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Modelisation with a graph

e Graph G =(V,E). Vertices: rooms.
Edges: between any two rooms connected by a door
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Modelisation with a graph

e Graph G =(V,E). Vertices: rooms.
Edges: between any two rooms connected by a door

@ Set of detectors = dominating set DC V: Yue V,N[u|nD #0

e Domination number ¥(G): smallest size of a dominating set of G
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Back to the building
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Where is the fire ?
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Back to the building
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Where is the fire ?

To locate the fire, we need more detectors.
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Locating the fire
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Locating the fire
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b.c

In each room with no detector, set of dominating detectors is distinct.
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Locating the fire

b.c

Peter Slater, 1980's. Locating-dominating set D:
subset of vertices of G = (V/, E) which is:

e dominating : Yue V,N[u]ND # 0,
o locating : Yu,v € V\D,N[u]nD # N[v]ND.
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Locating the fire

b.c

Peter Slater, 1980's. Locating-dominating set D:
subset of vertices of G = (V/, E) which is:

e dominating : Yue V,N[u]ND # 0,
o locating : Yu,v € V\D,N[u]nD # N[v]ND.

7.(G): location-domination number of G,
minimum size of a locating-dominating set of G.

Remark: ¥(G) < y.(G)
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Examples: paths

Domination number: Y(Pp) = [§]

O—8—OC—"T70C—"8O0C—0C—"08—O0C—"0C—"8—O0—0C—=8——0

Location-domination number: 7, (Pp) = [37]

o0—®ee—GC—"0——0O0—10C—"e 00— 0O0—0C—e—0—8—oO0
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Theorem (Slater, 1980'5)]

G graph of order n, 7,(G) = k. Then n <2k + k1, i.e. 7(G) = Q(logn).
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Theorem (Slater, 1980'5)]

G graph of order n, 7,(G) = k. Then n <2k + k1, i.e. 7(G) = Q(logn).

Tight example (k = 4):

Identification problems in graphs



Bounds

Theorem (Slater, 1980'5)]

G graph of order n, 7,(G) = k. Then n <2k + k1, i.e. 7(G) = Q(logn).

Theorem (Slater, 1980'5)]

G tree of order n, ¥ (G) =k. Then n<3k—1, i.e. (G)> %1

Theorem (Rall & Slater, 1980'5)]

G planar graph, order n, ¥ (G) = k. Then n <7k —10, i.e. 7(G) > %10.

Tight examples: FIG2. Tree T2 Figore 3.
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Interval graphs

Definition - Interval graph]

Intersection graph of intervals of the real line.

I3
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)]

G interval graph of order n, 7. (G) = k.
Then n < X553 el 1.(G) = Q(v/n).
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)]

G interval graph of order n, 7. (G) = k.

Then n < X553 el 1.(G) = Q(v/n).

1 2
— —
3
—
4
—

@ Locating-dominating D of size k.

o Define zones using the right points of intervals in D.
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3
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@ Locating-dominating D of size k.
o Define zones using the right points of intervals in D.

@ Each vertex intersects a consecutive set of intervals of D when ordered by
left points.
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Lower bound for interval graphs
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G interval graph of order n, 7. (G) = k.
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@ Locating-dominating D of size k.
o Define zones using the right points of intervals in D.

@ Each vertex intersects a consecutive set of intervals of D when ordered by
left points.

— n <Yk (k—i)+k=KKEF3),
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)]

G interval graph of order n, 7. (G) = k.
Then n < X553 el 1.(G) = Q(v/n).

Tight:
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Permutation graphs

Definition - Permutation graph]

Given two parallel lines A and B:
intersection graph of segments joining A and B.

3 5
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Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, VaIicov)]

G permutation graph of order n, ¥ (G) = k.
Then n< k> + k-2, i.e. 7(G)=Q(/n).
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Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, VaIicov)]

G permutation graph of order n, ¥ (G) = k.
Then n< k> + k-2, i.e. 7(G)=Q(/n).

/—~ same neighborhood in D
SINL L
4 '

(>
A

< "%’
> 4' D
1!4»1‘\\

o Locating-sominating set D of size k: k+1 “top zones” and k+1 “bottom
zones”

@ Only one segment in V'\ D for one pair of zones
= n<(k+1)2+k
o Careful counting for the precise bound
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Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, VaIicov)]

G permutation graph of order n, ¥ (G) = k.
Then n< k> + k-2, i.e. 7(G)=Q(/n).

Tight:




Metric dimension
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Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them
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Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them

Question

Does the “GPS" approach also work in undirected unweighted graphs?
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Metric dimension

Now, w € V(G) distinguishes {u, v} if dist(w,u) # dist(w,v)

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)]

R C V(G) resolving set of G:
Vu # v in V(G), there exists w € R that distinguishes {u,v}.
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Metric dimension

Now, w € V(G) distinguishes {u, v} if dist(w,u) # dist(w,v)

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)]

R C V(G) resolving set of G:
Vu # v in V(G), there exists w € R that distinguishes {u,v}.

MD(G): metric dimension of G, minimum size of a resolving set of G.

Florent Foucaud Identification problems in graphs 15 / 24



Remark

e Any locating-dominating set is a resolving set, hence MD(G) < v, (G).

e A locating-dominating set can be seen as a “distance-1-resolving set”.
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Remark

e Any locating-dominating set is a resolving set, hence MD(G) < v, (G).

e A locating-dominating set can be seen as a “distance-1-resolving set”.

Proposition

MD(G)=1 & G is a path

¢—C0—"TO—"C—"0O—C0O—CO—-0
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Bounds with diameter

Example of path: no bound n < f(MD(G)) possible.
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Bounds with diameter

Example of path: no bound n < f(MD(G)) possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)]

G of order n, diameter D, MD(G) = k. Then n < DK 4 k.

(diameter: maximum distance between two vertices)
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Bounds with diameter

Example of path: no bound n < f(MD(G)) possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)]

G of order n, diameter D, MD(G) = k. Then n < DK 4 k.

(diameter: maximum distance between two vertices)

Theorem (F., Mertzios, Naserasr, Parreau, VaIicov)]

G interval graph or permutation graph of order n, MD(G) = k,
diameter D. Then n= O(Dk?) i.e. k=Q(\/5)-

— Proofs are similar as for locating-dominating sets.

— Bounds are tight (up to constant factors).
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Algorithmic complexity
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Complexity - Interval and permutation graphs

LOCATING-DOMINATING SET)

INPUT: Graph G, integer k.
QUESTION: Is there a locating-dominating set of G of size k7
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Complexity - Interval and permutation graphs

LOCATING-DOMINATING SET)

INPUT: Graph G, integer k.
QUESTION: Is there a locating-dominating set of G of size k7

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)]

LOCATING-DOMINATING SET is NP-complete for graphs that are both
interval and permutation.

Reduction from 3-DIMENSIONAL MATCHING.

Main idea: an interval can separate pairs of intervals far away from each other
(without affecting what lies in between)
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Interval and permutation graphs

METRIC DIMENSION)

INPUT: Graph G, integer k.
QUESTION: Is there a resolving set of G of size k7
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Interval and permutation graphs

METRIC DIMENSION)

INPUT: Graph G, integer k.
QUESTION: Is there a resolving set of G of size k7

Reduction from LOCATING-DOMINATING SET to METRIC DIMENSION:

MD(G") = %(G)+2

Corollary (F., Mertzios, Naserasr, Parreau, Valicov)]

METRIC DIMENSION is NP-complete for graphs that are both interval and
permutation (and have diameter 2).
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An FPT algorithm for METRIC DIMENSION on interval graphs

Note: METRIC DIMENSION W][2]-hard even for subcubic bipartite graphs
— probably no f(k)poly(n)-time algorithm

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)]

METRIC DIMENSION can be solved in time 20(k*)  on interval graphs.

Ideas:
e use dynamic programming on a path-decomposition of G*.

e each bag has size O(k?).
e it suffices to separate vertices at distance 2

e “transmission” lemma for separation constraints
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Open problems

o Investigate bounds for other “geometric” graphs, for MD and v

o Complexity of LOCATING-DOMINATING SET, METRIC DIMENSION on
unit interval graphs

o Complexity of METRIC DIMENSION for bounded treewidth

o Parameterized complexity of METRIC DIMENSION: planar graphs,
chordal graphs, permutation graphs...
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Open problems

o Investigate bounds for other “geometric” graphs, for MD and v

o Complexity of LOCATING-DOMINATING SET, METRIC DIMENSION on
unit interval graphs

o Complexity of METRIC DIMENSION for bounded treewidth

o Parameterized complexity of METRIC DIMENSION: planar graphs,
chordal graphs, permutation graphs...

THANKS FOR YOUR ATTENTION
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Complexity of LOCATING-DOMINATING SET
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Complexity of METRIC DIMENSION

perfect claw-free

l NP-complete l comparablllty chordal
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