Edge identifying codes (identifying codes in line graphs)

Florent Foucaud ${ }^{1}$

joint work with S. Gravier ${ }^{2}$, R. Naserasr ${ }^{1}$, A. Parreau ${ }^{2}$, P. Valicov ${ }^{1}$
1:LaBRI, Bordeaux
2:Institut Fourier, Grenoble
UPC, Barcelona - 12th May 2011

Locating a burglar in a math department

How many detectors do we need?

Identifying codes: definition

Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$

Definition - Identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V such that:

- C is a dominating set in $G: \forall u \in V, N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V, N[u] \cap C \neq N[v] \cap C$

Identifying codes: definition

Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$

Definition - Identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V such that:

- C is a dominating set in $G: \forall u \in V, N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V, N[u] \cap C \neq N[v] \cap C$

Notation - Identifying code number
$\gamma^{\text {ID }}(G)$: minimum cardinality of an identifying code of G

Identifiable graphs

Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$

Remark

Not all graphs have an identifying code!
Twins $=$ pair u, v such that $N[u]=N[v]$.
A graph is identifiable iff it is twin-free (i.e. it has no twins).

Identifiable graphs

Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$

Remark

Not all graphs have an identifying code!
Twins $=$ pair u, v such that $N[u]=N[v]$.
A graph is identifiable iff it is twin-free (i.e. it has no twins).

Identifiable graphs

Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$

Remark

Not all graphs have an identifying code!
Twins $=$ pair u, v such that $N[u]=N[v]$.
A graph is identifiable iff it is twin-free (i.e. it has no twins).

Bounds

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)
Let G be an identifiable graph, then

$$
\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\mathrm{ID}}(G)
$$

Bounds

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)
Let G be an identifiable graph, then

$$
\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\mathrm{ID}}(G)
$$

Theorem (Gravier, Moncel, 2007)
Let G be an identifiable graph with at least one edge, then

$$
\gamma^{\mathrm{ID}}(G) \leq n-1
$$

Bounds

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)
Let G be an identifiable graph, then

$$
\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\mathrm{ID}}(G)
$$

Theorem (Gravier, Moncel, 2007)
Let G be an identifiable graph with at least one edge, then

$$
\gamma^{\mathrm{ID}}(G) \leq n-1
$$

Both bounds are tight, and all extremal examples are known:

- lower bound: Moncel, 2006
- upper bound: F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011

Edge identifying codes, definition

Let $l[e]$ be the set of edges f s.t. $e=f$ or e, f are incident to a common vertex
Definition - Edge identifying code of G (without isolated vertices)
Subset C_{E} of E such that:

- C_{E} is an edge dominating set in $G: \forall e \in E, I[e] \cap C_{E} \neq \emptyset$, and
- C_{E} is an edge separating code in $G: \forall e \neq f$ of $E, I[e] \cap C_{E} \neq I[f] \cap C_{E}$

Edge identifying codes, definition

Let $l[e]$ be the set of edges f s.t. $e=f$ or e, f are incident to a common vertex
Definition - Edge identifying code of G (without isolated vertices)
Subset C_{E} of E such that:

- C_{E} is an edge dominating set in $G: \forall e \in E, I[e] \cap C_{E} \neq \emptyset$, and
- C_{E} is an edge separating code in $G: \forall e \neq f$ of $E, I[e] \cap C_{E} \neq I[f] \cap C_{E}$

Remark

Edge identifying code of $G \longleftrightarrow$ Identifying code of $\mathcal{L}(G)$

Edge identifying codes, definition

Let $l[e]$ be the set of edges f s.t. $e=f$ or e, f are incident to a common vertex
Definition - Edge identifying code of G (without isolated vertices)
Subset C_{E} of E such that:

- C_{E} is an edge dominating set in $G: \forall e \in E, I[e] \cap C_{E} \neq \emptyset$, and
- C_{E} is an edge separating code in $G: \forall e \neq f$ of $E, I[e] \cap C_{E} \neq I[f] \cap C_{E}$

Remark

Edge identifying code of $G \longleftrightarrow$ Identifying code of $\mathcal{L}(G)$

Notation - Edge identifying code number
$\gamma^{\mathrm{ID}}(\mathcal{L}(G))=\gamma^{\mathrm{EID}}(G)$: minimum cardinality of an edge identifying code of G

Edge identifiable graphs

Remark

Not all graphs have an edge identifying code!
Pendant $=$ pair of twin edges.
A graph is edge identifiable iff it is pendant-free (and simple).

Lower bounds

Theorem (F., Gravier, Naserasr, Parreau, Valicov)
Let G be an edge identifiable graph with an edge identifying code C_{E} inducing a connected subgraph, then $|E(G)| \leq\binom{\left|C_{E}\right|+2}{2}-4$

Lower bounds

Theorem (F., Gravier, Naserasr, Parreau, Valicov)
Let G be an edge identifiable graph with an edge identifying code C_{E} inducing a connected subgraph, then $|E(G)| \leq\left(C_{E_{E} \mid+2}^{2}\right)-4$

Theorem (F., Gravier, Naserasr, Parreau, Valicov)
Let G be an edge identifiable graph with an edge identifying code of size k, then $|E(G)| \leq \begin{cases}\binom{\left.\frac{4}{3} k\right),}{\left(\frac{2}{3}(k-1)+1\right.}+1, & \text { if } k \equiv 0 \bmod 3 \\ \left(\frac{4}{3}(k-2)+2\right)+2, & \text { if } k \equiv 2 \bmod 3\end{cases}$

Lower bounds

Theorem (F., Gravier, Naserasr, Parreau, Valicov)

Let G be an edge identifiable graph with an edge identifying code C_{E} inducing a connected subgraph, then $|E(G)| \leq\binom{\left|C_{E}\right|+2}{2}-4$

Theorem (F., Gravier, Naserasr, Parreau, Valicov)
Let G be an edge identifiable graph with an edge identifying code of size k,
then $|E(G)| \leq\left\{\begin{array}{ll}\binom{\frac{4}{3} k}{2}, & \text { if } k \equiv 0 \bmod 3 \\ \left(\frac{4}{3}(k-1)+1\right. \\ 2\end{array}\right)+1, \quad$ if $k \equiv 1 \bmod 381\binom{\frac{4}{3}(k-2)+2}{2}+2, \quad$ if $k \equiv 2 \bmod 38$

Corollary

$\gamma^{\text {ID }}(\mathcal{L}(G))>\frac{3 \sqrt{2}}{4} \sqrt{|V(\mathcal{L}(G))|}$. This bound is tight.

Lower bound - idea of the proof

Theorem (F., Gravier, Naserasr, Parreau, Valicov)

Let G be an edge identifiable graph with an edge identifying code C_{E} inducing a connected subgraph, then $|E(G)| \leq\binom{\left|C_{E}\right|+2}{2}-4$

Let $G^{\prime}=G\left[C_{E}\right]$. Each edge $u v \in G$ is determined by two sets:

- set of edges of G^{\prime} incident to u
- set of edges of G^{\prime} incident to v

At most $\left|V\left(G^{\prime}\right)\right|+\binom{\left|V\left(G^{\prime}\right)\right|}{2}=\binom{\left|V\left(G^{\prime}\right)\right|+1}{2}$ such sets.

- G^{\prime} not a tree $\Rightarrow\left|V\left(G^{\prime}\right)\right| \leq\left|C_{E}\right|$
- G^{\prime} tree: we show that at least 4 of these sets cannot be used.

Lower bound - question

Corollary
$\gamma^{\text {ID }}(\mathcal{L}(G))>\frac{3 \sqrt{2}}{4} \sqrt{|V(\mathcal{L}(G))|}$. This bound is tight.

Lower bound - question

Corollary

$\gamma^{\text {ID }}(\mathcal{L}(G))>\frac{3 \sqrt{2}}{4} \sqrt{|V(\mathcal{L}(G))|}$. This bound is tight.

Theorem (Beineke, 1970)

G is a line graph if and only if it does not contain one of the following graphs as an induced subgraph.

Lower bound - question

Corollary

$$
\gamma^{\text {ID }}(\mathcal{L}(G))>\frac{3 \sqrt{2}}{4} \sqrt{|V(\mathcal{L}(G))|} \text {. This bound is tight. }
$$

Theorem (Beineke, 1970)

G is a line graph if and only if it does not contain one of the following graphs as an induced subgraph.

The bound does not hold for claw-free graphs.

Question

Does the bound hold for a class defined by a smaller subfamily of the list?

An upper bound

Theorem (F., Gravier, Naserasr, Parreau, Valicov)
Let G be an edge-identifiable graph with a minimal edge identifying code C_{E}. Then $G\left[C_{E}\right]$ is 2-degenerated.

An upper bound

Theorem (F., Gravier, Naserasr, Parreau, Valicov)

Let G be an edge-identifiable graph with a minimal edge identifying code C_{E}. Then $G\left[C_{E}\right]$ is 2-degenerated.

Corollary

If G is an edge-identifiable graph on n vertices not isomorphic to K_{4}^{-}, then $\gamma^{\mathrm{EDO}}(G) \leq 2|V(G)|-4$.

An upper bound

Theorem (F., Gravier, Naserasr, Parreau, Valicov)

Let G be an edge-identifiable graph with a minimal edge identifying code C_{E}. Then $G\left[C_{E}\right]$ is 2-degenerated.

Corollary

If G is an edge-identifiable graph on n vertices not isomorphic to K_{4}^{-}, then $\gamma^{\mathrm{EDO}}(G) \leq 2|V(G)|-4$.

This is almost tight since $\gamma^{\mathrm{ED}}\left(K_{2, n}\right)=2 n-2=2\left|V\left(K_{2, n}\right)\right|-6$.

An upper bound - corollary

Corollary

If G is an edge-identifiable graph on n vertices not isomorphic to K_{4}^{-}, then $\gamma^{\mathrm{EID}}(G) \leq 2|V(G)|-4$.

Corollary

If G is an edge-identifiable graph with average degree $\bar{d}(G) \geq 5$, then $\gamma^{\mathrm{ID}}(\mathcal{L}(G)) \leq n-\frac{n}{\Delta(\mathcal{L}(G))}$ where $n=|V(\mathcal{L}(G))|$.

An upper bound - corollary

Corollary

If G is an edge-identifiable graph on n vertices not isomorphic to K_{4}^{-}, then $\gamma^{\mathrm{ED}}(G) \leq 2|V(G)|-4$.

Corollary

If G is an edge-identifiable graph with average degree $\bar{d}(G) \geq 5$, then $\gamma^{\mathrm{ID}}(\mathcal{L}(G)) \leq n-\frac{n}{\Delta(\mathcal{L}(G))}$ where $n=|V(\mathcal{L}(G))|$.

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

Let G be a connected identifiable graph on n vertices and of maximum degree Δ. Then $\gamma^{\text {ID }}(G) \leq n-\frac{n}{\Delta}+O(1)$.

Complexity

Problem EDGE IDCODE

INSTANCE: A graph G and an integer k.
QUESTION: Does G have an edge identifying code of size at most k ?

Complexity

Problem EDGE IDCODE

INSTANCE: A graph G and an integer k.
QUESTION: Does G have an edge identifying code of size at most k ?

Theorem (F., Gravier, Naserasr, Parreau, Valicov)
EDGE IDCODE is NP-complete, even for planar subcubic bipartite graphs of arbitrarily large girth.

Complexity

Proof by reduction from:

Problem PLANAR ($\leq 3,3$)-SAT

INSTANCE: A set \mathcal{Q} of clauses over a set X of boolean variables such that:

- Each clause contains at least two and at most three distinct literals
- Each variable appears exactly once negated, twice non-negated
- The bipartite incidence graph $B(\mathcal{Q})$ is planar

QUESTION: Can \mathcal{Q} be satisfied, i.e. is there a truth assignment of the variables of X such that each clause contains at least one true literal?

Theorem (Dahlhaus, Johnson, Papadimitriou, Seymour, Yannakakis, 1994)
PLANAR $(\leq 3,3)$-SAT is NP-complete.

Reduction

Clause gadget

\mathcal{Q} is satisfiable if and only if G contains an edge identifying code C_{E} of size $k=25|\mathcal{Q}|+22|X|$.

Complexity

Theorem (Trotter, 1977)
A line graph $\mathcal{L}(G)$ is perfect if and only if G has no odd cycles of length more than 3

Complexity

Theorem (Trotter, 1977)

A line graph $\mathcal{L}(G)$ is perfect if and only if G has no odd cycles of length more than 3

Corollary

IDCODE is NP-complete even when restricted to perfect 3-colorable planar line graphs of maximum degree 4.

Complexity

Theorem (Courcelle, 1990)

Every graph property expressable in monadic second-order logic is solvable in linear time in classes of graphs having bounded tree-width.

Corollary

EDGE IDCODE is linear time sovable in trees, k-outerplanar graphs, seriesparallel graphs, ...

Graph: set V of vertices, set E of edges, unary predicates $a, b: E \rightarrow V$

- $e \neq f:=(a(e) \neq a(f) \wedge a(e) \neq b(f)) \vee(b(e) \neq a(f) \wedge b(e) \neq b(f))$
- $e \mathcal{I}^{*} f:=a(e)=a(f) \vee a(e)=b(f) \vee b(e)=b(f) \vee b(e)=a(f)$

$$
\begin{gathered}
\exists C, C \subseteq E,|C| \leq k,\left(\forall e \in E, \exists f \in C \wedge e \mathcal{I}^{*} f\right) \wedge \\
\left(\forall e \in E, \forall f \in E, e \neq f, \exists g \in C,\left(\left(e \mathcal{I}^{*} g \wedge \neg\left(f \mathcal{I}^{*} g\right)\right) \vee\left(f \mathcal{I}^{*} g \wedge \neg\left(e \mathcal{I}^{*} g\right)\right)\right)\right)
\end{gathered}
$$

Gràcies!

