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Identifying the rooms of a building

Graph G = (V ,E ). V : vertices (rooms), E ⊆ V × V : edges (doors)

Motion detector: detects intruder in its room or in adjacent rooms

Florent Foucaud Identifying codes in graphs 2 / 40



Identifying the rooms of a building

Graph G = (V ,E ). V : vertices (rooms), E ⊆ V × V : edges (doors)

Motion detector: detects intruder in its room or in adjacent rooms

Florent Foucaud Identifying codes in graphs 2 / 40



Identifying the rooms of a building

Graph G = (V ,E ). V : vertices (rooms), E ⊆ V × V : edges (doors)

Motion detector: detects intruder in its room or in adjacent rooms

Florent Foucaud Identifying codes in graphs 2 / 40



Identifying the rooms of a building

Graph G = (V ,E ). V : vertices (rooms), E ⊆ V × V : edges (doors)

Motion detector: detects intruder in its room or in adjacent rooms

Florent Foucaud Identifying codes in graphs 2 / 40



Identifying the rooms of a building

Graph G = (V ,E ). V : vertices (rooms), E ⊆ V × V : edges (doors)

Motion detector: detects intruder in its room or in adjacent rooms

Florent Foucaud Identifying codes in graphs 2 / 40



Identifying codes

G : undirected graph
N[u]: set of vertices v s.t. d(u, v) ≤ 1

Subset C of V (G ) such that:
C is a dominating set: ∀u ∈ V (G ), N[u] ∩ C 6= ∅, and

C is a separating code: ∀u 6= v of V (G ), N[u] ∩ C 6= N[v ] ∩ C

Equivalently:
(N[u]	 N[v ]) ∩ C 6= ∅ → hitting symmetric differences

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Goal: minimize number of detectors

γ ID(G ): minimum size of an identifying code in G
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Identifiable graphs

Not all graphs have an identifying code!

Remark

Twins = pair u, v such that N[u] = N[v ].

u v

A graph is identifiable if and only if it is twin-free (i.e. has no twins).

Proposition
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Bounds on γ ID(G )

n: number of vertices

G identifiable graph on n vertices:

dlog2(n + 1)e ≤ γ ID(G )

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

G identifiable graph on n vertices with at least one edge:

γ ID(G ) ≤ n − 1

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

γ ID(G ) = n⇔ G has no edges
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Examples

Subset C of V (G ) such that:

C is a dominating set: ∀u ∈ V (G ), N[u] ∩ C 6= ∅, and

C is a separating code: ∀u 6= v of V (G ), N[u] ∩ C 6= N[v ] ∩ C
Equivalently:

(N[u]	 N[v ]) ∩ C 6= ∅ → hitting symmetric differences

Definition - Identifying code

G identifiable, n vertices, some edges: dlog2(n+ 1)e ≤ γ ID(G ) ≤ n− 1

Theorem

forced vertexforced vertex
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A question

G identifiable graph on n vertices with at least one edge:

γ ID(G ) ≤ n − 1

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

What are the graphs G with n vertices and γ ID(G ) = n − 1 ?

Question

Florent Foucaud Identifying codes in graphs 7 / 40



Forced vertices

u, v such that N[v ]	 N[u] = {f }:

f belongs to any identifying code

→ f forced by u, v .

f
v u
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Graphs with many forced vertices

Special path powers: Ak = Pk−1
2k

A2 = P4 A3 = P2
6

A4 = P3
8

γ ID(Ak) = n − 1

Proposition
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Constructions using joins

Ak Ak'

Two graphs Ak and Ak′

At each step, the constructed graph has γ ID = n − 1

Proposition

Florent Foucaud Identifying codes in graphs 10 / 40



Constructions using joins

Ak Ak'

Join: add all edges between them

At each step, the constructed graph has γ ID = n − 1

Proposition
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Constructions using joins

Ak Ak'

Join the new graph to two non-adjacent vertices (K2)

At each step, the constructed graph has γ ID = n − 1

Proposition
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Constructions using joins

Ak Ak'

Join the new graph to two non-adjacent vertices, again

At each step, the constructed graph has γ ID = n − 1

Proposition
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Constructions using joins

Ak Ak'

Finally, add a universal vertex

At each step, the constructed graph has γ ID = n − 1

Proposition
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Constructions using joins

Ak Ak'

Finally, add a universal vertex

At each step, the constructed graph has γ ID = n − 1

Proposition
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A characterization

(1) stars

(2) Ak = Pk−1
2k

(3) joins between 0 or more members of (2) and 0 or more copies of K2

(4) (2) or (3) with a universal vertex

G connected identifiable graph, n vertices:

γ ID(G ) = n − 1 ⇔ G ∈ (1), (2), (3) or (4)

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

All these graphs have maximum degree n − 1 or n − 2

Observation
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The maximum degree
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A lower bound using the maximum degree

maximum degree of G : maximum number of neighbours of a vertex in G

G identifiable graph, n vertices, maximum degree ∆:

2n
∆+2 ≤ γ

ID(G )

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

Equality if and only if G can be constructed as follows:

Theorem (F., Klasing, Kosowski, 2009)

• Take ∆-regular graph H

• Subdivide each edge once

• Possibly add some edges
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The influence of the maximum degree

What is a good upper bound on γ ID using the maximum degree?

Question

There exist graphs with n vertices, max. degree ∆ and γ ID(G ) = n− n
∆ .

Proposition
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The influence of the maximum degree

What is a good upper bound on γ ID using the maximum degree?

Question

There exist graphs with n vertices, max. degree ∆ and γ ID(G ) = n− n
∆ .

Proposition

Also: Sierpiński graphs

(Gravier, Kovše, Mollard,
Moncel, Parreau, 2011)
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A conjecture

G connected identifiable graph, n vertices, max. degree ∆. Then

γ ID(G ) ≤ n − n
∆ + c for some constant c

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

Can we prove that γ ID(G ) ≤ n − n
Θ(∆) ?

Question
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Triangle-free graphs

G identifiable triangle-free graph, n vertices, max. degree ∆. Then

γ ID(G ) ≤ n − n
∆+ 3∆

ln ∆−1

= n − n
∆(1+o∆(1))

Theorem (F., Klasing, Kosowski, Raspaud, 2009)
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Triangle-free graphs

G identifiable triangle-free graph, n vertices, max. degree ∆. Then

γ ID(G ) ≤ n − n
∆+ 3∆

ln ∆−1

= n − n
∆(1+o∆(1))

Theorem (F., Klasing, Kosowski, Raspaud, 2009)

Proof idea: Constructive.

Triangle-free graphs have large independent sets
(see e.g. Shearer: α(G ) ≥ ln ∆

∆ n)

→ Locally modify such an independent set:
its complement is a “small” id. code.
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Triangle-free graphs

G identifiable triangle-free graph, n vertices, max. degree ∆. Then

γ ID(G ) ≤ n − n
∆+ 3∆

ln ∆−1

= n − n
∆(1+o∆(1))

Theorem (F., Klasing, Kosowski, Raspaud, 2009)

Same technique applies to families of triangle-free graphs with large
independent sets.
→ bipartite graphs: α(G ) ≥ n

2 ⇒ γ ID(G ) ≤ n − n
∆+9

Remark
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Upper bounds for γ ID(G )

G identifiable graph, n vertices, maximum degree ∆, no isolated
vertices:

γ ID(G ) ≤ n − n·NF (G)2

105∆

Theorem (F., Perarnau, 2012)

NF (G ): proportion of non forced vertices of G

NF (G ) =
#non forced vertices in G

#vertices in G

Notation

f
v u
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Proof

F : forced vertices.

Select “big” random set S from V (G ) \ F
Goal: C = V (G ) \ S small identifying code
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Proof

F : forced vertices. Select “big” random set S from V (G ) \ F
Goal: C = V (G ) \ S small identifying code

Want:
E(|S |) = p · nNF (G ) = nNF (G)

Θ(∆)

E(|C|) = n − nNF (G)
Θ(∆)
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Proof

F : forced vertices. Select “big” random set S from V (G ) \ F
Goal: C = V (G ) \ S small identifying code

Want:
E(|S |) = p · nNF (G ) = nNF (G)

Θ(∆)

E(|C|) = n − nNF (G)
Θ(∆)

Apply Lovász Local Lemma +
Chernoff bound on S
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Proof

F : forced vertices. Select “big” random set S from V (G ) \ F
Goal: C = V (G ) \ S small identifying code

Want:
E(|S |) = p · nNF (G ) = nNF (G)

Θ(∆)

E(|C|) = n − nNF (G)
Θ(∆)

Apply Lovász Local Lemma +
Chernoff bound on S

with positive prob. |S | is close to
expected size, and we are done.

Florent Foucaud Identifying codes in graphs 18 / 40



Bounding the number of forced vertices

NF (G ): proportion of non forced vertices of G

G identifiable graph on n vertices having maximum degree ∆ and no
isolated vertices:

γ ID(G ) ≤ n − n·NF (G)2

105∆

Theorem (F., Perarnau, 2012)

What can be said about NF (G )?

Question

G regular ⇒ NF (G ) = 1

G regular: γ ID(G ) ≤ n − n
105∆

Corollary
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G regular: γ ID(G ) ≤ n − n
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clique number of G : max. size of a complete subgraph in G

Let G be a graph of clique number at most k . There exists a (huge)
function c such that:

1
c(k) ≤ NF (G ) ≤ 1
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Summary

G connected identifiable graph, n vertices, max. degree ∆. Then

γ ID(G ) ≤ n − n
∆ + c for some constant c

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

in general: γ ID(G ) ≤ n − n
Θ(∆3)

triangle-free: γ ID(G ) ≤ n − n
∆(1+o∆(1))

bipartite: γ ID(G ) ≤ n − n
∆+9

no forced vertices (e.g. regular): γ ID(G ) ≤ n − n
105∆

clique number k : n − n
105c(k)2∆

line graph of a graph H with d(H) ≥ 5: γ ID(G ) ≤ n − n
∆

Theorem
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Open questions

G connected identifiable graph, n vertices, max. degree ∆. Then

γ ID(G ) ≤ n − n
∆ + c for some constant c

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

Can we prove the conjecture, or at least γ ID(G ) ≤ n− n
Θ(∆) ? for, e.g.:

∆ = 3?

trees?

all line graphs?

...

Question

How to handle forced vertices?

Question
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The minimum degree
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Graphs with girth at least 5

G twin-free graph, n vertices, girth at least 5. D, 2-dominating set of
G . If G [D] has no isolated edge, D is an identifying code.

Proposition (F., Perarnau, 2012)

G twin-free graph, girth at least 5, min. degree δ. Then

γ ID(G ) ≤ 3(ln δ+ln ln δ+1+ ln ln δ
ln δ + 1

ln δ )
2δ = (1 + oδ(1)) 3 ln δ

2δ n

If d(G ) = Oδ(δ(ln δ)2) (in particular, when G regular) then

γ ID(G ) ≤ ln δ+ln ln δ+Oδ(1)
δ n

Theorem (F., Perarnau, 2012)

G random d-regular graph. Then a.a.s.

γ ID(G ) ≤ log d+log log d+Od (1)
d n

Corollary
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Sketch of the proof: construct 2-dominating set D

Proof similar as random construction of domination set
(Alon and Spencer, Chapter 1: Alteration method)

S ⊆ V at random, each element with probability p.

Pr(v not 2-dom. ) = (1− p)d+1 + (d + 1)p(1− p)d ≤ (1 + dp)e−dp

X (S) = non 2-dominated vertices

C = S ∪ {v : v ∈ X (S)}, p = log d+log log d
d

E(|D|) = E(|S |)+|X (S)| ≤ log d + log log d

d
n+

1 + log d + log log d

d log d
n
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Sketch of the proof: identifying code

Pr(isolated edge) ≤ p2(1−p)2d−2 +(1−p)2d +p(1−p)2d−1 SMALL

C = S ∪ {v : v ∈ X (S)} ∪ {w : w ∈ N(u), uv isolated edge},
p = log d+log log d

d

E(|C|) ≤ log d + log log d + Od(1)

d
n
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Minimum degree 2

G twin-free graph, n vertices, minimum degree at least 2, girth at
least 5. Then γ ID(G ) ≤ 7n

8 .

Theorem (F., Klasing, Kosowski, 2009)

Proof idea: Build DFS-spanning tree

Take three out of four levels.

Possibly add ≤ n
8 vertices to fix conflicts.
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Comparison with dominating sets

γ(G ): domination number of G

G , n vertices, min. degree δ. Then γ(G ) ≤ 1+ln(δ+1)
δ+1 n.

Theorem (Payan, 60’s - easy proof in Alon and Spencer’s book)

G , n vertices. All bounds are tight.
min. degree 1: γ(G ) ≤ n

2 (Folklore)

connected, min. degree 2: γ(G ) ≤ 2n
5 except for 7 small graphs

(McCuaig-Shepherd, 1989)

min. degree 3: γ(G ) ≤ 3n
8 (Reed, 1996)

Theorem

Can we prove similar bounds for γ ID and girth 5 ?

Question
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Interval and line graphs
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Interval graphs

G interval graph: γ ID(G ) >
√

2n

Theorem (F., Naserasr, Parreau, Valicov, 2012+)

1 2

3

4

1 − 1 2 − 3

1 − 2 2 − 4

1 − 4

1 − 3 3 − 4

Identifying code of size k.

Order code by increasing left point.

Each vertex intersects consecutive set of code vertices.

→ n ≤
k∑

i=1

i =

(
k

2

)
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Interval graphs

G interval graph: γ ID(G ) >
√

2n

Theorem (F., Naserasr, Parreau, Valicov, 2012+)
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Interval graphs

G interval graph: γ ID(G ) >
√

2n

Theorem (F., Naserasr, Parreau, Valicov, 2012+)

Tight
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Line graphs

Denoted L(H)
V (L(H)) = E (H)
e ∼ e′ in L(H) iff e and e′ incident to common vertex in H

Definition - Line graph of H: Edge-adjacency graph of H

a b

cd

e

H

a b

cd

e

L(H)

Tool: edge-identifying codes

Edge-identifying code of H ⇐⇒ Identifying code of L(H)
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Edge-identifying code - example

γEID(P) ≤ 5
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A lower bound for line graphs

γ ID(L(H)) = γEID(H) ≥ |V (H)|
2

Theorem (F., Gravier, Naserasr, Parreau, Valicov, 2012)
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A lower bound for line graphs

γ ID(L(H)) = γEID(H) ≥ |V (H)|
2

Theorem (F., Gravier, Naserasr, Parreau, Valicov, 2012)

Proof idea:

CE , k edges on n′ vertices

X = V (G ) \ V (CE )

Assume CE is connected

If CE has a cycle, |X | ≤ n′ ≤ k ,

If CE is a tree, n′ − 1 = k and |X | ≤ n′ − 2

In both cases, n = |X |+ n′ ≤ 2k
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A lower bound for line graphs

γ ID(L(H)) = γEID(H) ≥ |V (H)|
2

Theorem (F., Gravier, Naserasr, Parreau, Valicov, 2012)

Since |V (L(H))| = |E (H)| ≤ |V (H)|(|V (H)|−1)
2

γ ID(L(H)) ≥
√

2|V (L(H))|
2

Corollary
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No extension to quasi-line graphs!

A = {a1, . . . , ak}, B = 2A: cliques.

|V (G )| = k + 2k

γ ID(G ) ≤ 2k = Θ(log(|V (G )|))

A B = 2A
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Open questions

Bounds in Ω(
√
n) for interval and line graphs.

Is there some common point between these two results?

Question

What about other nice classes, e.g. permutation graphs?

Question
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Computational problems
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Complexity of (MIN) IDCODE for various graph classes

trees

bounded TW

outerplanar

series-parallel

cographs

bounded CW

unit interval

line of trees

line of bounded TW

permutation

interval

trapezoid

directed path

strongly chordal

undirected path co-bipartite line of bipartite

bipartite

triangle-free

chordal bipartite

split co-comparability

quasi-line

line

unit 2-interval subcubic

2-interval planar

3-interval

comparability chordal AT-free

claw-free

K1,6-free

unit diskperfect DSP

IDCODE
NP-complete

IDCODE
in P

complexity of
IDCODE
unknown

separation for DOMINATING SET

What is the complexity
of IDCODE for these classes?

What is the complexity of approximating
MIN IDCODE for these classes?
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Conclusion
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Open problems

Better upper bound on γ ID depending on ∆. Conjecture:
γ ID(G ) ≤ n − n

∆ + c

Tight upper bound on γ ID in graphs of given minimum degree and
girth 5

Bounds for specific graph classes: generalize bound for interval/line
graphs?

Computational aspects of identifying codes
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