Identifying codes and metric dimension on selected graph classes

Florent Foucaud University of Johannesburg + Université Paris-Dauphine

joint work with: George Mertzios (Durham U.), Aline Parreau (U. Liège) Reza Naserasr (U. Paris-Sud), Petru Valicov (ENS Lyon)

LAMSADE, July 2014

Part I: identifying codes

 $N[v] = N(v) \cup \{v\}$

 $C \subseteq V(G)$ is an identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998):

- for every $u \in V$, $N[v] \cap C \neq \emptyset$ (domination).
- $\forall u \neq v$ of V, $N[u] \cap C \neq N[v] \cap C$ (separation).

 $N[v] = N(v) \cup \{v\}$

 $C \subseteq V(G)$ is an identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998):

- for every $u \in V$, $N[v] \cap C \neq \emptyset$ (domination).
- $\forall u \neq v$ of V, $N[u] \cap C \neq N[v] \cap C$ (separation).

 $\gamma^{ID}(G)$: identifying code number , minimum size of an identifying code of G.

 $N[v] = N(v) \cup \{v\}$

 $C \subseteq V(G)$ is an identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998):

- for every $u \in V$, $N[v] \cap C \neq \emptyset$ (domination).
- $\forall u \neq v$ of V, $N[u] \cap C \neq N[v] \cap C$ (separation).

 $\gamma^{ID}(G)$: identifying code number

 $\gamma(G) \leq \gamma^{\mathsf{ID}}(G)$

 $N[v] = N(v) \cup \{v\}$

 $C \subseteq V(G)$ is an identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998):

- for every $u \in V$, $N[v] \cap C \neq \emptyset$ (domination).
- $\forall u \neq v$ of V, $N[u] \cap C \neq N[v] \cap C$ (separation).

 $\gamma^{ID}(G)$: identifying code number

 $\gamma(G) \leq \gamma^{\mathsf{ID}}(G)$

• Special case of test covers in hypergraphs

- Special case of test covers in hypergraphs
- Not always exists!
- G has identifying code $\iff \forall u, v, N[u] \neq N[v]$ (twin-free graph)

- Special case of test covers in hypergraphs
- Not always exists!
- G has identifying code $\iff \forall u, v, N[u] \neq N[v]$ (twin-free graph)

Theorem (Karpovsky, Chakrabarty, Levitin, 1998 + Gravier & Moncel 2007)

Let G be a nonempty graph on n vertices, then

$$\lceil \log_2(n+1) \rceil \leq \gamma^{\mathsf{ID}}(G) \leq n-1$$

- Special case of test covers in hypergraphs
- Not always exists!
- G has identifying code $\iff \forall u, v, N[u] \neq N[v]$ (twin-free graph)

Theorem (Karpovsky, Chakrabarty, Levitin, 1998 + Gravier & Moncel 2007)

Let G be a nonempty graph on n vertices, then

 $\lceil \log_2(n+1) \rceil \leq \gamma^{\mathsf{ID}}(G) \leq n-1$

Definition - Interval graph

Intersection graph of intervals of the real line.

If G is an interval graph on n vertices, then $\gamma^{\text{ID}}(G) > \sqrt{2n}$.

- Identifying code of size k.
- Define zones using the right points of code intervals.

If G is an interval graph on n vertices, then $\gamma^{ID}(G) > \sqrt{2n}$.

- Identifying code of size k.
- Define zones using the right points of code intervals.
- Each vertex intersects a consecutive set of code vertices when ordered by left points.

If G is an interval graph on n vertices, then $\gamma^{ID}(G) > \sqrt{2n}$.

- Identifying code of size k.
- Define zones using the right points of code intervals.
- Each vertex intersects a consecutive set of code vertices when ordered by left points.

$$\rightarrow n \leq \sum_{i=1}^{k} (k-i) < \frac{k^2}{2}$$

Bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

If G is an interval graph on n vertices, then $\gamma^{ID}(G) > \sqrt{2n}$.

Tight:

Definition - Permutation graph

Given two parallel lines A and B: intersection graph of segments joining A and B.

If G is a permutation graph on n vertices, then $\gamma^{ID}(G) \ge \sqrt{n+2}$.

- Identifying code of size k: k+1 "top zones" and k+1 "bottom zones"
- Only one segment for one pair of zones

- Identifying code of size k: k+1 "top zones" and k+1 "bottom zones"
- Only one segment for one pair of zones

$$\rightarrow n \leq (k+1)^2 + k$$

- Identifying code of size k: k+1 "top zones" and k+1 "bottom zones"
- Only one segment for one pair of zones

 $\rightarrow n \leq (k+1)^2 + k$

• Careful counting for the precise bound

If G is a permutation graph on n vertices, then $\gamma^{ID}(G) \ge \sqrt{n+2}$.

Tight:

Let G be a graph on n vertices.

- If G is unit interval, then $\gamma^{\text{ID}}(G) \geq \frac{n+1}{2}$.
- If G is bipartite permutation, then $\gamma^{ID}(G) \geq \frac{n-2}{3}$.
- If G is a cograph, then $\gamma^{ID}(G) \geq \frac{n+2}{2}$.

Set $X \subseteq V(G)$ is shattered:

for every subset $S \subseteq X$, there is a vertex v with $N[v] \cap X = S$

V-C dimension of G: maximum size of a shattered set in G

Set $X \subseteq V(G)$ is shattered:

for every subset $S \subseteq X$, there is a vertex v with $N[v] \cap X = S$

V-C dimension of G: maximum size of a shattered set in G

Theorem (Bousquet, Lagoutte, Li, Parreau, Thomassé, Trunck, 2014+)

Let G be a graph with n vertices, V-C dimension $\leq c$. Then $\gamma^{\text{ID}}(G) \geq n^{1/c}$.

 \rightarrow interval graphs (c = 2), line graphs (c = 4), permutation graphs (c = 3), unit disk graphs (c = 3), planar graphs (c = 4)...

Set $X \subseteq V(G)$ is shattered:

for every subset $S \subseteq X$, there is a vertex v with $N[v] \cap X = S$

V-C dimension of G: maximum size of a shattered set in G

Theorem (Bousquet, Lagoutte, Li, Parreau, Thomassé, Trunck, 2014+)

Let G be a graph with n vertices, V-C dimension $\leq c$. Then $\gamma^{\mathsf{ID}}(G) \geq n^{1/c}$.

 \rightarrow interval graphs (c = 2), line graphs (c = 4), permutation graphs (c = 3), unit disk graphs (c = 3), planar graphs (c = 4)...

But better bounds exist:

- planar graphs: $\gamma^{\mathsf{ID}}(G) \geq \frac{n}{7}$ (Slater & Rall, 1984)
- line graphs: $\gamma^{ID}(G) \geq \frac{3\sqrt{2n}}{4}$ (F., Gravier, Naserasr, Parreau, Valicov, 2013)

IDENTIFYING CODE

INPUT: Graph G, integer k. **QUESTION**: Is there an identifying code of G of size k?

- polynomial for graphs of bounded clique-width via MSOL (Courcelle)
- NP-complete for:
 - bipartite (Charon, Hudry, Lobstein, 2003)
 - planar bipartite unit disk (Müller & Sereni, 2009)
 - planar arbitrary girth (Auger, 2010)
 - planar bipartite subcubic (F. 2013)
 - co-bipartite, split (F. 2013)
 - line (F., Gravier, Naserasr, Parreau, Valicov, 2013)

IDENTIFYING CODE

INPUT: Graph G, integer k. **QUESTION**: Is there an identifying code of G of size k?

- $O(\log \Delta)$ -approximable (SET COVER)
- constant *c*-approximation for:
 - planar, c = 7 (Slater, Rall, 1984)
 - line, c = 4 (F., Gravier, Naserasr, Parreau, Valicov, 2013)
 - interval, c = 2 (Bousquet, Lagoutte, Parreau, Thomassé, Trunck, 2014+)
 - unit interval, PTAS
- hard to approximate within $o(\log n)$ for:
 - general graphs (Laifenfeld, Trachtenberg + Suomela 2007)
 - bipartite, split, co-bipartite (F. 2013)
- APX-hard for:
 - line (F., Gravier, Naserasr, Parreau, Valicov, 2013)
 - subcubic bipartite (F. 2013)

IDENTIFYING CODE

INPUT: Graph G, integer k. **QUESTION**: Is there an identifying code of G of size k?

- Trivially FPT for parameter k because $n \leq 2^k \rightarrow$ whole graph is kernel.
- Trivial *polynomial* kernel for interval, permutation, line, planar...

 $\ensuremath{\mathsf{IDENTIFYING}}$ CODE is NP-complete for graphs that are both interval and permutation.
Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

IDENTIFYING CODE is NP-complete for graphs that are both interval and permutation.

Reduction from 3-DIMENSIONAL MATCHING:

- INPUT: A, B, C sets and $\mathscr{T} \subset A \times B \times C$ triples
- QUESTION: is there a perfect 3-dimensional matching $M \subset T$, i.e., each element of $A \cup B \cup C$ appears exactly once in M?

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

IDENTIFYING CODE is NP-complete for graphs that are both interval and permutation.

Reduction from 3-DIMENSIONAL MATCHING:

- INPUT: A, B, C sets and $\mathscr{T} \subset A \times B \times C$ triples
- QUESTION: is there a perfect 3-dimensional matching $M \subset T$, i.e., each element of $A \cup B \cup C$ appears exactly once in M?

Main idea: an interval can separate pairs of intervals far away from each other (without affecting what lies in between)

Dominating gadget: ensure all intervals are dominated and most, separated.

Dominating gadget: ensure all intervals are dominated and most, separated.

Complexity - transmitters

Transmitter gadget: to separate $\{uv^1, uv^2\}$ and $\{vw^1, vw^2\}$, either:

- 1. take only v into solution, or
- 2. take both u, w and separate pairs $\{x_1, x_2\}, \{y_1, y_2\}, \{z_1, z_2\}$ "for free".

Complexity - transmitters

Transmitter gadget: to separate $\{uv^1, uv^2\}$ and $\{vw^1, vw^2\}$, either:

- 1. take only v into solution, or
- 2. take both u, w and separate pairs $\{x_1, x_2\}, \{y_1, y_2\}, \{z_1, z_2\}$ "for free".

3DM instance on 3n elements, m triples.

 \exists 3-dimensional matching $\iff \gamma^{ID}(G) \le 94m + 10n$

three element gadgets for a, b and c

Complexity of IDENTIFYING CODE

Ladder graph L_m : grid graph $P_2 \Box P_m$.

Cycle cover of graph G: set \mathscr{S} of cycles of G s.t. $\bigcup_{S \in \mathscr{S}} E(S) = E(G)$.

Ladder graph L_m : grid graph $P_2 \Box P_m$.

Cycle cover of graph G: set \mathscr{S} of cycles of G s.t. $\bigcup_{S \in \mathscr{S}} E(S) = E(G)$.

Ladder graph L_m : grid graph $P_2 \Box P_m$.

Cycle cover of graph G: set \mathscr{S} of cycles of G s.t. $\bigcup_{S \in \mathscr{S}} E(S) = E(G)$.

reduces to LADDER CYCLE COVER.

Ladder graph L_m : grid graph $P_2 \Box P_m$.

Cycle cover of graph G: set \mathscr{S} of cycles of G s.t. $\bigcup_{S \in \mathscr{S}} E(S) = E(G)$.

Part II: metric dimension

Determination of Position in 3D euclidean space

GPS: need to know the exact position of 4 satellites + distance to them

Determination of Position in 3D euclidean space

GPS: need to know the exact position of 4 satellites + distance to them

Now, $w \in V(G)$ separates $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ separates $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ separates $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ separates $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ separates $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ separates $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ separates $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ separates $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G: $\forall u \neq v$ in V(G), there exists $w \in R$ that separates $\{u, v\}$.

MD(G): metric dimension of G, minimum size of a resolving set of G.

Leg: path with all inner-vertices of degree 2, endpoints of degree \geq 3 and 1.

Leg: path with all inner-vertices of degree 2, endpoints of degree \geq 3 and 1.

Observation

R resolving set. If v has k legs, at least k-1 legs contain a vertex of R.

Leg: path with all inner-vertices of degree 2, endpoints of degree \geq 3 and 1.

Observation

R resolving set. If v has k legs, at least k-1 legs contain a vertex of R.

Simple leg rule: if v has $k \ge 2$ legs, select k-1 leg endpoints.

Leg: path with all inner-vertices of degree 2, endpoints of degree \geq 3 and 1.

Observation

R resolving set. If v has k legs, at least k-1 legs contain a vertex of R.

Simple leg rule: if v has $k \ge 2$ legs, select k-1 leg endpoints.

Theorem (Slater 1975)

For any tree, the simple leg rule produces an optimal resolving set.

Example of path: no bound $MD(G) \leq f(n)$ possible.

Bounds with diameter

Example of path: no bound $MD(G) \leq f(n)$ possible.

Theorem (Khuller, Raghavachari, Rosenfeld, 2002)

G on n vertices, diameter D, MD(G) = k. Then $n \le D^k + k$.

Example of path: no bound $MD(G) \leq f(n)$ possible.

Theorem (Khuller, Raghavachari, Rosenfeld, 2002)

G on n vertices, diameter D, MD(G) = k. Then $n \le D^k + k$.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

G permutation graph or interval graph, MD(G) = k, diameter D. Then:

 $n = O(D^2k^2).$

Interval graphs:

- Interval in solution defines $\leq D+1$ "zones" (left and right) $\rightarrow k(D+1)$ zones
- An interval is determined by beginning + end zone: $n-k \leq (k(D+1))^2$

Example of path: no bound $MD(G) \leq f(n)$ possible.

Theorem (Khuller, Raghavachari, Rosenfeld, 2002)

G on n vertices, diameter D, MD(G) = k. Then $n \le D^k + k$.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

G permutation graph or interval graph, MD(G) = k, diameter D. Then:

$$n = O(D^2k^2).$$

Interval graphs:

- Interval in solution defines $\leq D+1$ "zones" (left and right) $\rightarrow k(D+1)$ zones
- An interval is determined by beginning + end zone: $n-k \leq (k(D+1))^2$

Question

Is the bound tight? (There are interval graphs with $n = \Theta(Dk^2)$).

METRIC DIMENSION

INPUT: Graph G, integer k. **QUESTION**: Is there a resolving set of G of size k?

- polynomial for:
 - trees (simple leg rule, Slater 1975)
 - outerplanar (Díaz, van Leeuwen, Pottonen, Serna, 2012)
 - bounded cyclomatic number (Epstein, Levin, Woeginger, 2012)
 - cographs (Epstein, Levin, Woeginger, 2012)
- NP-complete for:
 - general graphs (Garey & Johnson 1979)
 - planar (Díaz, van Leeuwen, Pottonen, Serna, 2012)
 - bipartite, co-bipartite, line, split (Epstein, Levin, Woeginger, 2012)
 - Gabriel unit disk (Hoffmann & Wanke 2012)

METRIC DIMENSION

INPUT: Graph G, integer k. **QUESTION**: Is there a resolving set of G of size k?

- O(log n)-approximable (SET COVER)
- hard to approximate within $o(\log n)$ for:
 - general graphs (Beerliova et al., 2006)
 - bipartite subcubic (Hartung & Nichterlein, 2013)
- APX-complete for graphs with min. degree n-k

(Hauptmann, Schmied, Viehmann, 2012)

METRIC DIMENSION

INPUT: Graph G, integer k. **QUESTION**: Is there a resolving set of G of size k?

W[2]-hard for parameter "solution size", even for bipartite subcubic graphs (Hartung & Nichterlein, 2013)

Interval and permutation graphs

G graph of diameter 2. S resolving set of G.

 \rightarrow Every vertex in $V(G) \setminus S$ is distiguished by its neighborhood within S
Interval and permutation graphs

G graph of diameter 2. S resolving set of G.

ightarrow Every vertex in $V(G) \setminus S$ is distiguished by its neighborhood within S

Concept of locating-dominating sets (similar to identifying codes)

Interval and permutation graphs

G graph of diameter 2. S resolving set of G.

 \rightarrow Every vertex in $V(G) \setminus S$ is distiguished by its neighborhood within S

Concept of locating-dominating sets (similar to identifying codes)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

Interval and permutation graphs

G graph of diameter 2. S resolving set of G.

 \rightarrow Every vertex in $V(G) \setminus S$ is distiguished by its neighborhood within S

Concept of locating-dominating sets (similar to identifying codes)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

Reduction from LOCATING-DOMINATING SET to METRIC DIMENSION:

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

METRIC DIMENSION is NP-complete for graphs that are both interval and permutation (and have diameter 2).

Complexity of METRIC DIMENSION

Question Complexity of METRIC DIMENSION for graphs of tree-width k? (open for k = 2)

Question

Complexity of METRIC DIMENSION for graphs of tree-width k? (open for k = 2)

Cyclomatic number of graph G (a.k.a feedback edge set number): smallest k with a set S of k edges s.t. G - S is a forest.

Question

Complexity of METRIC DIMENSION for graphs of tree-width k? (open for k = 2)

Cyclomatic number of graph G (a.k.a feedback edge set number): smallest k with a set S of k edges s.t. G - S is a forest.

Remark: cyclomatic number $\leq k \Rightarrow$ tree-width $\leq 2k + 1$

Question

Complexity of METRIC DIMENSION for graphs of tree-width k? (open for k = 2)

Cyclomatic number of graph G (a.k.a feedback edge set number): smallest k with a set S of k edges s.t. G - S is a forest.

Remark: cyclomatic number $\leq k \Rightarrow$ tree-width $\leq 2k + 1$

Question

Complexity of METRIC DIMENSION for graphs of cyclomatic number k?

- Apply simple leg rule if v has $k \ge 2$ legs, select k-1 leg endpoints.
- Prune graph by removing all legs with a selected vertex, replacing them by v.
- Apply recursively.

- Apply simple leg rule if v has $k \ge 2$ legs, select k-1 leg endpoints.
- Prune graph by removing all legs with a selected vertex, replacing them by v.
- Apply recursively.

- Apply simple leg rule if v has $k \ge 2$ legs, select k-1 leg endpoints.
- Prune graph by removing all legs with a selected vertex, replacing them by v.
- Apply recursively.

- Apply simple leg rule if v has $k \ge 2$ legs, select k-1 leg endpoints.
- Prune graph by removing all legs with a selected vertex, replacing them by v.
- Apply recursively.

- Apply simple leg rule if v has $k \ge 2$ legs, select k-1 leg endpoints.
- Prune graph by removing all legs with a selected vertex, replacing them by v.
- Apply recursively.

Proposition (Epstein, Levin, Woeginger, 2012)

Applying the recursive leg rule creates a computationally equivalent instance.

- Apply simple leg rule if v has $k \ge 2$ legs, select k-1 leg endpoints.
- Prune graph by removing all legs with a selected vertex, replacing them by v.
- Apply recursively.

Proposition (Epstein, Levin, Woeginger, 2012)

Applying the recursive leg rule creates a computationally equivalent instance.

G': G with all legs removed.

- Apply simple leg rule if v has $k \ge 2$ legs, select k-1 leg endpoints.
- Prune graph by removing all legs with a selected vertex, replacing them by v.
- Apply recursively.

Proposition (Epstein, Levin, Woeginger, 2012)

Applying the recursive leg rule creates a computationally equivalent instance.

G': G with all legs removed.

```
cross vertex of G: degree \geq 3 vertex in G'
```

cross path of G: thread between cross vertices

G has cyclomatic number k, reduced by recursive leg rule.

Lemma (Epstein, Levin, Woeginger, 2012)

G has at most 3k cross paths.

G has cyclomatic number k, reduced by recursive leg rule.

Lemma (Epstein, Levin, Woeginger, 2012)

G has at most 3k cross paths.

Lemma (Epstein, Levin, Woeginger, 2012)

Every cross path contains at most 6 "new" vertices in the solution.

G has cyclomatic number k, reduced by recursive leg rule.

Lemma (Epstein, Levin, Woeginger, 2012)

G has at most 3k cross paths.

Lemma (Epstein, Levin, Woeginger, 2012)

Every cross path contains at most 6 "new" vertices in the solution.

Theorem (Epstein, Levin, Woeginger, 2012)

There is an $O(n^{18k})$ algorithm for graphs with cyclomatic number k.

G has cyclomatic number k, reduced by recursive leg rule.

Lemma (Epstein, Levin, Woeginger, 2012)

G has at most 3k cross paths.

Lemma (Epstein, Levin, Woeginger, 2012)

Every cross path contains at most 6 "new" vertices in the solution.

Theorem (Epstein, Levin, Woeginger, 2012)

There is an $O(n^{18k})$ algorithm for graphs with cyclomatic number k.

Proposition

- There is an $O(n^{9k})$ algorithm.
- There is a 9k-approximation algorithm in polynomial time.
- There is a 3-approximation algorithm in FPT time $2^{3k} n^{O(1)}$.

- Bounds for other classes? planar, unit disk, line, trapezoid,
- V-C dimension bound for metric dimension?
- Complexity of MD+ID for unit interval + bipartite permutation?
- Complexity of MD for bounded tree-width (and weaker parameters)?
- Parameterized complexity of MD (parameter "solution size")? interval, permutation, chordal, claw-free, planar...

THANKS FOR YOUR ATTENTION

