Edge identifying codes (identifying codes in line graphs)

Florent Foucaud¹

joint work with S. Gravier², R. Naserasr¹, A. Parreau², P. Valicov¹

1:LaBRI, Bordeaux 2:Institut Fourier, Grenoble

UPC, Barcelona - 12th May 2011

How many detectors do we need?

Definition - Identifying code of *G* (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V such that:

- C is a dominating set in G: $\forall u \in V$, $N[u] \cap C \neq \emptyset$, and
- C is a separating code in G: $\forall u \neq v$ of V, $N[u] \cap C \neq N[v] \cap C$

Definition - Identifying code of *G* (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V such that:

- C is a dominating set in G: $\forall u \in V$, $N[u] \cap C \neq \emptyset$, and
- C is a separating code in G: $\forall u \neq v$ of V, $N[u] \cap C \neq N[v] \cap C$

Notation - Identifying code number

 $\gamma^{\text{ID}}(G)$: minimum cardinality of an identifying code of G

Remark

Not all graphs have an identifying code!

Twins = pair u, v such that N[u] = N[v].

A graph is identifiable iff it is twin-free (i.e. it has no twins).

Remark

Not all graphs have an identifying code!

Twins = pair u, v such that N[u] = N[v].

A graph is identifiable iff it is twin-free (i.e. it has no twins).

Remark

Not all graphs have an identifying code!

Twins = pair u, v such that N[u] = N[v].

A graph is identifiable iff it is twin-free (i.e. it has no twins).

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

Let G be an identifiable graph, then

 $\lceil \log_2(n+1) \rceil \leq \gamma^{\text{\tiny ID}}(\textit{G})$

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

Let G be an identifiable graph, then

$$\lceil \log_2(n+1) \rceil \leq \gamma^{\text{ID}}(G)$$

Theorem (Gravier, Moncel, 2007)

Let ${\it G}$ be an identifiable graph with at least one edge, then

$$\gamma^{\scriptscriptstyle {
m ID}}({\it G}) \leq {\it n}-1$$

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

Let G be an identifiable graph, then

 $\lceil \log_2(n+1) \rceil \leq \gamma^{\text{\tiny{ID}}}(G)$

Theorem (Gravier, Moncel, 2007)

Let ${\it G}$ be an identifiable graph with at least one edge, then $\gamma^{\rm ID}({\it G}) \leq n-1$

Both bounds are tight, and all extremal examples are known:

- lower bound: Moncel, 2006
- upper bound: F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011

Edge identifying codes, definition

Let I[e] be the set of edges f s.t. e = f or e, f are incident to a common vertex

Definition - Edge identifying code of *G* (without isolated vertices)

Subset C_E of E such that:

- C_E is an edge dominating set in $G: \forall e \in E, I[e] \cap C_E \neq \emptyset$, and
- C_E is an edge separating code in $G: \forall e \neq f$ of $E, I[e] \cap C_E \neq I[f] \cap C_E$

Edge identifying codes, definition

Let I[e] be the set of edges f s.t. e = f or e, f are incident to a common vertex

Definition - Edge identifying code of *G* (without isolated vertices)

Subset C_E of E such that:

- C_E is an edge dominating set in $G: \forall e \in E, I[e] \cap C_E \neq \emptyset$, and
- C_E is an edge separating code in $G: \forall e \neq f$ of $E, I[e] \cap C_E \neq I[f] \cap C_E$

(Remark)

Edge identifying code of $G \longleftrightarrow$ Identifying code of $\mathcal{L}(G)$

Edge identifying codes, definition

Let I[e] be the set of edges f s.t. e = f or e, f are incident to a common vertex

Definition - Edge identifying code of *G* (without isolated vertices)

Subset C_E of E such that:

- C_E is an edge dominating set in $G: \forall e \in E, I[e] \cap C_E \neq \emptyset$, and
- C_E is an edge separating code in $G: \forall e \neq f$ of $E, I[e] \cap C_E \neq I[f] \cap C_E$

Remark

Edge identifying code of $G \longleftrightarrow$ Identifying code of $\mathcal{L}(G)$

Notation - Edge identifying code number

 $\gamma^{\text{\tiny ID}}(\mathcal{L}(G)) = \gamma^{\text{\tiny EID}}(G)$: minimum cardinality of an edge identifying code of G

Let G be an edge identifiable graph with an edge identifying code C_E inducing a connected subgraph, then $|E(G)| \leq {|C_E|+2 \choose 2} - 4$

Let G be an edge identifiable graph with an edge identifying code C_E inducing a connected subgraph, then $|E(G)| \leq {\binom{|C_E|+2}{2}} - 4$

Theorem (F., Gravier, Naserasr, Parreau, Valicov)

Let G be an edge identifiable graph with an edge identifying code of size k, then $|E(G)| \leq \begin{cases} \binom{\frac{4}{3}k}{2}, & \text{if } k \equiv 0 \mod 3\\ \binom{\frac{4}{3}(k-1)+1}{2}+1, & \text{if } k \equiv 1 \mod 3\\ \binom{\frac{4}{3}(k-2)+2}{2}+2, & \text{if } k \equiv 2 \mod 3 \end{cases}$

Let G be an edge identifiable graph with an edge identifying code C_E inducing a connected subgraph, then $|E(G)| \leq {\binom{|C_E|+2}{2}} - 4$

Theorem (F., Gravier, Naserasr, Parreau, Valicov)

Let G be an edge identifiable graph with an edge identifying code of size k, then $|E(G)| \leq \begin{cases} \binom{\frac{4}{3}k}{2}, & \text{if } k \equiv 0 \mod 3\\ \binom{\frac{4}{3}(k-1)+1}{2}+1, & \text{if } k \equiv 1 \mod 3\\ \binom{\frac{4}{3}(k-2)+2}{2}+2, & \text{if } k \equiv 2 \mod 3 \end{cases}$

Corollary

 $\gamma^{\text{ID}}(\mathcal{L}(\mathcal{G})) > \frac{3\sqrt{2}}{4} \sqrt{|V(\mathcal{L}(\mathcal{G}))|}$. This bound is tight.

Let G be an edge identifiable graph with an edge identifying code C_E inducing a connected subgraph, then $|E(G)| \le \binom{|C_E|+2}{2} - 4$

Let $G' = G[C_E]$. Each edge $uv \in G$ is determined by two sets:

- set of edges of G' incident to u
- set of edges of G' incident to v

At most $|V(G')| + {|V(G')| \choose 2} = {|V(G')|+1 \choose 2}$ such sets.

- G' not a tree $\Rightarrow |V(G')| \le |C_E|$
- G' tree: we show that at least 4 of these sets cannot be used.

$\gamma^{\text{\tiny ID}}(\mathcal{L}(G)) > \frac{3\sqrt{2}}{4} \sqrt{|\mathcal{V}(\mathcal{L}(G))|}.$ This bound is tight.

$$\gamma^{\text{ID}}(\mathcal{L}(G)) > \frac{3\sqrt{2}}{4}\sqrt{|V(\mathcal{L}(G))|}.$$
 This bound is tight.

Theorem (Beineke, 1970)

G is a line graph if and only if it does not contain one of the following graphs as an induced subgraph.

 $\langle \rangle$

$$\gamma^{\text{ID}}(\mathcal{L}(G)) > \frac{3\sqrt{2}}{4}\sqrt{|V(\mathcal{L}(G))|}.$$
 This bound is tight.

Theorem (Beineke, 1970)

G is a line graph if and only if it does not contain one of the following graphs as an induced subgraph.

The bound does **not** hold for claw-free graphs.

Question

Does the bound hold for a class defined by a smaller subfamily of the list?

 $\langle \rangle$

Let G be an edge-identifiable graph with a minimal edge identifying code C_E . Then $G[C_E]$ is 2-degenerated.

Let G be an edge-identifiable graph with a minimal edge identifying code C_E . Then $G[C_E]$ is 2-degenerated.

Corollary

If G is an edge-identifiable graph on n vertices not isomorphic to K_4^- , then $\gamma^{\text{EID}}(G) \leq 2|V(G)| - 4$.

Let G be an edge-identifiable graph with a minimal edge identifying code C_E . Then $G[C_E]$ is 2-degenerated.

Corollary

If G is an edge-identifiable graph on n vertices not isomorphic to K_4^- , then $\gamma^{\text{EID}}(G) \leq 2|V(G)| - 4$.

This is almost tight since $\gamma^{\text{EID}}(K_{2,n}) = 2n - 2 = 2|V(K_{2,n})| - 6$.

If G is an edge-identifiable graph on n vertices not isomorphic to K_4^- , then $\gamma^{\rm EID}(G)\leq 2|V(G)|-4.$

Corollary

If G is an edge-identifiable graph with average degree $\overline{d}(G) \geq 5$, then $\gamma^{\text{ID}}(\mathcal{L}(G)) \leq n - \frac{n}{\Delta(\mathcal{L}(G))}$ where $n = |V(\mathcal{L}(G))|$.

If G is an edge-identifiable graph on n vertices not isomorphic to K_4^- , then $\gamma^{\rm EID}(G)\leq 2|V(G)|-4.$

Corollary

If G is an edge-identifiable graph with average degree $\overline{d}(G) \geq 5$, then $\gamma^{\text{ID}}(\mathcal{L}(G)) \leq n - \frac{n}{\Delta(\mathcal{L}(G))}$ where $n = |V(\mathcal{L}(G))|$.

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

Let G be a connected identifiable graph on n vertices and of maximum degree Δ . Then $\gamma^{\text{ID}}(G) \leq n - \frac{n}{\Delta} + O(1)$.

Problem EDGE IDCODE

INSTANCE: A graph G and an integer k.

QUESTION: Does G have an edge identifying code of size at most k?

Problem EDGE IDCODE

INSTANCE: A graph G and an integer k.

QUESTION: Does G have an edge identifying code of size at most k?

Theorem (F., Gravier, Naserasr, Parreau, Valicov)

EDGE IDCODE is NP-complete, even for planar subcubic bipartite graphs of arbitrarily large girth.

Complexity

Proof by reduction from:

Theorem (Dahlhaus, Johnson, Papadimitriou, Seymour, Yannakakis, 1994)

PLANAR (\leq 3, 3)-SAT is NP-complete.

Reduction

Q is satisfiable if and only if G contains an edge identifying code C_E of size k = 25|Q| + 22|X|.

Theorem (Trotter, 1977)

A line graph $\mathcal{L}(G)$ is perfect if and only if G has no odd cycles of length more than 3

Theorem (Trotter, 1977)

A line graph $\mathcal{L}(G)$ is perfect if and only if G has no odd cycles of length more than 3

Corollary

IDCODE is NP-complete even when restricted to perfect 3-colorable planar line graphs of maximum degree 4.

Theorem (Courcelle, 1990)

Every graph property expressable in monadic second-order logic is solvable in linear time in classes of graphs having bounded tree-width.

Corollary

EDGE IDCODE is linear time so vable in trees, k-outerplanar graphs, se riesparallel graphs, \ldots

Graph: set V of vertices, set E of edges, unary predicates $a, b : E \rightarrow V$

• $e \neq f := (a(e) \neq a(f) \land a(e) \neq b(f)) \lor (b(e) \neq a(f) \land b(e) \neq b(f))$ • $e\mathcal{I}^*f := a(e) = a(f) \lor a(e) = b(f) \lor b(e) = b(f) \lor b(e) = a(f)$

$$\exists C, C \subseteq E, |C| \le k, (\forall e \in E, \exists f \in C \land e\mathcal{I}^*f) \land \left(\forall e \in E, \forall f \in E, e \neq f, \exists g \in C, ((e\mathcal{I}^*g \land \neg(f\mathcal{I}^*g)) \lor (f\mathcal{I}^*g \land \neg(e\mathcal{I}^*g)))\right)$$

Gràcies!

