Identifying codes in graphs

Problems from the other side of the Pyrenees

Florent Foucaud

Combgraph seminar

February 21st, 2013

Graph G = (V, E). V: vertices (rooms), $E \subseteq V \times V$: edges (doors)

Graph G = (V, E). V: vertices (rooms), $E \subseteq V \times V$: edges (doors) Motion detector: detects intruder in its room or in adjacent rooms

Graph G = (V, E). V: vertices (rooms), $E \subseteq V \times V$: edges (doors) Motion detector: detects intruder in its room or in adjacent rooms

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

• C is a **dominating set**: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and

• C is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text{hitting symmetric differences}$

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow hitting symmetric differences$

Goal: minimize number of detectors

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: ∀u ≠ v of V(G), N[u] ∩ C ≠ N[v] ∩ C
 Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text{hitting symmetric differences}$

Goal: minimize number of detectors

 $\gamma^{\text{\tiny ID}}(G)$: minimum size of an identifying code in G

 Remark

 Not all graphs have an identifying code!

 Twins = pair u, v such that N[u] = N[v].

 u

 v

Bounds on $\gamma^{\scriptscriptstyle (D)}(G)$

n: number of vertices

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

G identifiable graph on n vertices:

 $\lceil \log_2(n+1) \rceil \leq \gamma^{\text{\tiny ID}}(G)$

Bounds on $\gamma^{\scriptscriptstyle (D)}(G)$

n: number of vertices

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

G identifiable graph on n vertices:

$$\lceil \log_2(n+1)
ceil \leq \gamma^{\scriptscriptstyle ext{
m ID}}(\mathit{G})$$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

$$\gamma^{\text{\tiny{ID}}}(G) \leq n-1$$

Bounds on $\gamma^{\scriptscriptstyle (D)}(G)$

n: number of vertices

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

G identifiable graph on n vertices:

$$\lceil \log_2(n+1)
ceil \leq \gamma^{\scriptscriptstyle ext{
m ID}}(\mathit{G})$$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

$$\gamma^{\scriptscriptstyle {\rm ID}}(G) \leq n-1$$

$$\gamma^{\text{\tiny ID}}(G) = n \Leftrightarrow G$$
 has no edges

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- *C* is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text{hitting symmetric differences}$

Theorem

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- *C* is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text{hitting symmetric differences}$

Theorem

 ${{\it G}}$ identifiable, ${\it n}$ vertices, some edges: $\lceil \log_2(n+1)\rceil \leq \gamma^{\scriptscriptstyle \rm ID}({{\it G}}) \leq n-1$

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- *C* is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text{hitting symmetric differences}$

Theorem

$$\gamma^{\scriptscriptstyle (\mathsf{D})}(G) = \log_2(n+1)$$

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- *C* is a **separating code**: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text{hitting symmetric differences}$

Theorem

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow$ hitting symmetric differences

Theorem

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- *C* is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text{hitting symmetric differences}$

Theorem

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- *C* is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow$ hitting symmetric differences

Theorem

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- *C* is a **separating code**: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text{hitting symmetric differences}$

Theorem

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- *C* is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow$ hitting symmetric differences

Theorem

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- *C* is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow$ hitting symmetric differences

Theorem

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- *C* is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow$ hitting symmetric differences

Theorem

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- *C* is a **separating code**: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text{hitting symmetric differences}$

Theorem

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- *C* is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow$ hitting symmetric differences

Theorem

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

$$\gamma^{\text{\tiny{ID}}}(G) \leq n-1$$

(Question)

What are the graphs G with n vertices and $\gamma^{\text{\tiny ID}}(G) = n - 1$?

u, v such that $N[v] \ominus N[u] = \{f\}$:

f belongs to any identifying code

$$\rightarrow$$
 f forced by *u*, *v*.

Special path powers: $A_k = P_{2k}^{k-1}$

 $A_2 = P_4$

 $A_3 = P_6^2$

 $A_4 = P_8^3$

Special path powers: $A_k = P_{2k}^{k-1}$

 $A_2 = P_4$

 $A_3 = P_6^2$

 $A_4 = P_8^3$

Special path powers: $A_k = P_{2k}^{k-1}$

 $A_2 = P_4$

 $A_3 = P_6^2$

 $A_4 = P_8^3$

Special path powers: $A_k = P_{2k}^{k-1}$

Special path powers: $A_k = P_{2k}^{k-1}$

Constructions using joins

Two graphs A_k and $A_{k'}$

Join: add all edges between them

Join the new graph to two non-adjacent vertices $(\overline{K_2})$

Join the new graph to two non-adjacent vertices, again

Finally, add a universal vertex

A characterization

(1) stars

(2)
$$A_k = P_{2k}^{k-1}$$

- (3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_2}$
- (4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

G connected identifiable graph, n vertices:

$$\gamma^{\scriptscriptstyle {
m ID}}({\it G})={\it n}-1 \Leftrightarrow {\it G}\in(1),$$
 (2), (3) or (4)

A characterization

(1) stars

(2)
$$A_k = P_{2k}^{k-1}$$

- (3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_2}$
- (4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

G connected identifiable graph, n vertices:

$$\gamma^{\scriptscriptstyle {
m ID}}({\it G})={\it n}-1 \Leftrightarrow {\it G}\in(1),$$
 (2), (3) or (4)

Observation

All these graphs have maximum degree n-1 or n-2

The maximum degree

maximum degree of G: maximum number of neighbours of a vertex in G

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

G identifiable graph, n vertices, maximum degree Δ :

$$rac{2n}{\Delta+2} \leq \gamma^{\text{ID}}(G)$$

maximum degree of G: maximum number of neighbours of a vertex in G

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

G identifiable graph, n vertices, maximum degree Δ :

$$rac{2n}{\Delta+2} \leq \gamma^{\text{ID}}(G)$$

Theorem (F., Klasing, Kosowski, 2009)

Equality if and only if G can be constructed as follows:

• Take Δ -regular graph H

maximum degree of G: maximum number of neighbours of a vertex in G

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

G identifiable graph, n vertices, maximum degree Δ :

$$rac{2n}{\Delta+2} \leq \gamma^{\text{ID}}(G)$$

Theorem (F., Klasing, Kosowski, 2009)

Equality if and only if G can be constructed as follows:

- Take Δ -regular graph H
- Subdivide each edge once

maximum degree of G: maximum number of neighbours of a vertex in G

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

G identifiable graph, n vertices, maximum degree Δ :

$$rac{2n}{\Delta+2} \leq \gamma^{\text{ID}}(G)$$

Theorem (F., Klasing, Kosowski, 2009)

Equality if and only if G can be constructed as follows:

- Take Δ -regular graph H
- Subdivide each edge once
- Possibly add some edges

Question

What is a good ${\bf upper \ bound}$ on $\gamma^{\rm \tiny ID}$ using the maximum degree?

Question

What is a good ${\bf upper \ bound}$ on $\gamma^{\rm \tiny ID}$ using the maximum degree?

Proposition

There exist graphs with *n* vertices, max. degree Δ and $\gamma^{\text{\tiny ID}}(G) = n - \frac{n}{\Delta}$.

Question What is a good upper bound on γ^{ID} using the maximum degree? Proposition

There exist graphs with *n* vertices, max. degree Δ and $\gamma^{\text{\tiny ID}}(G) = n - \frac{n}{\Delta}$.

What is a good ${\bf upper \ bound}$ on $\gamma^{\rm \tiny ID}$ using the maximum degree?

Proposition

There exist graphs with *n* vertices, max. degree Δ and $\gamma^{\text{ID}}(G) = n - \frac{n}{\Delta}$.

Also: Sierpiński graphs

(Gravier, Kovše, Mollard, Moncel, Parreau, 2011)

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

G connected identifiable graph, n vertices, max. degree Δ . Then

 $\gamma^{\scriptscriptstyle {
m ID}}(G) \leq n - rac{n}{\Delta} + c$ for some constant c

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

G connected identifiable graph, n vertices, max. degree Δ . Then

 $\gamma^{\scriptscriptstyle {
m ID}}({\it G}) \leq {\it n} - rac{{\it n}}{\Delta} + c$ for some constant c

Question

Can we prove that
$$\gamma^{\scriptscriptstyle {\rm ID}}(G) \leq n - rac{n}{\Theta(\Delta)}?$$

Triangle-free graphs

Theorem (F., Klasing, Kosowski, Raspaud, 2009)

G identifiable triangle-free graph, n vertices, max. degree Δ . Then

$$\gamma^{\scriptscriptstyle ext{
m ID}}(G) \leq n - rac{n}{\Delta + rac{3\Delta}{\ln \Delta - 1}} = n - rac{n}{\Delta(1 + o_\Delta(1))}$$

Triangle-free graphs

Theorem (F., Klasing, Kosowski, Raspaud, 2009)

G identifiable triangle-free graph, n vertices, max. degree Δ . Then

$$\gamma^{\text{\tiny ID}}(G) \leq n - rac{n}{\Delta + rac{3\Delta}{\ln \Delta - 1}} = n - rac{n}{\Delta(1 + o_{\Delta}(1))}$$

Proof idea: Constructive.

Triangle-free graphs have **large** independent sets (see e.g. Shearer

e e.g. Shearer:
$$\alpha(G) \geq \frac{\ln \Delta}{\Delta}n$$

 \rightarrow Locally modify such an independent set:

its complement is a "small" id. code.

Triangle-free graphs

Theorem (F., Klasing, Kosowski, Raspaud, 2009)

G identifiable triangle-free graph, n vertices, max. degree Δ . Then

$$\gamma^{\scriptscriptstyle ext{
m ID}}(G) \leq n - rac{n}{\Delta + rac{3\Delta}{\ln \Delta - 1}} = n - rac{n}{\Delta(1 + o_\Delta(1))}$$

Remark

Same technique applies to families of triangle-free graphs with large independent sets.

 \rightarrow bipartite graphs: $\alpha(G) \geq \frac{n}{2} \Rightarrow \gamma^{\text{\tiny ID}}(G) \leq n - \frac{n}{\Delta+9}$

Upper bounds for $\gamma^{\scriptscriptstyle D}(G)$

Theorem (F., Perarnau, 2012)

G identifiable graph, *n* vertices, maximum degree Δ , no isolated vertices: $\gamma^{\text{ID}}(G) \leq n - \frac{n \cdot NF(G)^2}{105\Delta}$

(Notation)

NF(G): proportion of non forced vertices of G

$$NF(G) = \frac{\# \text{non forced vertices in G}}{\# \text{vertices in G}}$$

F: forced vertices.

F: forced vertices. Select "big" random set *S* from $V(G) \setminus F$

F: forced vertices. Select "big" **random set** *S* from $V(G) \setminus F$ **Goal**: $C = V(G) \setminus S$ small identifying code

Want:

$$\mathbb{E}(|S|) = p \cdot nNF(G) = \frac{nNF(G)}{\Theta(\Delta)}$$

$$\mathbb{E}(|\mathcal{C}|) = n - \frac{nNF(G)}{\Theta(\Delta)}$$

F: forced vertices. Select "big" **random set** *S* from $V(G) \setminus F$ **Goal**: $C = V(G) \setminus S$ small identifying code

Want:
$$\mathbb{E}(|S|) = p \cdot nNF(G) = \frac{nNF(G)}{\Theta(\Delta)}$$

$$\mathbb{E}(|\mathcal{C}|) = n - \frac{nNF(G)}{\Theta(\Delta)}$$

Apply Lovász Local Lemma + Chernoff bound on S

F: forced vertices. Select "big" random set *S* from $V(G) \setminus F$ Goal: $C = V(G) \setminus S$ small identifying code

Want:
$$\mathbb{E}(|S|) = p \cdot nNF(G) = \frac{nNF(G)}{\Theta(\Delta)}$$

$$\mathbb{E}(|\mathcal{C}|) = n - \frac{nNF(G)}{\Theta(\Delta)}$$

Apply Lovász Local Lemma + Chernoff bound on S

with positive prob. |S| is close to expected size, and we are done.

NF(G): proportion of non forced vertices of G

Theorem (F., Perarnau, 2012)

G identifiable graph on *n* vertices having maximum degree Δ and no isolated vertices: $\gamma^{\text{ID}}(G) \leq n - \frac{n \cdot NF(G)^2}{2}$

$$\gamma^{\text{ID}}(G) \leq n - \frac{n \cdot NF(G)^2}{105\Delta}$$

What can be said about NF(G)?

NF(G): proportion of non forced vertices of G

Theorem (F., Perarnau, 2012)

G identifiable graph on *n* vertices having maximum degree Δ and no isolated vertices: $\gamma^{ID}(G) \leq n - \frac{n \cdot NF(G)^2}{2}$

$$\gamma^{\text{ID}}(G) \leq n - rac{n \cdot NF(G)^2}{105\Delta}$$

Question

What can be said about NF(G)?

 $G \text{ regular} \Rightarrow NF(G) = 1$

Corollary $G \text{ regular: } \gamma^{\text{\tiny{ID}}}(G) \leq n - \frac{n}{105\Delta}$

NF(G): proportion of non forced vertices of G

Theorem (F., Perarnau, 2012)

G identifiable graph on n vertices having maximum degree Δ and no isolated vertices: NE(C)?

$$\gamma^{\text{ID}}(G) \leq n - \frac{n \cdot NF(G)^2}{105\Delta}$$

Lemma (Bertrand, 2005)

G: identifiable graph having no isolated vertices. Let x be a vertex of G. There exists a non forced vertex in N[x].

 \rightarrow Set of non forced vertices is a **dominating set**.

NF(G): proportion of non forced vertices of G

Theorem (F., Perarnau, 2012)

G identifiable graph on n vertices having maximum degree Δ and no isolated vertices: NE(C)?

$$\gamma^{\text{ID}}(G) \leq n - \frac{n \cdot NF(G)^2}{105\Delta}$$

Lemma (Bertrand, 2005)

G: identifiable graph having no isolated vertices. Let x be a vertex of G. There exists a non forced vertex in N[x].

 \rightarrow Set of non forced vertices is a **dominating set**.

Corollary

$$rac{1}{\Delta+1} \leq {\sf NF}({\sf G}) \leq 1$$
 and $\gamma^{\scriptscriptstyle {\sf ID}}({\sf G}) \leq {\sf n} - rac{{\sf n}}{105(\Delta+1)^3}$

NF(G): proportion of non forced vertices of G

Theorem (F., Perarnau, 2012)

G identifiable graph on n vertices having maximum degree Δ and no isolated vertices: $\gamma^{\text{ID}}(G) \leq n - \frac{n \cdot NF(G)^2}{105\Delta}$

clique number of G: max. size of a complete subgraph in G

Proposition (F., Perarnau, 2012)

Let G be a graph of clique number at most k. There exists a (huge) function c such that:

$$\frac{1}{c(k)} \leq NF(G) \leq 1$$

NF(G): proportion of non forced vertices of G

Theorem (F., Perarnau, 2012)

G identifiable graph on n vertices having maximum degree Δ and no isolated vertices: $\gamma^{\text{ID}}(G) \leq n - \frac{n \cdot NF(G)^2}{105\Delta}$

clique number of G: max. size of a complete subgraph in G

Proposition (F., Perarnau, 2012)

Let G be a graph of clique number at most k. There exists a (huge) function c such that:

$$\frac{1}{c(k)} \leq NF(G) \leq 1$$

Corollary

$$\gamma^{\text{\tiny ID}}(G) \leq n - rac{n}{105c(k)^2\Delta} = n - rac{n}{\Theta(\Delta)}$$

Florent Foucaud
Summary

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

G connected identifiable graph, n vertices, max. degree Δ . Then

 $\gamma^{\scriptscriptstyle {
m ID}}({\it G}) \leq {\it n} - rac{{\it n}}{\Delta} + c$ for some constant c

Theorem]

in general:
$$\gamma^{\text{\tiny ID}}(G) \leq n - \frac{n}{\Theta(\Delta^3)}$$

triangle-free:
$$\gamma^{\scriptscriptstyle ext{ID}}(G) \leq n - rac{n}{\Delta(1+o_\Delta(1))}$$

bipartite: $\gamma^{\text{\tiny ID}}(G) \leq n - \frac{n}{\Delta+9}$

no forced vertices (e.g. regular): $\gamma^{\scriptscriptstyle {\rm ID}}({\it G}) \leq n - rac{n}{105\Delta}$

clique number k:
$$n - \frac{n}{105c(k)^2\Delta}$$

line graph of a graph H with $\overline{d}(H) \ge 5$: $\gamma^{\text{\tiny ID}}(G) \le n - \frac{n}{\Delta}$

Open questions

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

G connected identifiable graph, n vertices, max. degree Δ . Then

 $\gamma^{\scriptscriptstyle {
m ID}}({\it G}) \leq {\it n} - rac{{\it n}}{\Delta} + c$ for some constant c

Question

Can we prove the conjecture, or at least $\gamma^{\text{\tiny ID}}(G) \leq n - \frac{n}{\Theta(\Delta)}$? for, e.g.:

- Δ = 3?
- trees?
- all line graphs?
- ...

Open questions

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

G connected identifiable graph, n vertices, max. degree Δ . Then

 $\gamma^{\scriptscriptstyle {
m ID}}({\it G}) \leq {\it n} - rac{{\it n}}{\Delta} + c$ for some constant c

Question

Can we prove the conjecture, or at least $\gamma^{\text{ID}}(G) \leq n - \frac{n}{\Theta(\Delta)}$? for, e.g.:

- Δ = 3?
- trees?
- all line graphs?
- ...

Question

How to handle forced vertices?

Florent Foucaud

The minimum degree

Graphs with girth at least 5

Proposition (F., Perarnau, 2012)

G twin-free graph, *n* vertices, girth at least 5. *D*, 2-dominating set of *G*. If G[D] has no isolated edge, *D* is an identifying code.

Graphs with girth at least 5

Proposition (F., Perarnau, 2012)

G twin-free graph, n vertices, girth at least 5. D, 2-dominating set of G. If G[D] has no isolated edge, D is an identifying code.

Theorem (F., Perarnau, 2012)

G twin-free graph, girth at least 5, min. degree δ . Then

$$\gamma^{\text{\tiny ID}}(G) \leq \frac{3\left(\ln \delta + \ln \ln \delta + 1 + \frac{\ln \ln \delta}{\ln \delta} + \frac{1}{\ln \delta}\right)}{2\delta} = (1 + o_{\delta}(1))\frac{3\ln \delta}{2\delta}r$$

If $\overline{d}(G) = O_{\delta}(\delta(\ln \delta)^2)$ (in particular, when G regular) then

$$\gamma^{ ext{ID}}(G) \leq rac{\ln \delta + \ln \ln \delta + O_{\delta}(1)}{\delta}$$
 n

Graphs with girth at least 5

Proposition (F., Perarnau, 2012)

G twin-free graph, *n* vertices, girth at least 5. *D*, 2-dominating set of *G*. If G[D] has no isolated edge, *D* is an identifying code.

Theorem (F., Perarnau, 2012)

G twin-free graph, girth at least 5, min. degree δ . Then

$$\gamma^{{}_{\mathrm{ID}}}(\mathcal{G}) \leq rac{3\left(\ln \delta + \ln \ln \delta + 1 + rac{\ln \ln \delta}{\ln \delta} + rac{1}{\ln \delta} + rac{1}{\ln \delta}
ight)}{2\delta} = (1 + o_{\delta}(1))rac{3\ln \delta}{2\delta}n_{\delta}$$

If $\overline{d}(G) = O_{\delta}(\delta(\ln \delta)^2)$ (in particular, when G regular) then

$$\gamma^{\text{ID}}(G) \leq rac{\ln \delta + \ln \ln \delta + O_{\delta}(1)}{\delta}n$$

Corollary

G random *d*-regular graph. Then a.a.s.

$$\gamma^{\scriptscriptstyle {
m ID}}(G) \leq rac{\log d + \log \log d + O_d(1)}{d}$$
 r

Florent Foucaud

• $S \subseteq V$ at random, each element with probability p.

• $S \subseteq V$ at random, each element with probability p.

•
$$Pr(v \text{ not 2-dom.}) = (1-p)^{d+1} + (d+1)p(1-p)^d \le (1+dp)e^{-dp}$$

- $S \subseteq V$ at random, each element with probability p.
- $Pr(v \text{ not 2-dom.}) = (1-p)^{d+1} + (d+1)p(1-p)^d \le (1+dp)e^{-dp}$
- X(S) = non 2-dominated vertices

• $S \subseteq V$ at random, each element with probability p.

•
$$Pr(v \text{ not 2-dom.}) = (1-p)^{d+1} + (d+1)p(1-p)^d \le (1+dp)e^{-dp}$$

•
$$X(S) =$$
 non 2-dominated vertices

•
$$C = S \cup \{v : v \in X(S)\}, p = \frac{\log d + \log \log d}{d}$$

$$\mathbb{E}(|D|) = \mathbb{E}(|S|) + |X(S)| \le \frac{\log d + \log \log d}{d}n + \frac{1 + \log d + \log \log d}{d \log d}$$

Sketch of the proof: identifying code

 $Pr(\text{isolated edge}) \le p^2(1-p)^{2d-2} + (1-p)^{2d} + p(1-p)^{2d-1}$ SMALL

Sketch of the proof: identifying code

$$Pr(\text{isolated edge}) \le p^2(1-p)^{2d-2} + (1-p)^{2d} + p(1-p)^{2d-1}$$
 SMALL

$$\begin{split} \mathcal{C} &= S \cup \{ v : v \in X(S) \} \cup \{ w : w \in N(u), \text{ } uv \text{ isolated edge} \}, \\ p &= \frac{\log d + \log \log d}{d} \\ \mathbb{E}(|\mathcal{C}|) \leq \frac{\log d + \log \log d + O_d(1)}{d} n \end{split}$$

Theorem (F., Klasing, Kosowski, 2009)

G twin-free graph, n vertices, minimum degree at least 2, girth at least 5. Then $\gamma^{\rm \tiny ID}(G) \leq \frac{7n}{8}.$

Theorem (F., Klasing, Kosowski, 2009)

G twin-free graph, n vertices, minimum degree at least 2, girth at least 5. Then $\gamma^{\text{\tiny ID}}(G) \leq \frac{7n}{8}$.

Proof idea: Build DFS-spanning tree

Take three out of four levels.

Possibly add $\leq \frac{n}{8}$ vertices to fix conflicts.

Comparison with dominating sets

 $\gamma(G)$: domination number of G

Theorem (Payan, 60's - easy proof in Alon and Spencer's book)

G, *n* vertices, min. degree δ . Then $\gamma(G) \leq \frac{1+\ln(\delta+1)}{\delta+1}n$.

Theorem

G, *n* vertices. All bounds are tight.

- min. degree 1: $\gamma(G) \leq \frac{n}{2}$ (Folklore)
- connected, min. degree 2: $\gamma(G) \leq \frac{2n}{5}$ except for 7 small graphs (McCuaig-Shepherd, 1989)
- min. degree 3: $\gamma(G) \leq \frac{3n}{8}$ (Reed, 1996)

Comparison with dominating sets

 $\gamma(G)$: domination number of G

Theorem (Payan, 60's - easy proof in Alon and Spencer's book)

G, *n* vertices, min. degree δ . Then $\gamma(G) \leq \frac{1+\ln(\delta+1)}{\delta+1}n$.

Theorem

G, *n* vertices. All bounds are tight.

- min. degree 1: $\gamma(G) \leq \frac{n}{2}$ (Folklore)
- connected, min. degree 2: $\gamma(G) \leq \frac{2n}{5}$ except for 7 small graphs (McCuaig-Shepherd, 1989)
- min. degree 3: $\gamma(G) \leq \frac{3n}{8}$ (Reed, 1996)

Question

Can we prove similar bounds for $\gamma^{\scriptscriptstyle\rm ID}$ and girth 5 ?

Florent Foucaud

Interval and line graphs

Interval graphs

Theorem (F., Naserasr, Parreau, Valicov, 2012+)

 ${\cal G}$ interval graph: $\gamma^{\scriptscriptstyle {\rm ID}}({\cal G})>\sqrt{2n}$

Theorem (F., Naserasr, Parreau, Valicov, 2012+)

G interval graph: $\gamma^{\scriptscriptstyle {\rm ID}}(G) > \sqrt{2n}$

- Identifying code of size k.
- Order code by increasing left point.

Theorem (F., Naserasr, Parreau, Valicov, 2012+)

G interval graph: $\gamma^{\scriptscriptstyle {\rm ID}}(G) > \sqrt{2n}$

- Identifying code of size k.
- Order code by increasing left point.
- Each vertex intersects consecutive set of code vertices.

Theorem (F., Naserasr, Parreau, Valicov, 2012+)

G interval graph: $\gamma^{\scriptscriptstyle {\rm ID}}(G) > \sqrt{2n}$

- Identifying code of size k.
- Order code by increasing left point.
- Each vertex intersects consecutive set of code vertices.

$$\rightarrow n \leq \sum_{i=1}^{k} i = \binom{k}{2}$$

Interval graphs

Theorem (F., Naserasr, Parreau, Valicov, 2012+)

G interval graph: $\gamma^{\text{\tiny{ID}}}(G) > \sqrt{2n}$

Tight

Line graphs

Definition - Line graph of *H*: Edge-adjacency graph of *H*

Denoted $\mathcal{L}(H)$ $V(\mathcal{L}(H)) = E(H)$ $e \sim e'$ in $\mathcal{L}(H)$ iff e and e' incident to common vertex in H

 $\mathcal{L}(H)$

Line graphs

Definition - Line graph of *H*: Edge-adjacency graph of *H*

Denoted $\mathcal{L}(H)$ $V(\mathcal{L}(H)) = E(H)$ $e \sim e'$ in $\mathcal{L}(H)$ iff e and e' incident to common vertex in H

Tool: edge-identifying codes

Edge-identifying code of $H \iff$ Identifying code of $\mathcal{L}(H)$

Edge-identifying code - example

 $\gamma^{\scriptscriptstyle{\mathsf{EID}}}(\mathcal{P}) \leq 5$

A lower bound for line graphs

Theorem (F., Gravier, Naserasr, Parreau, Valicov, 2012)

$$\gamma^{\text{\tiny{ID}}}(\mathcal{L}(\mathcal{H})) = \gamma^{\text{\tiny{EID}}}(\mathcal{H}) \geq rac{|V(\mathcal{H})|}{2}$$

A lower bound for line graphs

Theorem (F., Gravier, Naserasr, Parreau, Valicov, 2012)

$$\gamma^{\text{\tiny ID}}(\mathcal{L}(H)) = \gamma^{\text{\tiny EID}}(H) \geq \frac{|V(H)|}{2}$$

Proof idea:

$$C_E$$
, k edges on n' vertices
$$X = V(G) \setminus V(C_E)$$

- Assume C_E is connected
- If C_E has a cycle, $|X| \le n' \le k$,
- If C_E is a tree, n'-1=k and $|X|\leq n'-2$
- In both cases, $n = |X| + n' \le 2k$

A lower bound for line graphs

Theorem (F., Gravier, Naserasr, Parreau, Valicov, 2012)

$$\gamma^{\text{\tiny{ID}}}(\mathcal{L}(\mathcal{H})) = \gamma^{\text{\tiny{EID}}}(\mathcal{H}) \geq rac{|V(\mathcal{H})|}{2}$$

Since
$$|V(\mathcal{L}(H))| = |E(H)| \leq \frac{|V(H)|(|V(H)|-1)}{2}$$

$$A = \{a_1, \dots, a_k\}, B = 2^A$$
: cliques.
 $|V(G)| = k + 2^k$
 $\gamma^{\text{\tiny ID}}(G) \le 2k = \Theta(\log(|V(G)|))$

Bounds in $\Omega(\sqrt{n})$ for interval and line graphs.

Is there some common point between these two results?

Question

Question

What about other nice classes, e.g. permutation graphs?

Computational problems

Complexity of (MIN) IDCODE for various graph classes

Conclusion

• Better upper bound on $\gamma^{\text{\tiny ID}}$ depending on Δ . Conjecture: $\gamma^{\text{\tiny ID}}(G) \leq n - \frac{n}{\Delta} + c$

- Better upper bound on $\gamma^{\text{\tiny ID}}$ depending on Δ . Conjecture: $\gamma^{\text{\tiny ID}}(G) \leq n \frac{n}{\Delta} + c$
- $\bullet\,$ Tight upper bound on $\gamma^{\rm \tiny ID}$ in graphs of given minimum degree and girth 5
- Better upper bound on $\gamma^{\text{\tiny ID}}$ depending on Δ . Conjecture: $\gamma^{\text{\tiny ID}}(G) \leq n - \frac{n}{\Delta} + c$
- $\bullet\,$ Tight upper bound on $\gamma^{\rm \tiny ID}$ in graphs of given minimum degree and girth 5
- Bounds for specific graph classes: generalize bound for interval/line graphs?

- Better upper bound on $\gamma^{\text{\tiny ID}}$ depending on Δ . Conjecture: $\gamma^{\text{\tiny ID}}(G) \leq n - \frac{n}{\Delta} + c$
- $\bullet\,$ Tight upper bound on $\gamma^{\rm \tiny ID}$ in graphs of given minimum degree and girth 5
- Bounds for specific graph classes: generalize bound for interval/line graphs?
- Computational aspects of identifying codes