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Locating a burglar in a museum

{a.b) | gy

{b}

{b,d,g} |

N[v] = N(v)u{v}

C C V(G) is an identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998):
o for every uc V, N[v]N C # 0 (domination).
@ Yu#vof V, NlulnC # N[v]NC (separation).
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C C V(G) is an identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998):
o for every uc V, N[v]N C # 0 (domination).
@ Yu#vof V, NlulnC # N[v]NC (separation).

Y'®(G): identifying code number , minimum size of an identifying code of G.
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Remarks

e Special case of test covers in hypergraphs
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e Special case of test covers in hypergraphs

e Not always exists!
G has identifying code <=V u,v, N[u] # N[v] (twin—free graph)

Theorem (Karpovsky, Chakrabarty, Levitin, 1998 + Gravier & Moncel 2007)

Let G be a nonempty graph on n vertices, then

flogs(n+1)] < ¥°(G) < n—1
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Remarks

e Special case of test covers in hypergraphs

e Not always exists!
G has identifying code <=V u,v, N[u] # N[v] (twin—free graph)

Theorem (Karpovsky, Chakrabarty, Levitin, 1998 + Gravier & Moncel 2007)

Let G be a nonempty graph on n vertices, then

flogs(n+1)] < ¥°(G) < n—1

1°(G) = logy(n+1) re(6)=n-1
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Interval graphs

Definition - Interval graph]

Intersection graph of intervals of the real line.

I3
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Bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

If G is an interval graph on n vertices, then y'°(G) > v/2n.
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Bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

If G is an interval graph on n vertices, then y'°(G) > v/2n.

1 2
———— —
3
—
4
—

o ldentifying code of size k.

o Define zones using the right points of code intervals.
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Bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

If G is an interval graph on n vertices, then y'°(G) > v/2n.

1 2
—— I
1-1 2-3 4
I
1-2 2-4
1-4 4
L]
1-3 3-4

o ldentifying code of size k.
o Define zones using the right points of code intervals.

o Each vertex intersects a consecutive set of code vertices when ordered by
left points.
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o ldentifying code of size k.
o Define zones using the right points of code intervals.

o Each vertex intersects a consecutive set of code vertices when ordered by
left points.

<Yk (k=)< &
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Bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

If G is an interval graph on n vertices, then y'°(G) > v/2n.

Tight:
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Permutation graphs

Definition - Permutation graph]

Given two parallel lines A and B:
intersection graph of segments joining A and B.

3 5
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Bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

If G is a permutation graph on n vertices, then ¥'®(G) > /n+2.
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Bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

If G is a permutation graph on n vertices, then ¥'®(G) > /n+2.

/‘ same neighborhood in the code!

o Identifying code of size k: k+1 “top zones” and k+1 “bottom zones”

@ Only one segment for one pair of zones
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Bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

If G is a permutation graph on n vertices, then ¥'®(G) > /n+2.

/‘ same neighborhood in the code!
DN

o Identifying code of size k: k+1 “top zones” and k+1 “bottom zones”
@ Only one segment for one pair of zones
—n<(k+1)2+k

o Careful counting for the precise bound
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Bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

If G is a permutation graph on n vertices, then ¥'®(G) > /n+2.

Tight:
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Bounds for subclasses of interval/permutation

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

Let G be a graph on n vertices.

. o 1
o If G is unit interval, then Y°(G) > 251

. . . . _2
o If G is bipartite permutation, then y'°(G) > ==.

o If G is a cograph, then y°(G) > 242,
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Vapnis-Chervonenkis dimension

Set X C V(G) is shattered:
for every subset S C X, there is a vertex v with N[v]nX =5

V-C dimension of G: maximum size of a shattered set in G
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Vapnis-Chervonenkis dimension

Set X C V(G) is shattered:
for every subset S C X, there is a vertex v with N[v]nX =5

V-C dimension of G: maximum size of a shattered set in G

Theorem (Bousquet, Lagoutte, Li, Parreau, Thomassé, Trunck, 2014+)|

Let G be a graph with n vertices, V-C dimension < c. Then ¥'°(G) > nt/c.

— interval graphs (¢ = 2), line graphs (¢ = 4), permutation graphs (c = 3),
unit disk graphs (¢ = 3), planar graphs (c =4)...
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Vapnis-Chervonenkis dimension

Set X C V(G) is shattered:
for every subset S C X, there is a vertex v with N[v]nX =5

V-C dimension of G: maximum size of a shattered set in G

Theorem (Bousquet, Lagoutte, Li, Parreau, Thomassé, Trunck, 2014+)|

Let G be a graph with n vertices, V-C dimension < c. Then ¥'°(G) > nt/c.

— interval graphs (¢ = 2), line graphs (¢ = 4), permutation graphs (c = 3),
unit disk graphs (¢ = 3), planar graphs (c =4)...

But better bounds exist:
o planar graphs: y'®(G) > & (Slater & Rall, 1984)
o line graphs: y'°(G) > @ (F., Gravier, Naserasr, Parreau, Valicov, 2013)
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Complexity of IDENTIFYING CODE

IDENTIFYING CODE)

INPUT: Graph G, integer k.
QUESTION: Is there an identifying code of G of size k7

e polynomial for graphs of bounded clique-width via MSOL (Courcelle)

e NP-complete for:
@ bipartite (Charon, Hudry, Lobstein, 2003)
planar bipartite unit disk (Miiller & Sereni, 2009)
planar arbitrary girth (Auger, 2010)
planar bipartite subcubic (F. 2013)
co-bipartite, split (F. 2013)
line (F., Gravier, Naserasr, Parreau, Valicov, 2013)
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Complexity of IDENTIFYING CODE

IDENTIFYING CODE)

INPUT: Graph G, integer k.
QUESTION: Is there an identifying code of G of size k7

e O(log A)-approximable (SET COVER)

e constant c-approximation for:
@ planar, ¢ =7 (Slater, Rall, 1984)
o line, c =4 (F., Gravier, Naserasr, Parreau, Valicov, 2013)
o interval, ¢ =2 (Bousquet, Lagoutte, Parreau, Thomassé, Trunck, 2014+)
@ unit interval, PTAS

e hard to approximate within o(log n) for:
o general graphs (Laifenfeld, Trachtenberg + Suomela 2007)
@ bipartite, split, co-bipartite (F. 2013)

o APX-hard for:
o line (F., Gravier, Naserasr, Parreau, Valicov, 2013)
@ subcubic bipartite (F. 2013)
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Complexity of IDENTIFYING CODE

IDENTIFYING CODE)

INPUT: Graph G, integer k.
QUESTION: Is there an identifying code of G of size k7

e Trivially FPT for parameter k because n < 2% — whole graph is kernel.

e Trivial polynomial kernel for interval, permutation, line, planar...
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Complexity - Interval and permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

IDENTIFYING CODE is NP-complete for graphs that are both interval and
permutation.
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Complexity - Interval and permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

IDENTIFYING CODE is NP-complete for graphs that are both interval and
permutation.

Reduction from 3-DIMENSIONAL MATCHING:
@ INPUT: A, B, C sets and 7 C Ax B x C triples

@ QUESTION: is there a perfect 3-dimensional matching M C T, i.e., each element
of AUBUC appears exactly once in M?
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Complexity - Interval and permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

IDENTIFYING CODE is NP-complete for graphs that are both interval and
permutation.

Reduction from 3-DIMENSIONAL MATCHING:
@ INPUT: A, B, C sets and 7 C Ax B x C triples

@ QUESTION: is there a perfect 3-dimensional matching M C T, i.e., each element
of AUBUC appears exactly once in M?

Main idea: an interval can separate pairs of intervals far away from each other
(without affecting what lies in between)
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Complexity - gadgets

Dominating gadget: ensure all intervals are dominated and most, separated.
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Complexity - transmitters

Transmitter gadget: to separate {uv!,uv?} and {vw?,vw?}, either:
1. take only v into solution, or

2. take both u,w — and separate pairs {x1,x2}, {y1,¥2}, {z1,22} “for free".

. X2 s, Ras Y2 s Ko z2 s,
‘ v ‘

\oox K on H \ozZr )
\s~ ‘¢' \~~ e \~~ ‘¢'
S - u \4 Scmeea== - w S -

uvt vt
P(v)
w? vw?
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Complexity - transmitters

Transmitter gadget: to separate {uv!,uv?} and {vw?,vw?}, either:

1. take only v into solution, or
2. take both u,w — and separate pairs {x1,x2}, {y1,¥2}, {z1,22} “for free".
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Complexity - reduction

3DM instance on 3n elements, m triples.

3 3-dimensional matching <= y'°(G) <94m+10n

triple gadget for triple {a,b,c}
three element gadgets for a,b and ¢
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Complexity of IDENTIFYING CODE

perfect claw-free
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Unit interval graphs

Ladder graph L,,: grid graph P,OPp,.
Cycle cover of graph G: set . of cycles of G s.t. Usec.» E(S) = E(G).
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LADDER CYCLE COVER)

INPUT: integer m, integer k, set .7 of cycles of L.
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Cycle cover of graph G: set . of cycles of G s.t. Usec.» E(S) = E(G).

LADDER CYCLE COVER)

INPUT: integer m, integer k, set .7 of cycles of L.
QUESTION: Is there a cycle cover ./ C .7 of Ly, of size k?

Proposition (F., Mertzios, Naserasr, Parreau, VaIicov)]

IDENTIFYING CODE on unit interval graphs
reduces to LADDER CYCLE COVER.
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Unit interval graphs

Ladder graph L,,: grid graph P,OPp,.
Cycle cover of graph G: set . of cycles of G s.t. Usec.» E(S) = E(G).

LADDER CYCLE COVER)

INPUT: integer m, integer k, set .7 of cycles of L.
QUESTION: Is there a cycle cover ./ C .7 of Ly, of size k?

Proposition (F., Mertzios, Naserasr, Parreau, VaIicov)]

IDENTIFYING CODE on unit interval graphs
reduces to LADDER CYCLE COVER.

Question

Is LADDER CYCLE COVER polynomial-time solvable?
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Part Il: metric dimension

Florent Foucaud mension on selected graph classes 18 / 31



Determination of Position in 3D euclidean space

GPS: need to know the exact position of 4 satellites + distance to them
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Determination of Position in 3D euclidean space

GPS: need to know the exact position of 4 satellites + distance to them

Question

Does the “GPS" approach also work in undirected unweighted graphs?
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Metric dimension

Now, w € V(G) separates {u,v} if dist(w,u) # dist(w,v)

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)]

R C V(G) resolving set of G:
Vu # v in V(G), there exists w € R that separates {u,v}.
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Metric dimension

Now, w € V(G) separates {u,v} if dist(w,u) # dist(w,v)

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)]

R C V(G) resolving set of G:
Vu # v in V(G), there exists w € R that separates {u,v}.

MD(G): metric dimension of G, minimum size of a resolving set of G.
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Trees

Proposition

MD(G)=1 < G is a path
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree >3 and 1.
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree >3 and 1.

Observation

R resolving set. If v has k legs, at least k —1 legs contain a vertex of R.
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree >3 and 1.

Observation

R resolving set. If v has k legs, at least k —1 legs contain a vertex of R.

Simple leg rule: if v has k > 2 legs, select k —1 leg endpoints.
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree >3 and 1.

Observation

R resolving set. If v has k legs, at least k —1 legs contain a vertex of R.

Simple leg rule: if v has k > 2 legs, select k —1 leg endpoints.

Theorem (Slater 1975)]

For any tree, the simple leg rule produces an optimal resolving set.
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Bounds with diameter

Example of path: no bound MD(G) < f(n) possible.
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Bounds with diameter

Example of path: no bound MD(G) < f(n) possible.

Theorem (Khuller, Raghavachari, Rosenfeld, 2002)]

G on n vertices, diameter D, MD(G) = k. Then n < D¥ + k.
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Bounds with diameter

Example of path: no bound MD(G) < f(n) possible.

Theorem (Khuller, Raghavachari, Rosenfeld, 2002)]

G on n vertices, diameter D, MD(G) = k. Then n < D¥ + k.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

G permutation graph or interval graph, MD(G) = k, diameter D. Then:
n= 0(D?%k?).

Interval graphs:
e Interval in solution defines < D +1 “zones” (left and right) — k(D + 1) zones

e An interval is determined by beginning + end zone: n—k < (k(D 4+ 1))?
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Bounds with diameter

Example of path: no bound MD(G) < f(n) possible.

Theorem (Khuller, Raghavachari, Rosenfeld, 2002)]

G on n vertices, diameter D, MD(G) = k. Then n < D¥ + k.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

G permutation graph or interval graph, MD(G) = k, diameter D. Then:

n= 0(D?%k?).

Interval graphs:
e Interval in solution defines < D +1 “zones” (left and right) — k(D + 1) zones

e An interval is determined by beginning + end zone: n—k < (k(D 4+ 1))?

Question

Is the bound tight? (There are interval graphs with n = ©(Dk?)).
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Complexity

METRIC DIMENSION)

INPUT: Graph G, integer k.
QUESTION: Is there a resolving set of G of size k7

e polynomial for:
o trees (simple leg rule, Slater 1975)
o outerplanar (Diaz, van Leeuwen, Pottonen, Serna, 2012)
@ bounded cyclomatic number (Epstein, Levin, Woeginger, 2012)
@ cographs (Epstein, Levin, Woeginger, 2012)

e NP-complete for:
o general graphs (Garey & Johnson 1979)
@ planar (Diaz, van Leeuwen, Pottonen, Serna, 2012)
@ bipartite, co-bipartite, line, split (Epstein, Levin, Woeginger, 2012)
@ Gabriel unit disk (Hoffmann & Wanke 2012)
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Complexity

METRIC DIMENSION)

INPUT: Graph G, integer k.
QUESTION: Is there a resolving set of G of size k7

e O(log n)-approximable (SET COVER)

e hard to approximate within o(log n) for:
o general graphs (Beerliova et al., 2006)
@ bipartite subcubic (Hartung & Nichterlein, 2013)

o APX-complete for graphs with min. degree n—k
(Hauptmann, Schmied, Viehmann, 2012)
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Complexity

METRIC DIMENSION)

INPUT: Graph G, integer k.
QUESTION: Is there a resolving set of G of size k7

W][2]-hard for parameter “solution size”, even for bipartite subcubic graphs
(Hartung & Nichterlein, 2013)
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Interval and permutation graphs

G graph of diameter 2. S resolving set of G.
— Every vertex in V(G)\ S is distiguished by its neighborhood within S

Florent Foucaud Identifying codes and metric dimension on selected graph classes 24 / 31
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Concept of locating-dominating sets (similar to identifying codes)
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Concept of locating-dominating sets (similar to identifying codes)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

LOCATING-DOMINATING SET is NP-complete for graphs that are both
interval and permutation.
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Interval and permutation graphs

G graph of diameter 2. S resolving set of G.
— Every vertex in V(G)\ S is distiguished by its neighborhood within S

Concept of locating-dominating sets (similar to identifying codes)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

LOCATING-DOMINATING SET is NP-complete for graphs that are both
interval and permutation.

Reduction from LOCATING-DOMINATING SET to METRIC DIMENSION:

k'=k+2

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

METRIC DIMENSION is NP-complete for graphs that are both interval and
permutation (and have diameter 2).
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Complexity of METRIC DIMENSION
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Cyclomatic number

Question

Complexity of METRIC DIMENSION for graphs of tree-width k7
(open for k =2)
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Cyclomatic number

Question

Complexity of METRIC DIMENSION for graphs of tree-width k7
(open for k =2)

Cyclomatic number of graph G (a.k.a feedback edge set number):
smallest k with a set S of k edges s.t. G— S is a forest.

Remark: cyclomatic number < k = tree-width <2k +1

Question

Complexity of METRIC DIMENSION for graphs of cyclomatic number k?
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Bounded cyclomatic number - complexity

Recursive leg rule:
e Apply simple leg rule - if v has k > 2 legs, select k —1 leg endpoints.
e Prune graph by removing all legs with a selected vertex, replacing them by v.

e Apply recursively.
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Bounded cyclomatic number - complexity

Recursive leg rule:
e Apply simple leg rule - if v has k > 2 legs, select k —1 leg endpoints.
e Prune graph by removing all legs with a selected vertex, replacing them by v.

e Apply recursively.

Proposition (Epstein, Levin, Woeginger, 2012)]

Applying the recursive leg rule creates a computationally equivalent instance.
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Bounded cyclomatic number - complexity

Recursive leg rule:
e Apply simple leg rule - if v has k > 2 legs, select k —1 leg endpoints.
e Prune graph by removing all legs with a selected vertex, replacing them by v.

e Apply recursively.

cross paths /cross vertices

.\

Proposition (Epstein, Levin, Woeginger, 2012)]

Applying the recursive leg rule creates a computationally equivalent instance.

G’: G with all legs removed.
cross vertex of G: degree > 3 vertex in G’

cross path of G: thread between cross vertices
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Bounded cyclomatic number - complexity

G has cyclomatic number k, reduced by recursive leg rule.

Lemma (Epstein, Levin, Woeginger, 2012))

G has at most 3k cross paths.
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Every cross path contains at most 6 “new” vertices in the solution.
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There is an O(n'8) algorithm for graphs with cyclomatic number k.
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Bounded cyclomatic number - complexity

G has cyclomatic number k, reduced by recursive leg rule.

Lemma (Epstein, Levin, Woeginger, 2012))

G has at most 3k cross paths.

Lemma (Epstein, Levin, Woeginger, 2012))

Every cross path contains at most 6 “new” vertices in the solution.

Theorem (Epstein, Levin, Woeginger, 2012)]

There is an O(n'8) algorithm for graphs with cyclomatic number k.

Proposition

e There is an O(n%F) algorithm.
e There is a 9k-approximation algorithm in polynomial time.
e There is a 3-approximation algorithm in FPT time 23kp0(1),
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METRIC DIMENSION: structural parameters
XP
Distance to Vertex Cover Cyclomatic
Clique Number Number
FPT Distance to Distance to
Cluster Linear Forest
stance to Y | Distance to Distance to Feedback Vertex Set
Line Graph Unit Interval Graph Cograph Number

Path-width

Tree-width

Clique-width

Distance to Distance to Distance to
Interval Graph Permutation Graph Bipartite Graph

Degeneracy

—[ NP-hard for small values (not in XP) }
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@ Bounds for other classes? planar, unit disk, line, trapezoid, ...

@ V-C dimension bound for metric dimension?

Complexity of MD+ID for unit interval + bipartite permutation?

Complexity of MD for bounded tree-width (and weaker parameters)?

o Parameterized complexity of MD (parameter “solution size”)? interval,
permutation, chordal, claw-free, planar...
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THANKS FOR YOUR ATTENTION
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