Edge-identifying codes (identifying codes in line graphs)

Florent Foucaud ${ }^{1}$

joint work with S. Gravier ${ }^{2}$, R. Naserasr ${ }^{1}$, A. Parreau ${ }^{2}$, P. Valicov ${ }^{1}$

1: LaBRI, Bordeaux (France)
2: Institut Fourier, Grenoble (France)

EUROCOMB' 2011 - September 2nd, 2011

Locating a burglar in a museum

How many detectors do we need?

Identifying codes: definition

Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$

Definition - Identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of $V(G)$ such that:

- C is a dominating set in $G: \forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V(G),(N[u] \Delta N[v]) \cap C \neq \emptyset$

Identifying codes: definition

Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$

Definition - Identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of $V(G)$ such that:

- C is a dominating set in $G: \forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V(G),(N[u] \Delta N[v]) \cap C \neq \emptyset$

Notation - Identifying code number

$\gamma^{\text {ID }}(G)$: minimum cardinality of an identifying code of G

Identifiable graphs

Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$
Definition - Identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998)
Subset C of $V(G)$ such that:

- C is a dominating set in $G: \forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V(G),(N[u] \Delta N[v]) \cap C \neq \emptyset$

Remark - Not all graphs have an identifying code!

Twins $=$ pair u, v such that $N[u]=N[v]$.
A graph is identifiable iff it is twin-free (i.e. it has no twins).

Identifiable graphs

Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$
Definition - Identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998)
Subset C of $V(G)$ such that:

- C is a dominating set in $G: \forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V(G),(N[u] \Delta N[v]) \cap C \neq \emptyset$

Remark - Not all graphs have an identifying code!

Twins $=$ pair u, v such that $N[u]=N[v]$.
A graph is identifiable iff it is twin-free (i.e. it has no twins).

Identifiable graphs

Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$
Definition - Identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998)
Subset C of $V(G)$ such that:

- C is a dominating set in $G: \forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V(G),(N[u] \Delta N[v]) \cap C \neq \emptyset$

Remark - Not all graphs have an identifying code!

Twins $=$ pair u, v such that $N[u]=N[v]$.
A graph is identifiable iff it is twin-free (i.e. it has no twins).

Bounds

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)
Let G be an identifiable graph, then $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\text {ID }}(G)$

Bounds

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)
Let G be an identifiable graph, then $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\text {ID }}(G)$

Bounds

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)
Let G be an identifiable graph, then $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\mathrm{ID}}(G)$

Theorem (Gravier, Moncel, 2007)
Let G be an identifiable graph with at least one edge, then $\gamma^{\mathrm{ID}}(G) \leq n-1$

Bounds

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)
Let G be an identifiable graph, then $\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\mathrm{ID}}(G)$

Theorem (Gravier, Moncel, 2007)
Let G be an identifiable graph with at least one edge, then $\gamma^{\mathrm{ID}}(G) \leq n-1$

Edge-identifying codes, definition

Let $N[e]$ be the set of edges f s.t. $e=f$ or e, f are incident to a common vertex

Definition - Edge-identifying code of G (without isolated vertices)

Subset C_{E} of $E(G)$ such that:

- C_{E} is an edge-dominating set in $G: \forall e \in E(G), N[e] \cap C_{E} \neq \emptyset$, and
- C_{E} is an edge-separating code in $G: \forall e \neq f$ of $E(G)$, $(N[e] \Delta N[f]) \cap C_{E} \neq \emptyset$

Edge-identifying codes, definition

Let $N[e]$ be the set of edges f s.t. $e=f$ or e, f are incident to a common vertex

Definition - Edge-identifying code of G (without isolated vertices)

Subset C_{E} of $E(G)$ such that:

- C_{E} is an edge-dominating set in $G: \forall e \in E(G), N[e] \cap C_{E} \neq \emptyset$, and
- C_{E} is an edge-separating code in $G: \forall e \neq f$ of $E(G)$, $(N[e] \Delta N[f]) \cap C_{E} \neq \emptyset$

Notation - Edge-identifying code number
$\gamma^{\mathrm{EID}}(G)$: minimum cardinality of an edge-identifying code of G

Edge-identifying code - example

Line graph

Definition - Line graph of G : Edge-adjacency graph of G
Denoted $\mathcal{L}(G)$
$V(\mathcal{L}(G))=E(G)$
$e \sim e^{\prime}$ in $\mathcal{L}(G)$ iff e and e^{\prime} are incident to a common vertex in G

Line graph

Definition - Line graph of G: Edge-adjacency graph of G
Denoted $\mathcal{L}(G)$
$V(\mathcal{L}(G))=E(G)$
$e \sim e^{\prime}$ in $\mathcal{L}(G)$ iff e and e^{\prime} are incident to a common vertex in G

Line graph

Definition - Line graph of G : Edge-adjacency graph of G
Denoted $\mathcal{L}(G)$
$V(\mathcal{L}(G))=E(G)$
$e \sim e^{\prime}$ in $\mathcal{L}(G)$ iff e and e^{\prime} are incident to a common vertex in G

Line graph

Definition - Line graph of G: Edge-adjacency graph of G

Denoted $\mathcal{L}(G)$
$V(\mathcal{L}(G))=E(G)$
$e \sim e^{\prime}$ in $\mathcal{L}(G)$ iff e and e^{\prime} are incident to a common vertex in G

Remark

Edge-identifying code of $G \Longleftrightarrow$ Identifying code of $\mathcal{L}(G)$

$$
\gamma^{\mathrm{EID}}(G)=\gamma^{\mathrm{ID}}(\mathcal{L}(G))
$$

Edge-identifiable graphs

Remark - Not all graphs have an edge-identifying code!

Pendant $=$ pair of twin edges.
A graph is edge-identifiable iff it is pendant-free (and simple).

Lower bounds

Theorem (F., Gravier, Naserasr, Parreau, Valicov, 2011+)
Let G be an edge-identifiable graph. Then $\gamma^{\mathrm{EID}}(G) \geq \frac{|V(G)|}{2}$. This is tight.

Lower bounds

Theorem (F., Gravier, Naserasr, Parreau, Valicov, 2011+)
Let G be an edge-identifiable graph. Then $\gamma^{\mathrm{EID}}(G) \geq \frac{|V(G)|}{2}$. This is tight.

Lower bounds

Theorem (F., Gravier, Naserasr, Parreau, Valicov, 2011+)
Let G be an edge-identifiable graph. Then $\gamma^{\mathrm{EID}}(G) \geq \frac{|V(G)|}{2}$. This is tight.

Corollary

$\gamma^{\text {ID }}(\mathcal{L}(G))=\Omega(\sqrt{|V(\mathcal{L}(G))|})$. This is tight.

Lower bounds

Theorem (F., Gravier, Naserasr, Parreau, Valicov, 2011+)
Let G be an edge-identifiable graph. Then $\gamma^{\mathrm{EID}}(G) \geq \frac{|V(G)|}{2}$. This is tight.

Corollary

$\gamma^{\text {ID }}(\mathcal{L}(G))=\Omega(\sqrt{|V(\mathcal{L}(G))|})$. This is tight.
$\gamma^{\text {ID }}(\mathcal{L}(G))=\gamma^{\mathrm{EID}}(G) \geq \frac{|V(G)|}{2} \geq \frac{\sqrt{2|E(G)|}}{2}=\frac{\sqrt{2|V(\mathcal{L}(G))|}}{2}$

Lower bounds - proof

Theorem (F., Gravier, Naserasr, Parreau, Valicov, 2011+)
Let G be an edge-identifiable graph. Then $\gamma^{\mathrm{EID}}(G) \geq \frac{|V(G)|}{2}$. This is tight.
C_{E} : edge id. code of G.
G_{1}, \ldots, G_{ℓ} : components of $G\left[C_{E}\right]$
$G_{i}: n_{i}$ vertices, k_{i} edges, n_{i}^{\prime} attached vertices from X
X : vertices outside of $G\left[C_{E}\right]$
Claim: $\forall i, k_{i} \geq \frac{n_{i}+n^{\prime} i}{2}$

Lower bounds - improvement

Theorem (F., Gravier, Naserasr, Parreau, Valicov, 2011+)
Let G be an edge-identifiable graph. Then $\gamma^{\mathrm{EII}}(G) \geq \frac{|V(G)|}{2}$.

Lower bounds - improvement

Theorem (F., Gravier, Naserasr, Parreau, Valicov, 2011+)
Let G be an edge-identifiable graph. Then $\gamma^{\mathrm{EID}}(G) \geq \frac{|V(G)|}{2}$.

Corollary
$\gamma^{\text {ID }}(\mathcal{L}(G)) \geq \frac{\sqrt{2|V(\mathcal{L}(G))|}}{2}$.

Lower bounds - improvement

Corollary

$$
\gamma^{\mathrm{ID}}(\mathcal{L}(G)) \geq \frac{\sqrt{2|V(\mathcal{L}(G))|}}{2} .
$$

Theorem (F., Gravier, Naserasr, Parreau, Valicov, 2011+)

Let G be an edge-identifiable graph with an edge-identifying code of size k,

$$
\text { then }|E(G)| \leq \begin{cases}\binom{\frac{4}{3} k}{2}, & \text { if } k \equiv 0 \bmod 3 \\ \binom{\frac{4}{3}(k-1)+1}{2}+1, & \text { if } k \equiv 1 \bmod 3 \\ \binom{\frac{4}{3}(k-2)+2}{2}+2, & \text { if } k \equiv 2 \bmod 3\end{cases}
$$

Corollary

$\gamma^{\text {ID }}(\mathcal{L}(G))>\frac{3 \sqrt{2}}{4} \sqrt{|V(\mathcal{L}(G))|}$. This is tight.

Extremal examples: $C_{E}=$ disjoint union of P_{4} 's, max. possible edges between them.

Lower bound - question

Corollary
$\gamma^{\text {ID }}(\mathcal{L}(G))>\frac{3 \sqrt{2}}{4} \sqrt{|V(\mathcal{L}(G))|}$. This is tight.

Lower bound - question

Corollary
$\gamma^{\text {ID }}(\mathcal{L}(G))>\frac{3 \sqrt{2}}{4} \sqrt{|V(\mathcal{L}(G))|}$. This is tight.

Theorem (Beineke, 1970)

G is a line graph iff it has none of the following graphs as induced subgraph:

Lower bound - question

Corollary
$\gamma^{\text {ID }}(\mathcal{L}(G))>\frac{3 \sqrt{2}}{4} \sqrt{|V(\mathcal{L}(G))|}$. This is tight.

Theorem (Beineke, 1970)
G is a line graph iff it has none of the following graphs as induced subgraph:

The bound does not hold for claw-free graphs!

Lower bound - question

Corollary
$\gamma^{\text {ID }}(\mathcal{L}(G))>\frac{3 \sqrt{2}}{4} \sqrt{|V(\mathcal{L}(G))|}$. This is tight.

Theorem (Beineke, 1970)

G is a line graph iff it has none of the following graphs as induced subgraph:

The bound does not hold for claw-free graphs!
$A=\left\{a_{1}, \ldots, a_{k}\right\}$ and $B=2^{A}$: cliques.
$|V(G)|=k+2^{k}$
$\gamma^{\text {ID }}(G) \leq 2 k=O(\log (|V(G)|))$

Lower bound - question

Corollary
$\gamma^{\text {ID }}(\mathcal{L}(G))>\frac{3 \sqrt{2}}{4} \sqrt{|V(\mathcal{L}(G))|}$. This is tight.

Theorem (Beineke, 1970)

G is a line graph iff it has none of the following graphs as induced subgraph:

The bound does not hold for claw-free graphs!

Question

Does it hold for a class defined by a smaller subfamily of Beineke's list?

An upper bound

Definition - k-degenerate graph

G is k-degenerate if there is an ordering v_{1}, \ldots, v_{n} of $V(G)$ such that $\forall i, v_{i}$ is of degree at most k in $G\left[v_{1}, \ldots, v_{i}\right]$.

An upper bound

Definition - k-degenerate graph

G is k-degenerate if there is an ordering v_{1}, \ldots, v_{n} of $V(G)$ such that $\forall i, v_{i}$ is of degree at most k in $G\left[v_{1}, \ldots, v_{i}\right]$.

Theorem (F., Gravier, Naserasr, Parreau, Valicov, 2011+)
Let G be an edge-identifiable graph with a minimal edge-identifying code C_{E}. Then $G\left[C_{E}\right]$ is 2-degenerate.

An upper bound

Definition - k-degenerate graph

G is k-degenerate if there is an ordering v_{1}, \ldots, v_{n} of $V(G)$ such that $\forall i, v_{i}$ is of degree at most k in $G\left[v_{1}, \ldots, v_{i}\right]$.

Theorem (F., Gravier, Naserasr, Parreau, Valicov, 2011+)
Let G be an edge-identifiable graph with a minimal edge-identifying code C_{E}. Then $G\left[C_{E}\right]$ is 2-degenerate.

Proof: We want to define a good ordering of $V(G)$. Let $u v \in C_{E}$.

- If $d(u) \leq 2$ or $d(v) \leq 2$, we are done.
- Otherwise, by minimality of C_{E}, edge $u v$ is needed to separate some pair.
- Then, there is a "local" ordering for removing either u or v.

An upper bound

Definition - k-degenerate graph

G is k-degenerate if there is an ordering v_{1}, \ldots, v_{n} of $V(G)$ such that $\forall i, v_{i}$ is of degree at most k in $G\left[v_{1}, \ldots, v_{i}\right]$.

Theorem (F., Gravier, Naserasr, Parreau, Valicov, 2011+)
Let G be an edge-identifiable graph with a minimal edge-identifying code C_{E}. Then $G\left[C_{E}\right]$ is 2-degenerate.

Corollary

If G edge-identifiable, $\gamma^{\mathrm{EID}}(G) \leq 2|V(G)|-3$.
Moreover, K_{4}^{-}is the only graph reaching this bound.

An upper bound

Definition - k-degenerate graph

G is k-degenerate if there is an ordering v_{1}, \ldots, v_{n} of $V(G)$ such that $\forall i, v_{i}$ is of degree at most k in $G\left[v_{1}, \ldots, v_{i}\right]$.

Theorem (F., Gravier, Naserasr, Parreau, Valicov, 2011+)
Let G be an edge-identifiable graph with a minimal edge-identifying code C_{E}. Then $G\left[C_{E}\right]$ is 2-degenerate.

Corollary

If G edge-identifiable, $\gamma^{\mathrm{EID}}(G) \leq 2|V(G)|-3$.
Moreover, K_{4}^{-}is the only graph reaching this bound.

This is almost tight since $\gamma^{\mathrm{EID}}\left(K_{2, n}\right)=2 n-2=2\left|V\left(K_{2, n}\right)\right|-6$.

An upper bound - corollary

Corollary

If G edge-identifiable, $\gamma^{\text {EID }}(G) \leq 2|V(G)|-3$.

Corollary

If G is an edge-identifiable graph with average degree $\bar{d}(G) \geq 5$, then $\gamma^{\mathrm{ID}}(\mathcal{L}(G)) \leq n-\frac{n}{\Delta(\mathcal{L}(G))}$ where $n=|V(\mathcal{L}(G))|$.

An upper bound - corollary

Corollary

If G edge-identifiable, $\gamma^{\text {EID }}(G) \leq 2|V(G)|-3$.

Corollary

If G is an edge-identifiable graph with average degree $\bar{d}(G) \geq 5$, then $\gamma^{\mathrm{ID}}(\mathcal{L}(G)) \leq n-\frac{n}{\Delta(\mathcal{L}(G))}$ where $n=|V(\mathcal{L}(G))|$.

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)
Let G be a connected identifiable graph on n vertices and of maximum degree Δ. Then $\gamma^{\text {ID }}(G) \leq n-\frac{n}{\Delta}+O(1)$.

Complexity

Problem EDGE-IDCODE

INSTANCE: A graph G and an integer k.
QUESTION: Does G have an edge-identifying code of size at most k ?

Problem IDCODE

INSTANCE: A graph G and an integer k.
QUESTION: Does G have an identifying code of size at most k ?

Complexity

Theorem (F., Gravier, Naserasr, Parreau, Valicov, 2011+)
EDGE-IDCODE is NP-complete, even for planar subcubic bipartite graphs of arbitrarily large girth.

Proof by reduction from PLANAR $(\leq 3,3)$-SAT

Complexity

Theorem (F., Gravier, Naserasr, Parreau, Valicov, 2011+)
EDGE-IDCODE is NP-complete, even for planar subcubic bipartite graphs of arbitrarily large girth.

Corollary

IDCODE is NP-complete even when restricted to perfect 3-colorable planar line graphs of maximum degree 4.

Thank you!

$$
\frac{1}{2}|V(G)| \leq \gamma^{\mathrm{EID}}(G) \leq 2|V(G)|-3
$$

In general: $n-1 \geq \gamma^{\text {ID }}(G) \geq \Omega(\log n)$
In line graphs: $\gamma^{\text {ID }}(G) \geq \Omega(\sqrt{n})$.

Advertisement: BWIC 2011

Bordeaux Workshop on Identifying Codes (and related topics)

21st-25th November, 2011 at the LaBRI in Bordeaux, France
http://bwic2011.labri.fr

Scope:

- Identifying codes
- Locating-dominating sets
- Metric dimension
- Identifying or locating colourings
- Related topics...

