Identifying codes and metric dimension on selected graph classes

Florent Foucaud

University of Johannesburg + Université Paris-Dauphine

joint work with:
George Mertzios (Durham U.), Aline Parreau (U. Liège) Reza Naserasr (U. Paris-Sud), Petru Valicov (ENS Lyon)

LAMSADE, July 2014

Part I: identifying codes

Locating a burglar in a museum

Locating a burglar in a museum

$N[v]=N(v) \cup\{v\}$
$C \subseteq V(G)$ is an identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998): - for every $u \in V, N[v] \cap C \neq \emptyset$ (domination).

- $\forall u \neq v$ of $V, N[u] \cap C \neq N[v] \cap C$ (separation).

Locating a burglar in a museum

$N[v]=N(v) \cup\{v\}$
$C \subseteq V(G)$ is an identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998): - for every $u \in V, N[v] \cap C \neq \emptyset$ (domination).

- $\forall u \neq v$ of $V, N[u] \cap C \neq N[v] \cap C$ (separation).
$\gamma^{\mathrm{ID}}(G)$: identifying code number, minimum size of an identifying code of G.

Locating a burglar in a museum

$N[v]=N(v) \cup\{v\}$
$C \subseteq V(G)$ is an identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998): - for every $u \in V, N[v] \cap C \neq \emptyset$ (domination).

- $\forall u \neq v$ of $V, N[u] \cap C \neq N[v] \cap C$ (separation).
$\gamma^{\text {ID }}(G)$: identifying code number

$$
\gamma(G) \leq \gamma^{\mathbf{I D}}(G)
$$

Locating a burglar in a museum

$N[v]=N(v) \cup\{v\}$
$C \subseteq V(G)$ is an identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998):

- for every $u \in V, N[v] \cap C \neq \emptyset$ (domination).
- $\forall u \neq v$ of $V, N[u] \cap C \neq N[v] \cap C$ (separation).
$\gamma^{\text {ID }}(G)$: identifying code number

$$
\gamma(G) \leq \gamma^{\mathrm{ID}}(G)
$$

Remarks

- Special case of test covers in hypergraphs

Remarks

- Special case of test covers in hypergraphs
- Not always exists!
G has identifying code $\Longleftrightarrow \forall u, v, N[u] \neq N[v]$ (twin-free graph)

Remarks

- Special case of test covers in hypergraphs
- Not always exists!
G has identifying code $\Longleftrightarrow \forall u, v, N[u] \neq N[v]$ (twin-free graph)

Theorem (Karpovsky, Chakrabarty, Levitin, 1998 + Gravier \& Moncel 2007)
Let G be a nonempty graph on n vertices, then

$$
\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\prime \mathrm{D}}(G) \leq n-1
$$

Remarks

- Special case of test covers in hypergraphs
- Not always exists!
G has identifying code $\Longleftrightarrow \forall u, v, N[u] \neq N[v]$ (twin-free graph)

Theorem (Karpovsky, Chakrabarty, Levitin, 1998 + Gravier \& Moncel 2007)

Let G be a nonempty graph on n vertices, then

$$
\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\mathrm{ID}}(G) \leq n-1
$$

$$
\gamma^{\mathrm{ID}}(G)=\log _{2}(n+1)
$$

$\gamma^{\mathrm{ID}}(G)=n-1$

Interval graphs

Definition - Interval graph

Intersection graph of intervals of the real line.

Bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
If G is an interval graph on n vertices, then $\gamma^{\text {ID }}(G)>\sqrt{2 n}$.

Bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
If G is an interval graph on n vertices, then $\gamma^{\text {ID }}(G)>\sqrt{2 n}$.

- Identifying code of size k.
- Define zones using the right points of code intervals.

Bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
If G is an interval graph on n vertices, then $\gamma^{\mathrm{ID}}(G)>\sqrt{2 n}$.

- Identifying code of size k.
- Define zones using the right points of code intervals.
- Each vertex intersects a consecutive set of code vertices when ordered by left points.

Bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
If G is an interval graph on n vertices, then $\gamma^{\mathrm{ID}}(G)>\sqrt{2 n}$.

- Identifying code of size k.
- Define zones using the right points of code intervals.
- Each vertex intersects a consecutive set of code vertices when ordered by left points.

$$
\rightarrow n \leq \sum_{i=1}^{k}(k-i)<\frac{k^{2}}{2}
$$

Bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
If G is an interval graph on n vertices, then $\gamma^{\mathbf{I D}}(G)>\sqrt{2 n}$.

Tight:

Permutation graphs

Definition - Permutation graph

Given two parallel lines A and B : intersection graph of segments joining A and B.

Bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
If G is a permutation graph on n vertices, then $\gamma^{\mathrm{ID}}(G) \geq \sqrt{n+2}$.

Bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
If G is a permutation graph on n vertices, then $\gamma^{\text {ID }}(G) \geq \sqrt{n+2}$.

- Identifying code of size $k: k+1$ "top zones" and $k+1$ "bottom zones"
- Only one segment for one pair of zones

Bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
If G is a permutation graph on n vertices, then $\gamma^{\text {ID }}(G) \geq \sqrt{n+2}$.

- Identifying code of size $k: k+1$ "top zones" and $k+1$ "bottom zones"
- Only one segment for one pair of zones

$$
\rightarrow n \leq(k+1)^{2}+k
$$

Bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
If G is a permutation graph on n vertices, then $\gamma^{\text {ID }}(G) \geq \sqrt{n+2}$.

- Identifying code of size $k: k+1$ "top zones" and $k+1$ "bottom zones"
- Only one segment for one pair of zones

$$
\rightarrow n \leq(k+1)^{2}+k
$$

- Careful counting for the precise bound

Bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
If G is a permutation graph on n vertices, then $\gamma^{\mathrm{ID}}(G) \geq \sqrt{n+2}$.

Tight:

Bounds for subclasses of interval/permutation

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
Let G be a graph on n vertices.

- If G is unit interval, then $\gamma^{\mathrm{ID}}(G) \geq \frac{n+1}{2}$.
- If G is bipartite permutation, then $\gamma^{\mathbf{I D}}(G) \geq \frac{n-2}{3}$.
- If G is a cograph, then $\gamma^{\text {ID }}(G) \geq \frac{n+2}{2}$.

Vapnis-Chervonenkis dimension

Set $X \subseteq V(G)$ is shattered:
for every subset $S \subseteq X$, there is a vertex v with $N[v] \cap X=S$
V-C dimension of G : maximum size of a shattered set in G

Vapnis-Chervonenkis dimension

Set $X \subseteq V(G)$ is shattered:

$$
\text { for every subset } S \subseteq X \text {, there is a vertex } v \text { with } N[v] \cap X=S
$$

V-C dimension of G : maximum size of a shattered set in G

Theorem (Bousquet, Lagoutte, Li, Parreau, Thomassé, Trunck, 2014+)
Let G be a graph with n vertices, V-C dimension $\leq c$. Then $\gamma^{\text {ID }}(G) \geq n^{1 / c}$.
\rightarrow interval graphs $(c=2)$, line graphs $(c=4)$, permutation graphs $(c=3)$, unit disk graphs $(c=3)$, planar graphs $(c=4) \ldots$

Vapnis-Chervonenkis dimension

Set $X \subseteq V(G)$ is shattered:

$$
\text { for every subset } S \subseteq X \text {, there is a vertex } v \text { with } N[v] \cap X=S
$$

V-C dimension of G : maximum size of a shattered set in G

Theorem (Bousquet, Lagoutte, Li, Parreau, Thomassé, Trunck, 2014+)

Let G be a graph with n vertices, V-C dimension $\leq c$. Then $\gamma^{\mathbf{I D}}(G) \geq n^{1 / c}$.
\rightarrow interval graphs $(c=2)$, line graphs $(c=4)$, permutation graphs $(c=3)$, unit disk graphs $(c=3)$, planar graphs $(c=4) \ldots$

But better bounds exist:

- planar graphs: $\gamma^{\mathrm{ID}}(G) \geq \frac{n}{7}$ (Slater \& Rall, 1984)
- line graphs: $\gamma^{I D}(G) \geq \frac{3 \sqrt{2 n}}{4}$ (F., Gravier, Naserasr, Parreau, Valicov, 2013)

Complexity of IDENTIFYING CODE

IDENTIFYING CODE

INPUT: Graph G, integer k.
QUESTION: Is there an identifying code of G of size k ?

- polynomial for graphs of bounded clique-width via MSOL (Courcelle)
- NP-complete for:
- bipartite (Charon, Hudry, Lobstein, 2003)
- planar bipartite unit disk (Müller \& Sereni, 2009)
- planar arbitrary girth (Auger, 2010)
- planar bipartite subcubic (F. 2013)
- co-bipartite, split (F. 2013)
- line (F., Gravier, Naserasr, Parreau, Valicov, 2013)

Complexity of IDENTIFYING CODE

IDENTIFYING CODE

INPUT: Graph G, integer k.
QUESTION: Is there an identifying code of G of size k ?

- $O(\log \Delta)$-approximable (SET COVER)
- constant c-approximation for:
- planar, $c=7$ (Slater, Rall, 1984)
- line, $c=4$ (F., Gravier, Naserasr, Parreau, Valicov, 2013)
- interval, $c=2$ (Bousquet, Lagoutte, Parreau, Thomassé, Trunck, 2014+)
- unit interval, PTAS
- hard to approximate within $o(\log n)$ for:
- general graphs (Laifenfeld, Trachtenberg + Suomela 2007)
- bipartite, split, co-bipartite (F. 2013)
- APX-hard for:
- line (F., Gravier, Naserasr, Parreau, Valicov, 2013)
- subcubic bipartite (F. 2013)

Complexity of IDENTIFYING CODE

IDENTIFYING CODE

INPUT: Graph G, integer k.
QUESTION: Is there an identifying code of G of size k ?

- Trivially FPT for parameter k because $n \leq 2^{k} \rightarrow$ whole graph is kernel.
- Trivial polynomial kernel for interval, permutation, line, planar...

Complexity - Interval and permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
IDENTIFYING CODE is NP-complete for graphs that are both interval and permutation.

Complexity - Interval and permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
IDENTIFYING CODE is NP-complete for graphs that are both interval and permutation.

Reduction from 3-DIMENSIONAL MATCHING:

- INPUT: A, B, C sets and $\mathscr{T} \subset A \times B \times C$ triples
- QUESTION: is there a perfect 3-dimensional matching $M \subset T$, i.e., each element of $A \cup B \cup C$ appears exactly once in M ?

Complexity - Interval and permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
IDENTIFYING CODE is NP-complete for graphs that are both interval and permutation.

Reduction from 3-DIMENSIONAL MATCHING:

- INPUT: A, B, C sets and $\mathscr{T} \subset A \times B \times C$ triples
- QUESTION: is there a perfect 3-dimensional matching $M \subset T$, i.e., each element of $A \cup B \cup C$ appears exactly once in M ?

Main idea: an interval can separate pairs of intervals far away from each other (without affecting what lies in between)

Complexity - gadgets

Dominating gadget: ensure all intervals are dominated and most, separated.

Complexity - gadgets

Dominating gadget: ensure all intervals are dominated and most, separated.

Complexity - transmitters

Transmitter gadget: to separate $\left\{u v^{1}, u v^{2}\right\}$ and $\left\{v w^{1}, v w^{2}\right\}$, either:

1. take only v into solution, or
2. take both u, w - and separate pairs $\left\{x_{1}, x_{2}\right\}$, $\left\{y_{1}, y_{2}\right\},\left\{z_{1}, z_{2}\right\}$ "for free".

Complexity - transmitters

Transmitter gadget: to separate $\left\{u v^{1}, u v^{2}\right\}$ and $\left\{v w^{1}, v w^{2}\right\}$, either:

1. take only v into solution, or
2. take both u, w - and separate pairs $\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\},\left\{z_{1}, z_{2}\right\}$ "for free".

Complexity - reduction

3DM instance on $3 n$ elements, m triples.
\exists 3-dimensional matching $\Longleftrightarrow \gamma^{\prime \mathrm{D}}(G) \leq 94 m+10 n$

triple gadget for triple $\{a, b, c\}$
three element gadgets for a, b and c

Complexity of IDENTIFYING CODE

Unit interval graphs

Ladder graph L_{m} : grid graph $P_{2} \square P_{m}$.
Cycle cover of graph G : set \mathscr{S} of cycles of G s.t. $\cup_{s \in \mathscr{S}} E(S)=E(G)$.

Unit interval graphs

Ladder graph L_{m} : grid graph $P_{2} \square P_{m}$.
Cycle cover of graph G : set \mathscr{S} of cycles of G s.t. $\cup_{s \in \mathscr{S}} E(S)=E(G)$.

LADDER CYCLE COVER

INPUT: integer m, integer k, set \mathscr{S} of cycles of L_{m}.
QUESTION: Is there a cycle cover $\mathscr{S}^{\prime} \subseteq \mathscr{S}$ of L_{m} of size k ?

Unit interval graphs

Ladder graph L_{m} : grid graph $P_{2} \square P_{m}$.
Cycle cover of graph G : set \mathscr{S} of cycles of G s.t. $\cup_{s \in \mathscr{S}} E(S)=E(G)$.

LADDER CYCLE COVER

INPUT: integer m, integer k, set \mathscr{S} of cycles of L_{m}.
QUESTION: Is there a cycle cover $\mathscr{S}^{\prime} \subseteq \mathscr{S}$ of L_{m} of size k ?
Proposition (F., Mertzios, Naserasr, Parreau, Valicov)
IDENTIFYING CODE on unit interval graphs reduces to LADDER CYCLE COVER.

Unit interval graphs

Ladder graph L_{m} : grid graph $P_{2} \square P_{m}$.
Cycle cover of graph G : set \mathscr{S} of cycles of G s.t. $\cup_{s \in \mathscr{S}} E(S)=E(G)$.

LADDER CYCLE COVER

INPUT: integer m, integer k, set \mathscr{S} of cycles of L_{m}.
QUESTION: Is there a cycle cover $\mathscr{S}^{\prime} \subseteq \mathscr{S}$ of L_{m} of size k ?

Proposition (F., Mertzios, Naserasr, Parreau, Valicov)

IDENTIFYING CODE on unit interval graphs reduces to LADDER CYCLE COVER.

Question

Is LADDER CYCLE COVER polynomial-time solvable?

Part II: metric dimension

Determination of Position in 3D euclidean space

GPS: need to know the exact position of 4 satellites + distance to them

Determination of Position in 3D euclidean space

GPS: need to know the exact position of 4 satellites + distance to them

Question

Does the "GPS" approach also work in undirected unweighted graphs?

Metric dimension

Now, $w \in V(G)$ separates $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :

$$
\forall u \neq v \text { in } V(G), \text { there exists } w \in R \text { that separates }\{u, v\}
$$

Metric dimension

Now, $w \in V(G)$ separates $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)

$$
R \subseteq V(G) \text { resolving set of } G \text { : }
$$

$$
\forall u \neq v \text { in } V(G), \text { there exists } w \in R \text { that separates }\{u, v\}
$$

Metric dimension

Now, $w \in V(G)$ separates $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)

$$
R \subseteq V(G) \text { resolving set of } G \text { : }
$$

$$
\forall u \neq v \text { in } V(G), \text { there exists } w \in R \text { that separates }\{u, v\}
$$

Metric dimension

Now, $w \in V(G)$ separates $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that separates $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ separates $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that separates $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ separates $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that separates $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ separates $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)

$$
R \subseteq V(G) \text { resolving set of } G \text { : }
$$

$$
\forall u \neq v \text { in } V(G), \text { there exists } w \in R \text { that separates }\{u, v\}
$$

Metric dimension

Now, $w \in V(G)$ separates $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that separates $\{u, v\}$.

$M D(G)$: metric dimension of G, minimum size of a resolving set of G.

Trees

Proposition

$$
M D(G)=1 \Leftrightarrow G \text { is a path }
$$

Trees

Leg: path with all inner-vertices of degree 2 , endpoints of degree ≥ 3 and 1 .

Trees

Leg: path with all inner-vertices of degree 2 , endpoints of degree ≥ 3 and 1 .

Observation

R resolving set. If v has k legs, at least $k-1$ legs contain a vertex of R.

Trees

Leg: path with all inner-vertices of degree 2 , endpoints of degree ≥ 3 and 1 .

Observation

R resolving set. If v has k legs, at least $k-1$ legs contain a vertex of R.

Simple leg rule: if v has $k \geq 2$ legs, select $k-1$ leg endpoints.

Trees

Leg: path with all inner-vertices of degree 2 , endpoints of degree ≥ 3 and 1 .

Observation

R resolving set. If v has k legs, at least $k-1$ legs contain a vertex of R.

Simple leg rule: if v has $k \geq 2$ legs, select $k-1$ leg endpoints.

Theorem (Slater 1975)

For any tree, the simple leg rule produces an optimal resolving set.

Bounds with diameter

Example of path: no bound $M D(G) \leq f(n)$ possible.

Bounds with diameter

Example of path: no bound $M D(G) \leq f(n)$ possible.
Theorem (Khuller, Raghavachari, Rosenfeld, 2002)
G on n vertices, diameter $D, M D(G)=k$. Then $n \leq D^{k}+k$.

Bounds with diameter

Example of path: no bound $M D(G) \leq f(n)$ possible.
Theorem (Khuller, Raghavachari, Rosenfeld, 2002)
G on n vertices, diameter $D, M D(G)=k$. Then $n \leq D^{k}+k$.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
G permutation graph or interval graph, $M D(G)=k$, diameter D. Then:

$$
n=O\left(D^{2} k^{2}\right)
$$

Interval graphs:

- Interval in solution defines $\leq D+1$ "zones" (left and right) $\rightarrow k(D+1)$ zones
- An interval is determined by beginning + end zone: $n-k \leq(k(D+1))^{2}$

Bounds with diameter

Example of path: no bound $M D(G) \leq f(n)$ possible.
Theorem (Khuller, Raghavachari, Rosenfeld, 2002)
G on n vertices, diameter $D, M D(G)=k$. Then $n \leq D^{k}+k$.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
G permutation graph or interval graph, $M D(G)=k$, diameter D. Then:

$$
n=O\left(D^{2} k^{2}\right)
$$

Interval graphs:

- Interval in solution defines $\leq D+1$ "zones" (left and right) $\rightarrow k(D+1)$ zones
- An interval is determined by beginning + end zone: $n-k \leq(k(D+1))^{2}$

Question

Is the bound tight? (There are interval graphs with $n=\Theta\left(D k^{2}\right)$).

METRIC DIMENSION

INPUT: Graph G, integer k.
QUESTION: Is there a resolving set of G of size k ?

- polynomial for:
- trees (simple leg rule, Slater 1975)
- outerplanar (Díaz, van Leeuwen, Pottonen, Serna, 2012)
- bounded cyclomatic number (Epstein, Levin, Woeginger, 2012)
- cographs (Epstein, Levin, Woeginger, 2012)
- NP-complete for:
- general graphs (Garey \& Johnson 1979)
- planar (Díaz, van Leeuwen, Pottonen, Serna, 2012)
- bipartite, co-bipartite, line, split (Epstein, Levin, Woeginger, 2012)
- Gabriel unit disk (Hoffmann \& Wanke 2012)

METRIC DIMENSION

INPUT: Graph G, integer k.
QUESTION: Is there a resolving set of G of size k ?

- $O(\log n)$-approximable (SET COVER)
- hard to approximate within $o(\log n)$ for:
- general graphs (Beerliova et al., 2006)
- bipartite subcubic (Hartung \& Nichterlein, 2013)
- APX-complete for graphs with min. degree $n-k$
(Hauptmann, Schmied, Viehmann, 2012)

Complexity

METRIC DIMENSION

INPUT: Graph G, integer k.
QUESTION: Is there a resolving set of G of size k ?

W[2]-hard for parameter "solution size", even for bipartite subcubic graphs
(Hartung \& Nichterlein, 2013)

Interval and permutation graphs

G graph of diameter 2. S resolving set of G.
\rightarrow Every vertex in $V(G) \backslash S$ is distiguished by its neighborhood within S

Interval and permutation graphs

G graph of diameter 2. S resolving set of G.
\rightarrow Every vertex in $V(G) \backslash S$ is distiguished by its neighborhood within S
Concept of locating-dominating sets (similar to identifying codes)

Interval and permutation graphs

G graph of diameter 2. S resolving set of G.
\rightarrow Every vertex in $V(G) \backslash S$ is distiguished by its neighborhood within S
Concept of locating-dominating sets (similar to identifying codes)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

Interval and permutation graphs

G graph of diameter $2 . S$ resolving set of G.
\rightarrow Every vertex in $V(G) \backslash S$ is distiguished by its neighborhood within S
Concept of locating-dominating sets (similar to identifying codes)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

Reduction from LOCATING-DOMINATING SET to METRIC DIMENSION:


```
Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
```

METRIC DIMENSION is NP-complete for graphs that are both interval and permutation (and have diameter 2).

Complexity of METRIC DIMENSION

Cyclomatic number

Question

Complexity of METRIC DIMENSION for graphs of tree-width k ? (open for $k=2$)

Cyclomatic number

Question

Complexity of METRIC DIMENSION for graphs of tree-width k ? (open for $k=2$)

Cyclomatic number of graph G (a.k.a feedback edge set number): smallest k with a set S of k edges s.t. $G-S$ is a forest.

Cyclomatic number

Question

Complexity of METRIC DIMENSION for graphs of tree-width k ? (open for $k=2$)

Cyclomatic number of graph G (a.k.a feedback edge set number): smallest k with a set S of k edges s.t. $G-S$ is a forest.

Remark: cyclomatic number $\leq k \Rightarrow$ tree-width $\leq 2 k+1$

Cyclomatic number

Question

Complexity of METRIC DIMENSION for graphs of tree-width k ? (open for $k=2$)

Cyclomatic number of graph G (a.k.a feedback edge set number): smallest k with a set S of k edges s.t. $G-S$ is a forest.

Remark: cyclomatic number $\leq k \Rightarrow$ tree-width $\leq 2 k+1$

Question

Complexity of METRIC DIMENSION for graphs of cyclomatic number k ?

Bounded cyclomatic number - complexity

Recursive leg rule:

- Apply simple leg rule - if v has $k \geq 2$ legs, select $k-1$ leg endpoints.
- Prune graph by removing all legs with a selected vertex, replacing them by v.
- Apply recursively.

Bounded cyclomatic number - complexity

Recursive leg rule:

- Apply simple leg rule - if v has $k \geq 2$ legs, select $k-1$ leg endpoints.
- Prune graph by removing all legs with a selected vertex, replacing them by v.
- Apply recursively.

Bounded cyclomatic number - complexity

Recursive leg rule:

- Apply simple leg rule - if v has $k \geq 2$ legs, select $k-1$ leg endpoints.
- Prune graph by removing all legs with a selected vertex, replacing them by v.
- Apply recursively.

Bounded cyclomatic number - complexity

Recursive leg rule:

- Apply simple leg rule - if v has $k \geq 2$ legs, select $k-1$ leg endpoints.
- Prune graph by removing all legs with a selected vertex, replacing them by v.
- Apply recursively.

Bounded cyclomatic number - complexity

Recursive leg rule:

- Apply simple leg rule - if v has $k \geq 2$ legs, select $k-1$ leg endpoints.
- Prune graph by removing all legs with a selected vertex, replacing them by v.
- Apply recursively.

Proposition (Epstein, Levin, Woeginger, 2012)

Applying the recursive leg rule creates a computationally equivalent instance.

Bounded cyclomatic number - complexity

Recursive leg rule:

- Apply simple leg rule - if v has $k \geq 2$ legs, select $k-1$ leg endpoints.
- Prune graph by removing all legs with a selected vertex, replacing them by v.
- Apply recursively.

Proposition (Epstein, Levin, Woeginger, 2012)
Applying the recursive leg rule creates a computationally equivalent instance.
$G^{\prime}: G$ with all legs removed.

Bounded cyclomatic number - complexity

Recursive leg rule:

- Apply simple leg rule - if v has $k \geq 2$ legs, select $k-1$ leg endpoints.
- Prune graph by removing all legs with a selected vertex, replacing them by v.
- Apply recursively.

Proposition (Epstein, Levin, Woeginger, 2012)
Applying the recursive leg rule creates a computationally equivalent instance.
$G^{\prime}: G$ with all legs removed.
cross vertex of G : degree ≥ 3 vertex in G^{\prime}
cross path of G : thread between cross vertices

Bounded cyclomatic number - complexity

G has cyclomatic number k, reduced by recursive leg rule.
Lemma (Epstein, Levin, Woeginger, 2012)
G has at most $3 k$ cross paths.

Bounded cyclomatic number - complexity

G has cyclomatic number k, reduced by recursive leg rule.
Lemma (Epstein, Levin, Woeginger, 2012)
G has at most $3 k$ cross paths.

Lemma (Epstein, Levin, Woeginger, 2012)
Every cross path contains at most 6 "new" vertices in the solution.

Bounded cyclomatic number - complexity

G has cyclomatic number k, reduced by recursive leg rule.
Lemma (Epstein, Levin, Woeginger, 2012)
G has at most $3 k$ cross paths.

Lemma (Epstein, Levin, Woeginger, 2012)
Every cross path contains at most 6 "new" vertices in the solution.

Theorem (Epstein, Levin, Woeginger, 2012)
There is an $O\left(n^{18 k}\right)$ algorithm for graphs with cyclomatic number k.

Bounded cyclomatic number - complexity

G has cyclomatic number k, reduced by recursive leg rule.
Lemma (Epstein, Levin, Woeginger, 2012)
G has at most $3 k$ cross paths.

Lemma (Epstein, Levin, Woeginger, 2012)
Every cross path contains at most 6 "new" vertices in the solution.

Theorem (Epstein, Levin, Woeginger, 2012)
There is an $O\left(n^{18 k}\right)$ algorithm for graphs with cyclomatic number k.

Proposition

- There is an $O\left(n^{9 k}\right)$ algorithm.
- There is a $9 k$-approximation algorithm in polynomial time.
- There is a 3-approximation algorithm in FPT time $2^{3 k} n^{O}(1)$.

METRIC DIMENSION: structural parameters

Perspectives

- Bounds for other classes? planar, unit disk, line, trapezoid, ...
- V-C dimension bound for metric dimension?
- Complexity of MD+ID for unit interval + bipartite permutation?
- Complexity of MD for bounded tree-width (and weaker parameters)?
- Parameterized complexity of MD (parameter "solution size")? interval, permutation, chordal, claw-free, planar...

THANKS FOR YOUR ATTENTION

