Identifying codes in graphs
 Problems from the other side of the Pyrenees

Florent Foucaud

Combgraph seminar
February 21st, 2013

Identifying the rooms of a building

Identifying the rooms of a building

Identifying the rooms of a building

Graph $G=(V, E) . V$: vertices (rooms), $E \subseteq V \times V$: edges (doors)

Identifying the rooms of a building

Graph $G=(V, E) . V$: vertices (rooms), $E \subseteq V \times V$: edges (doors)
Motion detector: detects intruder in its room or in adjacent rooms

Identifying the rooms of a building

Graph $G=(V, E) . V$: vertices (rooms), $E \subseteq V \times V$: edges (doors)
Motion detector: detects intruder in its room or in adjacent rooms

Identifying codes

G : undirected graph
$N[u]$: set of vertices v s.t. $d(u, v) \leq 1$
Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Identifying codes

G : undirected graph
$N[u]$: set of vertices v s.t. $d(u, v) \leq 1$
Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Identifying codes

G : undirected graph
$N[u]$: set of vertices v s.t. $d(u, v) \leq 1$
Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Goal: minimize number of detectors

Identifying codes

G: undirected graph
$N[u]$: set of vertices v s.t. $d(u, v) \leq 1$
Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Goal: minimize number of detectors
$\gamma^{1 D}(G)$: minimum size of an identifying code in G

Identifiable graphs

Remark

Not all graphs have an identifying code!

Twins $=$ pair u, v such that $N[u]=N[v]$.

Identifiable graphs

Remark

Not all graphs have an identifying code!

Twins $=$ pair u, v such that $N[u]=N[v]$.

Proposition

A graph is identifiable if and only if it is twin-free (i.e. has no twins).

Bounds on $\gamma^{10}(G)$

n : number of vertices
Theorem (Karpovsky, Chakrabarty, Levitin, 1998)
G identifiable graph on n vertices:

$$
\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{1 \mathrm{D}}(G)
$$

Bounds on $\gamma^{\prime 0}(G)$

n : number of vertices
Theorem (Karpovsky, Chakrabarty, Levitin, 1998)
G identifiable graph on n vertices:

$$
\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{1 \mathrm{D}}(G)
$$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)
G identifiable graph on n vertices with at least one edge:

$$
\gamma^{\mathrm{ID}}(G) \leq n-1
$$

Bounds on $\gamma^{10}(G)$

n : number of vertices
Theorem (Karpovsky, Chakrabarty, Levitin, 1998)
G identifiable graph on n vertices:

$$
\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\mathrm{ID}}(G)
$$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)
G identifiable graph on n vertices with at least one edge:

$$
\gamma^{\mathrm{ID}}(G) \leq n-1
$$

$$
\gamma^{\mathrm{ID}}(G)=n \Leftrightarrow G \text { has no edges }
$$

Examples

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{1 \mathrm{D}}(G) \leq n-1$

Examples

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{1 D}(G) \leq n-1$

Examples

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\text {ID }}(G) \leq n-1$

Examples

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\text {ID }}(G) \leq n-1$

Examples

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\text {ID }}(G) \leq n-1$

Examples

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\text {ID }}(G) \leq n-1$

Examples

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\text {ID }}(G) \leq n-1$

Examples

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\text {ID }}(G) \leq n-1$

Examples

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\text {ID }}(G) \leq n-1$

Examples

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\text {ID }}(G) \leq n-1$

Examples

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\text {ID }}(G) \leq n-1$

Examples

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\text {ID }}(G) \leq n-1$

Examples

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\text {ID }}(G) \leq n-1$

A question

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)
G identifiable graph on n vertices with at least one edge:

$$
\gamma^{\text {ID }}(G) \leq n-1
$$

Question

What are the graphs G with n vertices and $\gamma^{\mathrm{ID}}(G)=n-1$?

Forced vertices

u, v such that $N[v] \ominus N[u]=\{f\}:$
f belongs to any identifying code
$\rightarrow f$ forced by u, v.

Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$

$A_{2}=P_{4}$

$A_{3}=P_{6}^{2}$

$A_{4}=P_{8}^{3}$

Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$

$A_{2}=P_{4}$

$A_{3}=P_{6}^{2}$

$A_{4}=P_{8}^{3}$

Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$

$A_{2}=P_{4}$

$A_{3}=P_{6}^{2}$

$A_{4}=P_{8}^{3}$

Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$

$A_{2}=P_{4}$

$$
A_{3}=P_{6}^{2}
$$

$A_{4}=P_{8}^{3}$

Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$

$A_{2}=P_{4}$

$A_{3}=P_{6}^{2}$

$A_{4}=P_{8}^{3}$

Proposition

$$
\gamma^{\mathrm{ID}}\left(A_{k}\right)=n-1
$$

Constructions using joins

Two graphs A_{k} and $A_{k^{\prime}}$

Constructions using joins

Join: add all edges between them

Constructions using joins

Join the new graph to two non-adjacent vertices ($\overline{K_{2}}$)

Constructions using joins

Join the new graph to two non-adjacent vertices, again

Constructions using joins

Finally, add a universal vertex

Constructions using joins

Finally, add a universal vertex

Proposition

At each step, the constructed graph has $\gamma^{1 \mathrm{D}}=n-1$

A characterization

(1) stars
(2) $A_{k}=P_{2 k}^{k-1}$
(3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_{2}}$
(4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)
G connected identifiable graph, n vertices:

$$
\gamma^{\mathrm{ID}}(G)=n-1 \Leftrightarrow G \in(1),(2),(3) \text { or }(4)
$$

A characterization

(1) stars
(2) $A_{k}=P_{2 k}^{k-1}$
(3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_{2}}$
(4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)
G connected identifiable graph, n vertices:

$$
\gamma^{\mathrm{ID}}(G)=n-1 \Leftrightarrow G \in(1),(2),(3) \text { or }(4)
$$

Observation

All these graphs have maximum degree $n-1$ or $n-2$

The maximum degree

A lower bound using the maximum degree

maximum degree of G : maximum number of neighbours of a vertex in G
Theorem (Karpovsky, Chakrabarty, Levitin, 1998)
G identifiable graph, n vertices, maximum degree Δ :

$$
\frac{2 n}{\Delta+2} \leq \gamma^{1 D}(G)
$$

A lower bound using the maximum degree

maximum degree of G : maximum number of neighbours of a vertex in G
Theorem (Karpovsky, Chakrabarty, Levitin, 1998)
G identifiable graph, n vertices, maximum degree Δ :

$$
\frac{2 n}{\Delta+2} \leq \gamma^{1 D}(G)
$$

Theorem (F., Klasing, Kosowski, 2009)
Equality if and only if G can be constructed as follows:

- Take Δ-regular graph H

A lower bound using the maximum degree

maximum degree of G : maximum number of neighbours of a vertex in G
Theorem (Karpovsky, Chakrabarty, Levitin, 1998)
G identifiable graph, n vertices, maximum degree Δ :

$$
\frac{2 n}{\Delta+2} \leq \gamma^{1 D}(G)
$$

Theorem (F., Klasing, Kosowski, 2009)
Equality if and only if G can be constructed as follows:

- Take Δ-regular graph H
- Subdivide each edge once

A lower bound using the maximum degree

maximum degree of G : maximum number of neighbours of a vertex in G

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

G identifiable graph, n vertices, maximum degree Δ :

$$
\frac{2 n}{\Delta+2} \leq \gamma^{10}(G)
$$

Theorem (F., Klasing, Kosowski, 2009)
Equality if and only if G can be constructed as follows:

- Take Δ-regular graph H
- Subdivide each edge once
- Possibly add some edges

The influence of the maximum degree

Question
What is a good upper bound on $\gamma^{1 \mathrm{D}}$ using the maximum degree?

The influence of the maximum degree

Question
What is a good upper bound on γ^{ID} using the maximum degree?

Proposition

There exist graphs with n vertices, max. degree Δ and $\gamma^{\mathrm{ID}}(G)=n-\frac{n}{\Delta}$.

The influence of the maximum degree

Question

What is a good upper bound on $\gamma^{\text {ID }}$ using the maximum degree?

Proposition

There exist graphs with n vertices, max. degree Δ and $\gamma^{1 D}(G)=n-\frac{n}{\Delta}$.

The influence of the maximum degree

Question

What is a good upper bound on $\gamma^{1 \mathrm{D}}$ using the maximum degree?

Proposition

There exist graphs with n vertices, max. degree Δ and $\gamma^{1 D}(G)=n-\frac{n}{\Delta}$.

The influence of the maximum degree

Question

What is a good upper bound on γ^{ID} using the maximum degree?

Proposition

There exist graphs with n vertices, max. degree Δ and $\gamma^{\mathrm{ID}}(G)=n-\frac{n}{\Delta}$.

The influence of the maximum degree

Question

What is a good upper bound on γ^{ID} using the maximum degree?

Proposition

There exist graphs with n vertices, max. degree Δ and $\gamma^{\mathrm{ID}}(G)=n-\frac{n}{\Delta}$.

The influence of the maximum degree

Question

What is a good upper bound on γ^{ID} using the maximum degree?

Proposition

There exist graphs with n vertices, max. degree Δ and $\gamma^{\mathrm{ID}}(G)=n-\frac{n}{\Delta}$.

Also: Sierpiński graphs
(Gravier, Kovše, Mollard,
Moncel, Parreau, 2011)

A conjecture

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)
G connected identifiable graph, n vertices, max. degree Δ. Then $\gamma^{\text {ID }}(G) \leq n-\frac{n}{\Delta}+c$ for some constant c

A conjecture

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)
G connected identifiable graph, n vertices, max. degree Δ. Then
$\gamma^{\text {ID }}(G) \leq n-\frac{n}{\Delta}+c$ for some constant c

Question
Can we prove that $\gamma^{1 \mathrm{D}}(G) \leq n-\frac{n}{\Theta(\Delta)}$?

Triangle-free graphs

Theorem (F., Klasing, Kosowski, Raspaud, 2009)
G identifiable triangle-free graph, n vertices, max. degree Δ. Then

$$
\gamma^{10}(G) \leq n-\frac{n}{\Delta+\frac{3 \Delta}{\ln \Delta-1}}=n-\frac{n}{\Delta(1+o \Delta(1))}
$$

Triangle-free graphs

Theorem (F., Klasing, Kosowski, Raspaud, 2009)
G identifiable triangle-free graph, n vertices, max. degree Δ. Then

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{\Delta+\frac{3 \Delta}{\ln \Delta-1}}=n-\frac{n}{\Delta\left(1+o_{\Delta}(1)\right)}
$$

Proof idea: Constructive.
Triangle-free graphs have large independent sets (see e.g. Shearer: $\alpha(G) \geq \frac{\ln \Delta}{\Delta} n$)
\rightarrow Locally modify such an independent set:
its complement is a "small" id. code.

Triangle-free graphs

Theorem (F., Klasing, Kosowski, Raspaud, 2009)
G identifiable triangle-free graph, n vertices, max. degree Δ. Then

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{\Delta+\frac{3 \Delta}{\ln \Delta-1}}=n-\frac{n}{\Delta(1+o \Delta(1))}
$$

Remark

Same technique applies to families of triangle-free graphs with large independent sets.
\rightarrow bipartite graphs: $\alpha(G) \geq \frac{n}{2} \Rightarrow \gamma^{\text {ID }}(G) \leq n-\frac{n}{\Delta+9}$

Upper bounds for $\gamma^{10}(G)$

Theorem (F., Perarnau, 2012)
G identifiable graph, n vertices, maximum degree Δ, no isolated vertices:

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n \cdot N F(G)^{2}}{105 \Delta}
$$

Notation

$N F(G)$: proportion of non forced vertices of G

$$
N F(G)=\frac{\# \text { non forced vertices in } G}{\# \text { vertices in } G}
$$

Proof

F : forced vertices.

Proof

F : forced vertices. Select "big" random set S from $V(G) \backslash F$

Proof

F: forced vertices. Select "big" random set S from $V(G) \backslash F$ Goal: $\mathcal{C}=V(G) \backslash S$ small identifying code

Want:

$$
\mathbb{E}(|S|)=p \cdot n N F(G)=\frac{n N F(G)}{\Theta(\Delta)}
$$

$$
\mathbb{E}(|\mathcal{C}|)=n-\frac{n N F(G)}{\Theta(\Delta)}
$$

Proof

F: forced vertices. Select "big" random set S from $V(G) \backslash F$ Goal: $\mathcal{C}=V(G) \backslash S$ small identifying code

Want:

$$
\mathbb{E}(|S|)=p \cdot n N F(G)=\frac{n N F(G)}{\Theta(\Delta)}
$$

$$
\mathbb{E}(|\mathcal{C}|)=n-\frac{n N F(G)}{\Theta(\Delta)}
$$

Apply Lovász Local Lemma + Chernoff bound on S

Proof

F: forced vertices. Select "big" random set S from $V(G) \backslash F$ Goal: $\mathcal{C}=V(G) \backslash S$ small identifying code

Want:

$$
\mathbb{E}(|S|)=p \cdot n N F(G)=\frac{n N F(G)}{\Theta(\Delta)}
$$

$$
\mathbb{E}(|\mathcal{C}|)=n-\frac{n N F(G)}{\Theta(\Delta)}
$$

Apply Lovász Local Lemma + Chernoff bound on S
with positive prob. $|S|$ is close to expected size, and we are done.

Bounding the number of forced vertices

$N F(G)$: proportion of non forced vertices of G
Theorem (F., Perarnau, 2012)
G identifiable graph on n vertices having maximum degree Δ and no isolated vertices:

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n \cdot N F(G)^{2}}{105 \Delta}
$$

Question
What can be said about $N F(G)$?

Bounding the number of forced vertices

$N F(G)$: proportion of non forced vertices of G
Theorem (F., Perarnau, 2012)
G identifiable graph on n vertices having maximum degree Δ and no isolated vertices:

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n \cdot N F(G)^{2}}{105 \Delta}
$$

Question
What can be said about $N F(G)$?

$$
G \text { regular } \Rightarrow N F(G)=1
$$

Corollary

$$
G \text { regular: } \gamma^{1 D}(G) \leq n-\frac{n}{105 \Delta}
$$

Bounding the number of forced vertices

$N F(G)$: proportion of non forced vertices of G
Theorem (F., Perarnau, 2012)
G identifiable graph on n vertices having maximum degree Δ and no isolated vertices:

$$
\gamma^{10}(G) \leq n-\frac{n \cdot N F(G)^{2}}{105 \Delta}
$$

Lemma (Bertrand, 2005)

G : identifiable graph having no isolated vertices. Let x be a vertex of G. There exists a non forced vertex in $N[x]$.
\rightarrow Set of non forced vertices is a dominating set.

Bounding the number of forced vertices

$N F(G)$: proportion of non forced vertices of G
Theorem (F., Perarnau, 2012)
G identifiable graph on n vertices having maximum degree Δ and no isolated vertices:

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n \cdot N F(G)^{2}}{105 \Delta}
$$

Lemma (Bertrand, 2005)

G: identifiable graph having no isolated vertices. Let x be a vertex of G. There exists a non forced vertex in $N[x]$.
\rightarrow Set of non forced vertices is a dominating set.

Corollary

$$
\frac{1}{\Delta+1} \leq N F(G) \leq 1 \text { and } \gamma^{10}(G) \leq n-\frac{n}{105(\Delta+1)^{3}}
$$

Bounding the number of forced vertices

$N F(G)$: proportion of non forced vertices of G

Theorem (F., Perarnau, 2012)

G identifiable graph on n vertices having maximum degree Δ and no isolated vertices:

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n \cdot N F(G)^{2}}{105 \Delta}
$$

clique number of G : max. size of a complete subgraph in G

Proposition (F., Perarnau, 2012)

Let G be a graph of clique number at most k. There exists a (huge) function c such that:

$$
\frac{1}{c(k)} \leq N F(G) \leq 1
$$

Bounding the number of forced vertices

$N F(G)$: proportion of non forced vertices of G

Theorem (F., Perarnau, 2012)

G identifiable graph on n vertices having maximum degree Δ and no isolated vertices:

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n \cdot N F(G)^{2}}{105 \Delta}
$$

clique number of G : max. size of a complete subgraph in G

Proposition (F., Perarnau, 2012)

Let G be a graph of clique number at most k. There exists a (huge) function c such that:

$$
\frac{1}{c(k)} \leq N F(G) \leq 1
$$

Corollary

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{105 c(k)^{2} \Delta}=n-\frac{n}{\Theta(\Delta)}
$$

Summary

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

G connected identifiable graph, n vertices, max. degree Δ. Then

$$
\gamma^{\text {ID }}(G) \leq n-\frac{n}{\Delta}+c \text { for some constant } c
$$

Theorem

$$
\begin{gathered}
\text { in general: } \gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{\Theta\left(\Delta^{3}\right)} \\
\text { triangle-free: } \gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{\Delta\left(1+o_{\Delta}(1)\right)} \\
\text { bipartite: } \gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{\Delta+9}
\end{gathered}
$$

no forced vertices (e.g. regular): $\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{105 \Delta}$
clique number $k: n-\frac{n}{105 c(k)^{2} \Delta}$
line graph of a graph H with $\bar{d}(H) \geq 5: \gamma^{\text {ID }}(G) \leq n-\frac{n}{\Delta}$

Open questions

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)
G connected identifiable graph, n vertices, max. degree Δ. Then

$$
\gamma^{\text {ID }}(G) \leq n-\frac{n}{\Delta}+c \text { for some constant } c
$$

Question

Can we prove the conjecture, or at least $\gamma^{10}(G) \leq n-\frac{n}{\Theta(\Delta)}$? for, e.g.:

- $\Delta=3$?
- trees?
- all line graphs?
- ...

Open questions

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)
G connected identifiable graph, n vertices, max. degree Δ. Then

$$
\gamma^{\text {ID }}(G) \leq n-\frac{n}{\Delta}+c \text { for some constant } c
$$

Question

Can we prove the conjecture, or at least $\gamma^{1 D}(G) \leq n-\frac{n}{\Theta(\Delta)}$? for, e.g.:

- $\Delta=3$?
- trees?
- all line graphs?
- ...

Question

How to handle forced vertices?

The minimum degree

Graphs with girth at least 5

Proposition (F., Perarnau, 2012)

G twin-free graph, n vertices, girth at least 5. $D, 2$-dominating set of G. If $G[D]$ has no isolated edge, D is an identifying code.

Graphs with girth at least 5

Proposition (F., Perarnau, 2012)

G twin-free graph, n vertices, girth at least 5. D, 2-dominating set of G. If $G[D]$ has no isolated edge, D is an identifying code.

Theorem (F., Perarnau, 2012)
G twin-free graph, girth at least $5, \min$. degree δ. Then

$$
\gamma^{\text {ID }}(G) \leq \frac{3\left(\ln \delta+\ln \ln \delta+1+\frac{\ln \ln \delta}{\ln \delta}+\frac{1}{\ln \delta}\right)}{2 \delta}=\left(1+o_{\delta}(1)\right) \frac{3 \ln \delta}{2 \delta} n
$$

If $\bar{d}(G)=O_{\delta}\left(\delta(\ln \delta)^{2}\right)$ (in particular, when G regular) then

$$
\gamma^{\text {ID }}(G) \leq \frac{\ln \delta+\ln \ln \delta+O_{\delta}(1)}{\delta} n
$$

Graphs with girth at least 5

Proposition (F., Perarnau, 2012)

G twin-free graph, n vertices, girth at least 5. D, 2-dominating set of G. If $G[D]$ has no isolated edge, D is an identifying code.

Theorem (F., Perarnau, 2012)

G twin-free graph, girth at least 5 , min. degree δ. Then

$$
\gamma^{\text {ID }}(G) \leq \frac{3\left(\ln \delta+\ln \ln \delta+1+\frac{\ln \ln \delta}{\ln \delta}+\frac{1}{\ln \delta}\right)}{2 \delta}=\left(1+o_{\delta}(1)\right) \frac{3 \ln \delta}{2 \delta} n
$$

If $\bar{d}(G)=O_{\delta}\left(\delta(\ln \delta)^{2}\right)$ (in particular, when G regular) then

$$
\gamma^{\mathrm{ID}}(G) \leq \frac{\ln \delta+\ln \ln \delta+O_{\delta}(1)}{\delta} n
$$

Corollary

G random d-regular graph. Then a.a.s.

$$
\gamma^{\mathrm{ID}}(G) \leq \frac{\log d+\log \log d+O_{d}(1)}{d} n
$$

Sketch of the proof: construct 2-dominating set D

Proof similar as random construction of domination set (Alon and Spencer, Chapter 1: Alteration method)

- $S \subseteq V$ at random, each element with probability p.

Sketch of the proof: construct 2-dominating set D

Proof similar as random construction of domination set (Alon and Spencer, Chapter 1: Alteration method)

- $S \subseteq V$ at random, each element with probability p.
- $\operatorname{Pr}(v$ not 2-dom. $)=(1-p)^{d+1}+(d+1) p(1-p)^{d} \leq(1+d p) e^{-d p}$

Sketch of the proof: construct 2-dominating set D

Proof similar as random construction of domination set (Alon and Spencer, Chapter 1: Alteration method)

- $S \subseteq V$ at random, each element with probability p.
- $\operatorname{Pr}(v$ not 2 -dom. $)=(1-p)^{d+1}+(d+1) p(1-p)^{d} \leq(1+d p) e^{-d p}$
- $X(S)=$ non 2-dominated vertices

Sketch of the proof: construct 2-dominating set D

Proof similar as random construction of domination set
(Alon and Spencer, Chapter 1: Alteration method)

- $S \subseteq V$ at random, each element with probability p.
- $\operatorname{Pr}(v$ not 2 -dom. $)=(1-p)^{d+1}+(d+1) p(1-p)^{d} \leq(1+d p) e^{-d p}$
- $X(S)=$ non 2-dominated vertices
- $\mathcal{C}=S \cup\{v: v \in X(S)\}, p=\frac{\log d+\log \log d}{d}$

$$
\mathbb{E}(|D|)=\mathbb{E}(|S|)+|X(S)| \leq \frac{\log d+\log \log d}{d} n+\frac{1+\log d+\log \log d}{d \log d} n
$$

Sketch of the proof: identifying code

$$
\operatorname{Pr}(\text { isolated edge }) \leq p^{2}(1-p)^{2 d-2}+(1-p)^{2 d}+p(1-p)^{2 d-1}
$$

Sketch of the proof: identifying code

$$
\operatorname{Pr}(\text { isolated edge }) \leq p^{2}(1-p)^{2 d-2}+(1-p)^{2 d}+p(1-p)^{2 d-1}
$$

$$
\begin{aligned}
& \mathcal{C}=S \cup\{v: v \in X(S)\} \cup\{w: w \in N(u), u v \text { isolated edge }\}, \\
& p=\frac{\log d+\log \log d}{d} \\
& \qquad \mathbb{E}(|\mathcal{C}|) \leq \frac{\log d+\log \log d+O_{d}(1)}{d} n
\end{aligned}
$$

Minimum degree 2

Theorem (F., Klasing, Kosowski, 2009)
G twin-free graph, n vertices, minimum degree at least 2 , girth at least 5. Then $\gamma^{\text {ID }}(G) \leq \frac{7 n}{8}$.

Minimum degree 2

Theorem (F., Klasing, Kosowski, 2009)
G twin-free graph, n vertices, minimum degree at least 2 , girth at least 5. Then $\gamma^{\mathrm{ID}}(G) \leq \frac{7 n}{8}$.

Proof idea: Build DFS-spanning tree

Take three out of four levels.
Possibly add $\leq \frac{n}{8}$ vertices to fix conflicts.

Comparison with dominating sets

$\gamma(G)$: domination number of G

Theorem (Payan, 60's - easy proof in Alon and Spencer's book)
G, n vertices, min. degree δ. Then $\gamma(G) \leq \frac{1+\ln (\delta+1)}{\delta+1} n$.

Theorem

G, n vertices. All bounds are tight.

- min. degree 1: $\gamma(G) \leq \frac{n}{2}$ (Folklore)
- connected, min. degree 2: $\gamma(G) \leq \frac{2 n}{5}$ except for 7 small graphs (McCuaig-Shepherd, 1989)
- min. degree 3: $\gamma(G) \leq \frac{3 n}{8}$ (Reed, 1996)

Comparison with dominating sets

$\gamma(G)$: domination number of G

Theorem (Payan, 60's - easy proof in Alon and Spencer's book)
G, n vertices, min. degree δ. Then $\gamma(G) \leq \frac{1+\ln (\delta+1)}{\delta+1} n$.

Theorem

G, n vertices. All bounds are tight.

- min. degree 1: $\gamma(G) \leq \frac{n}{2}$ (Folklore)
- connected, min. degree 2: $\gamma(G) \leq \frac{2 n}{5}$ except for 7 small graphs (McCuaig-Shepherd, 1989)
- min. degree 3: $\gamma(G) \leq \frac{3 n}{8}$ (Reed, 1996)

Question

Can we prove similar bounds for $\gamma^{1 \mathrm{D}}$ and girth 5 ?

Interval and line graphs

Interval graphs

Theorem (F., Naserasr, Parreau, Valicov, 2012+)
G interval graph: $\gamma^{I D}(G)>\sqrt{2 n}$

Interval graphs

Theorem (F., Naserasr, Parreau, Valicov, 2012+)
G interval graph: $\gamma^{I D}(G)>\sqrt{2 n}$

- Identifying code of size k.
- Order code by increasing left point.

Interval graphs

Theorem (F., Naserasr, Parreau, Valicov, 2012+)
G interval graph: $\gamma^{1 D}(G)>\sqrt{2 n}$

- Identifying code of size k.
- Order code by increasing left point.
- Each vertex intersects consecutive set of code vertices.

Interval graphs

Theorem (F., Naserasr, Parreau, Valicov, 2012+)
G interval graph: $\gamma^{\text {ID }}(G)>\sqrt{2 n}$

- Identifying code of size k.
- Order code by increasing left point.
- Each vertex intersects consecutive set of code vertices.

$$
\rightarrow n \leq \sum_{i=1}^{k} i=\binom{k}{2}
$$

Interval graphs

Theorem (F., Naserasr, Parreau, Valicov, 2012+)
G interval graph: $\gamma^{I D}(G)>\sqrt{2 n}$

Tight

Line graphs

Definition - Line graph of H : Edge-adjacency graph of H
Denoted $\mathcal{L}(H)$
$V(\mathcal{L}(H))=E(H)$
$e \sim e^{\prime}$ in $\mathcal{L}(H)$ iff e and e^{\prime} incident to common vertex in H

H

$\mathcal{L}(H)$

Line graphs

Definition - Line graph of H : Edge-adjacency graph of H
Denoted $\mathcal{L}(H)$
$V(\mathcal{L}(H))=E(H)$
$e \sim e^{\prime}$ in $\mathcal{L}(H)$ iff e and e^{\prime} incident to common vertex in H

H

$\mathcal{L}(H)$

Tool: edge-identifying codes
Edge-identifying code of $H \Longleftrightarrow$ Identifying code of $\mathcal{L}(H)$

Edge-identifying code - example

$$
\gamma^{\mathrm{ED}}(\mathcal{P}) \leq 5
$$

A lower bound for line graphs

Theorem (F., Gravier, Naserasr, Parreau, Valicov, 2012)

$$
\gamma^{\text {ID }}(\mathcal{L}(H))=\gamma^{\mathrm{EID}}(H) \geq \frac{|V(H)|}{2}
$$

A lower bound for line graphs

Theorem (F., Gravier, Naserasr, Parreau, Valicov, 2012)

$$
\gamma^{\mathrm{ID}}(\mathcal{L}(H))=\gamma^{\mathrm{EID}}(H) \geq \frac{|V(H)|}{2}
$$

Proof idea:

C_{E}, k edges on n^{\prime} vertices

$$
X=V(G) \backslash V\left(C_{E}\right)
$$

- Assume C_{E} is connected
- If C_{E} has a cycle, $|X| \leq n^{\prime} \leq k$,
- If C_{E} is a tree, $n^{\prime}-1=k$ and $|X| \leq n^{\prime}-2$
- In both cases, $n=|X|+n^{\prime} \leq 2 k$

A lower bound for line graphs

Theorem (F., Gravier, Naserasr, Parreau, Valicov, 2012)

$$
\gamma^{\text {ID }}(\mathcal{L}(H))=\gamma^{\mathrm{EID}}(H) \geq \frac{|V(H)|}{2}
$$

Since $|V(\mathcal{L}(H))|=|E(H)| \leq \frac{|V(H)|(|V(H)|-1)}{2}$

Corollary

$$
\gamma^{\text {ID }}(\mathcal{L}(H)) \geq \frac{\sqrt{2|V(\mathcal{L}(H))|}}{2}
$$

No extension to quasi-line graphs!

$$
\begin{aligned}
& A=\left\{a_{1}, \ldots, a_{k}\right\}, B=2^{A}: \text { cliques. } \\
& |V(G)|=k+2^{k} \\
& \gamma^{1 D}(G) \leq 2 k=\Theta(\log (|V(G)|))
\end{aligned}
$$

Open questions

Bounds in $\Omega(\sqrt{n})$ for interval and line graphs.

Question

Is there some common point between these two results?

Question
What about other nice classes, e.g. permutation graphs?

Computational problems

Complexity of (MIN) IDCODE for various graph classes

Conclusion

Open problems

- Better upper bound on γ^{10} depending on Δ. Conjecture: $\gamma^{\text {ID }}(G) \leq n-\frac{n}{\Delta}+c$

Open problems

- Better upper bound on γ^{10} depending on Δ. Conjecture:
$\gamma^{\text {ID }}(G) \leq n-\frac{n}{\Delta}+c$
- Tight upper bound on $\gamma^{\text {ID }}$ in graphs of given minimum degree and girth 5

Open problems

- Better upper bound on γ^{10} depending on Δ. Conjecture: $\gamma^{\text {ID }}(G) \leq n-\frac{n}{\Delta}+c$
- Tight upper bound on γ^{10} in graphs of given minimum degree and girth 5
- Bounds for specific graph classes: generalize bound for interval/line graphs?

Open problems

- Better upper bound on γ^{10} depending on Δ. Conjecture: $\gamma^{\text {ID }}(G) \leq n-\frac{n}{\Delta}+c$
- Tight upper bound on $\gamma^{\text {10 }}$ in graphs of given minimum degree and girth 5
- Bounds for specific graph classes: generalize bound for interval/line graphs?
- Computational aspects of identifying codes

