Location-domination and metric dimension in interval and permutation graphs

Florent Foucaud (Univ. Blaise Pascal, Clermont-Ferrand, France)
joint work with:
George B. Mertzios (Durham, UK), Reza Naserasr (Paris, France), Aline Parreau (Lyon, France), Petru Valicov (Marseille, France)

April 2015

Location-domination

Fire detection in a building

Fire detection in a building

- Detector can detect fire in its room and its neighborhood (through a door).

Fire detection in a building

- Detector can detect fire in its room and its neighborhood (through a door).

Fire detection in a building

- Detector can detect fire in its room and its neighborhood (through a door).

Fire detection in a building

- Detector can detect fire in its room and its neighborhood (through a door).

Fire detection in a building

- Detector can detect fire in its room and its neighborhood (through a door).
- Each room must contain a detector or have one in an adjacent room.

Fire detection in a building

- Detector can detect fire in its room and its neighborhood (through a door).
- Each room must contain a detector or have one in an adjacent room.

Modelisation with a graph

- Graph $G=(V, E)$. Vertices: rooms.

Edges: between any two rooms connected by a door

Modelisation with a graph

- Graph $G=(V, E)$. Vertices: rooms.

Edges: between any two rooms connected by a door

Modelisation with a graph

- Graph $G=(V, E)$. Vertices: rooms.

Edges: between any two rooms connected by a door

- Set of detectors $=$ dominating set $D \subseteq V: \forall u \in V, N[u] \cap D \neq \emptyset$

Modelisation with a graph

- Graph $G=(V, E)$. Vertices: rooms.

Edges: between any two rooms connected by a door

- Set of detectors $=$ dominating set $D \subseteq V: \forall u \in V, N[u] \cap D \neq \emptyset$
- Domination number $\gamma(G)$: smallest size of a dominating set of G

Back to the building

Back to the building

Where is the fire ?

Back to the building

Where is the fire ?

Back to the building

Where is the fire ?

Back to the building

Where is the fire ?
To locate the fire, we need more detectors.

Locating the fire

In each room with no detector, set of dominating detectors is distinct.

Peter Slater, 1980's. Locating-dominating set D : subset of vertices of $G=(V, E)$ which is:

- dominating : $\forall u \in V, N[u] \cap D \neq \emptyset$,
- locating : $\forall u, v \in V \backslash D, N[u] \cap D \neq N[v] \cap D$.

Peter Slater, 1980 's. Locating-dominating set D : subset of vertices of $G=(V, E)$ which is:

- dominating : $\forall u \in V, N[u] \cap D \neq \emptyset$,
- locating : $\forall u, v \in V \backslash D, N[u] \cap D \neq N[v] \cap D$.
$\gamma_{L}(G)$: location-domination number of G,
minimum size of a locating-dominating set of G.

Peter Slater, 1980 's. Locating-dominating set D : subset of vertices of $G=(V, E)$ which is:

- dominating : $\forall u \in V, N[u] \cap D \neq \emptyset$,
- locating : $\forall u, v \in V \backslash D, N[u] \cap D \neq N[v] \cap D$.
$\gamma_{L}(G)$: location-domination number of G, minimum size of a locating-dominating set of G.

$$
\text { Remark: } \gamma(G) \leq \gamma_{L}(G)
$$

Examples: paths

Location-domination number: $\gamma_{L}\left(P_{n}\right)=\left\lceil\frac{2 n}{5}\right\rceil$
$\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}$

Bounds

Theorem (Slater, 1980's)
G graph of order $n, \gamma_{L}(G)=k$. Then $n \leq 2^{k}+k-1$, i.e. $\gamma_{L}(G)=\Omega(\log n)$.

Bounds

Theorem (Slater, 1980's)

G graph of order $n, \gamma_{L}(G)=k$. Then $n \leq 2^{k}+k-1$, i.e. $\gamma_{L}(G)=\Omega(\log n)$.

Tight example $(k=4)$:

Bounds

Theorem (Slater, 1980's)

G graph of order $n, \gamma_{L}(G)=k$. Then $n \leq 2^{k}+k-1$, i.e. $\gamma_{L}(G)=\Omega(\log n)$.

Theorem (Slater, 1980's)

$$
G \text { tree of order } n, \gamma_{L}(G)=k \text {. Then } n \leq 3 k-1 \text {, i.e. } \gamma_{L}(G) \geq \frac{n+1}{3} \text {. }
$$

Theorem (Rall \& Slater, 1980's)

G planar graph, order $n, \gamma_{L}(G)=k$. Then $n \leq 7 k-10$, i.e. $\gamma_{L}(G) \geq \frac{n+10}{7}$.

Tight examples:

Interval graphs

Definition - Interval graph

Intersection graph of intervals of the real line.

Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)
G interval graph of order $n, \gamma_{L}(G)=k$.
Then $n \leq \frac{k(k+3)}{2}$, i.e. $\gamma_{L}(G)=\Omega(\sqrt{n})$.

Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

G interval graph of order $n, \gamma_{L}(G)=k$.

$$
\text { Then } n \leq \frac{k(k+3)}{2} \text {, i.e. } \gamma_{L}(G)=\Omega(\sqrt{n}) \text {. }
$$

- Locating-dominating D of size k.
- Define zones using the right points of intervals in D.

Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

G interval graph of order $n, \gamma_{L}(G)=k$.

$$
\text { Then } n \leq \frac{k(k+3)}{2} \text {, i.e. } \gamma_{L}(G)=\Omega(\sqrt{n}) \text {. }
$$

- Locating-dominating D of size k.
- Define zones using the right points of intervals in D.
- Each vertex intersects a consecutive set of intervals of D when ordered by left points.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

G interval graph of order $n, \gamma_{L}(G)=k$.

$$
\text { Then } n \leq \frac{k(k+3)}{2} \text {, i.e. } \gamma_{L}(G)=\Omega(\sqrt{n}) \text {. }
$$

- Locating-dominating D of size k.
- Define zones using the right points of intervals in D.
- Each vertex intersects a consecutive set of intervals of D when ordered by left points.

$$
\rightarrow n \leq \sum_{i=1}^{k}(k-i)+k=\frac{k(k+3)}{2} .
$$

Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)
G interval graph of order $n, \gamma_{L}(G)=k$.
Then $n \leq \frac{k(k+3)}{2}$, i.e. $\gamma_{L}(G)=\Omega(\sqrt{n})$.

Tight:

Permutation graphs

Definition - Permutation graph

Given two parallel lines A and B : intersection graph of segments joining A and B.

Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)
G permutation graph of order $n, \gamma_{L}(G)=k$.
Then $n \leq k^{2}+k-2$, i.e. $\gamma_{L}(G)=\Omega(\sqrt{n})$.

Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

G permutation graph of order $n, \gamma_{L}(G)=k$.
Then $n \leq k^{2}+k-2$, i.e. $\gamma_{L}(G)=\Omega(\sqrt{n})$.

- Locating-sominating set D of size k : $k+1$ "top zones" and $k+1$ "bottom zones"
- Only one segment in $V \backslash D$ for one pair of zones

$$
\rightarrow n \leq(k+1)^{2}+k
$$

- Careful counting for the precise bound

Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

G permutation graph of order $n, \gamma_{L}(G)=k$.
Then $n \leq k^{2}+k-2$, i.e. $\gamma_{L}(G)=\Omega(\sqrt{n})$.

Tight:

Metric dimension

Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them

Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them

Question

Does the "GPS" approach also work in undirected unweighted graphs?

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

$M D(G)$: metric dimension of G, minimum size of a resolving set of G.

Remarks

Remark

- Any locating-dominating set is a resolving set, hence $M D(G) \leq \gamma_{L}(G)$.
- A locating-dominating set can be seen as a "distance-1-resolving set".

Remarks

Remark

- Any locating-dominating set is a resolving set, hence $M D(G) \leq \gamma_{L}(G)$.
- A locating-dominating set can be seen as a "distance-1-resolving set".

Proposition

$$
M D(G)=1 \Leftrightarrow G \text { is a path }
$$

Bounds with diameter

Example of path: no bound $n \leq f(M D(G))$ possible.

Bounds with diameter

Example of path: no bound $n \leq f(M D(G))$ possible.
Theorem (Khuller, Raghavachari \& Rosenfeld, 2002)
G of order n, diameter $D, M D(G)=k$. Then $n \leq D^{k}+k$.
(diameter: maximum distance between two vertices)

Bounds with diameter

Example of path: no bound $n \leq f(M D(G))$ possible.
Theorem (Khuller, Raghavachari \& Rosenfeld, 2002)
G of order n, diameter $D, M D(G)=k$. Then $n \leq D^{k}+k$.
(diameter: maximum distance between two vertices)
Theorem (F., Mertzios, Naserasr, Parreau, Valicov)
G interval graph or permutation graph of order $n, M D(G)=k$, diameter D. Then $n=O\left(D k^{2}\right)$ i.e. $k=\Omega\left(\sqrt{\frac{n}{D}}\right)$.
\rightarrow Proofs are similar as for locating-dominating sets.
\rightarrow Bounds are tight (up to constant factors).

Algorithmic complexity

Complexity - Interval and permutation graphs

LOCATING-DOMINATING SET

INPUT: Graph G, integer k.
QUESTION: Is there a locating-dominating set of G of size k ?

Complexity - Interval and permutation graphs

LOCATING-DOMINATING SET

INPUT: Graph G, integer k.
QUESTION: Is there a locating-dominating set of G of size k ?

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)
LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

Reduction from 3-DIMENSIONAL MATCHING.

Main idea: an interval can separate pairs of intervals far away from each other (without affecting what lies in between)

Interval and permutation graphs

METRIC DIMENSION
INPUT: Graph G, integer k.
QUESTION: Is there a resolving set of G of size k ?

Interval and permutation graphs

METRIC DIMENSION

INPUT: Graph G, integer k.
QUESTION: Is there a resolving set of G of size k ?

Reduction from LOCATING-DOMINATING SET to METRIC DIMENSION:

$$
M D\left(G^{\prime}\right)=\gamma_{L}(G)+2
$$

Corollary (F., Mertzios, Naserasr, Parreau, Valicov)
METRIC DIMENSION is NP-complete for graphs that are both interval and permutation (and have diameter 2).

An FPT algorithm for METRIC DIMENSION on interval graphs

Note: METRIC DIMENSION W[2]-hard even for subcubic bipartite graphs \longrightarrow probably no $f(k) p o l y(n)$-time algorithm

```
Theorem (F., Mertzios, Naserasr, Parreau, Valicov)
```

METRIC DIMENSION can be solved in time $2 O\left(k^{4}\right) n$ on interval graphs.

Ideas:

- use dynamic programming on a path-decomposition of G^{4}.
- each bag has size $O\left(k^{2}\right)$.
- it suffices to separate vertices at distance 2
- "transmission" lemma for separation constraints
- Investigate bounds for other "geometric" graphs, for MD and γ_{L}
- Complexity of LOCATING-DOMINATING SET, METRIC DIMENSION on unit interval graphs
- Complexity of METRIC DIMENSION for bounded treewidth
- Parameterized complexity of METRIC DIMENSION: planar graphs, chordal graphs, permutation graphs...
- Investigate bounds for other "geometric" graphs, for MD and γ_{L}
- Complexity of LOCATING-DOMINATING SET, METRIC DIMENSION on unit interval graphs
- Complexity of METRIC DIMENSION for bounded treewidth
- Parameterized complexity of METRIC DIMENSION: planar graphs, chordal graphs, permutation graphs...

THANKS FOR YOUR ATTENTION

Complexity of LOCATING-DOMINATING SET

Complexity of METRIC DIMENSION

