ≥ 3 and 1.

G
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree ≥ 3 and 1.

G v

R resolving set. If v has k legs, at least k−1 legs contain a vertex of R.

Observation

Florent Foucaud Identifying codes and metric dimension on selected graph classes 21 / 31



Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree ≥ 3 and 1.

G v

R resolving set. If v has k legs, at least k−1 legs contain a vertex of R.

Observation

Simple leg rule: if v has k ≥ 2 legs, select k−1 leg endpoints.

Florent Foucaud Identifying codes and metric dimension on selected graph classes 21 / 31



Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree ≥ 3 and 1.

G v

R resolving set. If v has k legs, at least k−1 legs contain a vertex of R.

Observation

Simple leg rule: if v has k ≥ 2 legs, select k−1 leg endpoints.

For any tree, the simple leg rule produces an optimal resolving set.

Theorem (Slater 1975)
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Bounds with diameter

Example of path: no bound MD(G)≤ f (n) possible.

G on n vertices, diameter D, MD(G) = k. Then n ≤Dk +k.

Theorem (Khuller, Raghavachari, Rosenfeld, 2002)

G permutation graph or interval graph, MD(G) = k, diameter D. Then:

n = O(D2k2).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Interval graphs:

• Interval in solution de�nes ≤D +1 �zones� (left and right) → k(D +1) zones

• An interval is determined by beginning + end zone: n−k ≤ (k(D +1))2

Is the bound tight? (There are interval graphs with n = Θ(Dk2)).

Question
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Complexity

INPUT: Graph G , integer k.
QUESTION: Is there a resolving set of G of size k?

METRIC DIMENSION

• polynomial for:

trees (simple leg rule, Slater 1975)
outerplanar (Díaz, van Leeuwen, Pottonen, Serna, 2012)
bounded cyclomatic number (Epstein, Levin, Woeginger, 2012)
cographs (Epstein, Levin, Woeginger, 2012)

• NP-complete for:

general graphs (Garey & Johnson 1979)
planar (Díaz, van Leeuwen, Pottonen, Serna, 2012)
bipartite, co-bipartite, line, split (Epstein, Levin, Woeginger, 2012)
Gabriel unit disk (Ho�mann & Wanke 2012)
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Complexity

INPUT: Graph G , integer k.
QUESTION: Is there a resolving set of G of size k?

METRIC DIMENSION

• O(logn)-approximable (SET COVER)

• hard to approximate within o(logn) for:

general graphs (Beerliova et al., 2006)
bipartite subcubic (Hartung & Nichterlein, 2013)

• APX-complete for graphs with min. degree n−k
(Hauptmann, Schmied, Viehmann, 2012)
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Complexity

INPUT: Graph G , integer k.
QUESTION: Is there a resolving set of G of size k?

METRIC DIMENSION

W[2]-hard for parameter �solution size�, even for bipartite subcubic graphs
(Hartung & Nichterlein, 2013)
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Interval and permutation graphs

G graph of diameter 2. S resolving set of G .

→ Every vertex in V (G)\S is distiguished by its neighborhood within S

Concept of locating-dominating sets (similar to identifying codes)

LOCATING-DOMINATING SET is NP-complete for graphs that are both
interval and permutation.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Reduction from LOCATING-DOMINATING SET to METRIC DIMENSION:

k ′ = k +2

G

METRIC DIMENSION is NP-complete for graphs that are both interval and
permutation (and have diameter 2).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
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Complexity of METRIC DIMENSION

trees

outerplanar

cographs

bounded clique-width

bounded tree-width

bounded cyclomatic number

unit interval

permutation

bipartite permutation

interval
co-bipartite

line of bipartite

bipartite
planar

split

co-comparability

quasi-line

line

comparability chordal

claw-freeperfect

polynomial

NP-complete

OPEN

Florent Foucaud Identifying codes and metric dimension on selected graph classes 25 / 31



Cyclomatic number

Complexity of METRIC DIMENSION for graphs of tree-width k?
(open for k = 2)

Question

Cyclomatic number of graph G (a.k.a feedback edge set number):
smallest k with a set S of k edges s.t. G −S is a forest.

Remark: cyclomatic number ≤ k ⇒ tree-width ≤ 2k +1

Complexity of METRIC DIMENSION for graphs of cyclomatic number k?

Question
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Bounded cyclomatic number - complexity

Recursive leg rule:
• Apply simple leg rule - if v has k ≥ 2 legs, select k−1 leg endpoints.
• Prune graph by removing all legs with a selected vertex, replacing them by v .
• Apply recursively.

G
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Bounded cyclomatic number - complexity

Recursive leg rule:
• Apply simple leg rule - if v has k ≥ 2 legs, select k−1 leg endpoints.
• Prune graph by removing all legs with a selected vertex, replacing them by v .
• Apply recursively.

G

Applying the recursive leg rule creates a computationally equivalent instance.

Proposition (Epstein, Levin, Woeginger, 2012)
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Bounded cyclomatic number - complexity

Recursive leg rule:
• Apply simple leg rule - if v has k ≥ 2 legs, select k−1 leg endpoints.
• Prune graph by removing all legs with a selected vertex, replacing them by v .
• Apply recursively.

G'

cross verticescross paths

Applying the recursive leg rule creates a computationally equivalent instance.

Proposition (Epstein, Levin, Woeginger, 2012)

G ′: G with all legs removed.

cross vertex of G : degree ≥ 3 vertex in G ′

cross path of G : thread between cross vertices
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Bounded cyclomatic number - complexity

G has cyclomatic number k, reduced by recursive leg rule.

G has at most 3k cross paths.

Lemma (Epstein, Levin, Woeginger, 2012)

Every cross path contains at most 6 �new� vertices in the solution.

Lemma (Epstein, Levin, Woeginger, 2012)

There is an O(n18k) algorithm for graphs with cyclomatic number k.

Theorem (Epstein, Levin, Woeginger, 2012)

• There is an O(n9k) algorithm.
• There is a 9k-approximation algorithm in polynomial time.
• There is a 3-approximation algorithm in FPT time 23knO(1).

Proposition
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METRIC DIMENSION: structural parameters

Vertex Cover
Number

Cyclomatic
Number

Distance to
Clique

Distance to
Cluster

Distance to
Unit Interval Graph

Distance to
Interval Graph

Distance to
Cograph

Distance to
Line Graph

Distance to
Permutation Graph

Distance to
Linear Forest

Feedback Vertex Set
Number

Path-width

Distance to
Bipartite Graph

Tree-width

Degeneracy

Clique-width

NP-hard for small values (not in XP)

XP

FPT
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Perspectives

Bounds for other classes? planar, unit disk, line, trapezoid, ...

V-C dimension bound for metric dimension?

Complexity of MD+ID for unit interval + bipartite permutation?

Complexity of MD for bounded tree-width (and weaker parameters)?

Parameterized complexity of MD (parameter �solution size�)? interval,
permutation, chordal, claw-free, planar...
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