Location-domination and metric dimension in interval and permutation graphs

Florent Foucaud (Univ. Blaise Pascal, Clermont-Ferrand, France)

joint work with:

George B. Mertzios (Durham, UK), Reza Naserasr (Paris, France), Aline Parreau (Lyon, France), Petru Valicov (Marseille, France)

April 2015

Location-domination

Fire detection in a building

- Detector can detect fire in its room and its neighborhood (through a door).
- Each room must contain a detector or have one in an adjacent room.

- Detector can detect fire in its room and its neighborhood (through a door).
- Each room must contain a detector or have one in an adjacent room.

• Graph G = (V, E). Vertices: rooms.

Edges: between any two rooms connected by a door

• Graph G = (V, E). Vertices: rooms. Edges: between any two rooms connected by a door

- Graph G = (V, E). Vertices: rooms. Edges: between any two rooms connected by a door
- Set of detectors = dominating set $D \subseteq V$: $\forall u \in V, N[u] \cap D \neq \emptyset$

• Graph G = (V, E). Vertices: rooms.

Edges: between any two rooms connected by a door

- Set of detectors = dominating set $D \subseteq V$: $\forall u \in V, N[u] \cap D \neq \emptyset$
- Domination number $\gamma(G)$: smallest size of a dominating set of G

To locate the fire, we need more detectors.

In each room with no detector, set of dominating detectors is distinct.

Peter Slater, 1980's. Locating-dominating set D: subset of vertices of G = (V, E) which is:

- dominating : $\forall u \in V, N[u] \cap D \neq \emptyset$,
- locating : $\forall u, v \in V \setminus D, N[u] \cap D \neq N[v] \cap D.$

Peter Slater, 1980's. Locating-dominating set D: subset of vertices of G = (V, E) which is:

- dominating : $\forall u \in V, N[u] \cap D \neq \emptyset$,
- locating : $\forall u, v \in V \setminus D, N[u] \cap D \neq N[v] \cap D.$

 $\gamma_L(G)$: location-domination number of G, minimum size of a locating-dominating set of G.

Peter Slater, 1980's. Locating-dominating set D: subset of vertices of G = (V, E) which is:

- dominating : $\forall u \in V, N[u] \cap D \neq \emptyset$,
- locating : $\forall u, v \in V \setminus D, N[u] \cap D \neq N[v] \cap D.$

 $\gamma_L(G)$: location-domination number of G, minimum size of a locating-dominating set of G.

Remark: $\gamma(G) \leq \gamma_L(G)$

Bounds

Theorem (Slater, 1980's)

G graph of order n, $\gamma_L(G) = k$. Then $n \leq 2^k + k - 1$, i.e. $\gamma_L(G) = \Omega(\log n)$.

Bounds

Theorem (Slater, 1980's)

G graph of order n, $\gamma_L(G) = k$. Then $n \leq 2^k + k - 1$, i.e. $\gamma_L(G) = \Omega(\log n)$.

Tight example (k = 4):

Bounds

FIG. 2. Tree T2

Florent Foucaud

Tight examples:

Figure 3.

Definition - Interval graph

Intersection graph of intervals of the real line.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

G interval graph of order n,
$$\gamma_L(G) = k$$
.

Then
$$n \leq \frac{k(k+3)}{2}$$
, i.e. $\gamma_L(G) = \Omega(\sqrt{n})$.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

G interval graph of order n,
$$\gamma_L(G) = k$$
.

Then
$$n \leq rac{k(k+3)}{2}$$
, i.e. $\gamma_L(G) = \Omega(\sqrt{n})$.

- Locating-dominating D of size k.
- Define zones using the right points of intervals in D.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

G interval graph of order n, $\gamma_L(G) = k$.

Then
$$n \leq rac{k(k+3)}{2}$$
, i.e. $\gamma_L(G) = \Omega(\sqrt{n})$.

1	2	
1 – 1	2 –	³ 3
1 – 2	2	2 – 4
	1 – 4	4
	1 – 3	3-4

- Locating-dominating D of size k.
- Define zones using the right points of intervals in D.
- Each vertex intersects a consecutive set of intervals of *D* when ordered by left points.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

G interval graph of order n,
$$\gamma_L(G) = k$$
.

Then
$$n \leq \frac{k(k+3)}{2}$$
, i.e. $\gamma_L(G) = \Omega(\sqrt{n})$.

- Locating-dominating D of size k.
- Define zones using the right points of intervals in D.
- Each vertex intersects a consecutive set of intervals of *D* when ordered by left points.

$$\rightarrow n \leq \sum_{i=1}^{k} (k-i) + k = \frac{k(k+3)}{2}$$

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

G interval graph of order n,
$$\gamma_L(G) = k$$
.

Then
$$n \leq rac{k(k+3)}{2}$$
, i.e. $\gamma_L(G) = \Omega(\sqrt{n})$.

Tight:

_	_	_	_

Definition - Permutation graph

Given two parallel lines A and B: intersection graph of segments joining A and B.

Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

G permutation graph of order n, $\gamma_L(G) = k$. Then $n \le k^2 + k - 2$, i.e. $\gamma_L(G) = \Omega(\sqrt{n})$.

Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

G permutation graph of order n,
$$\gamma_L(G) = k$$
.
Then $n \le k^2 + k - 2$, i.e. $\gamma_L(G) = \Omega(\sqrt{n})$.

- Locating-sominating set D of size k: k+1 "top zones" and k+1 "bottom zones"
- Only one segment in $V \setminus D$ for one pair of zones

$$\rightarrow n \leq (k+1)^2 + k$$

• Careful counting for the precise bound

Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

G permutation graph of order n,
$$\gamma_L(G) = k$$
.
Then $n \le k^2 + k - 2$, i.e. $\gamma_L(G) = \Omega(\sqrt{n})$.

Tight:

Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS: need to know the exact position of 4 satellites + distance to them

Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS: need to know the exact position of 4 satellites + distance to them

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

 $\forall u \neq v \text{ in } V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

MD(G): metric dimension of G, minimum size of a resolving set of G.

Remark

- Any locating-dominating set is a resolving set, hence $MD(G) \leq \gamma_L(G)$.
- A locating-dominating set can be seen as a "distance-1-resolving set".

Remark

- Any locating-dominating set is a resolving set, hence $MD(G) \leq \gamma_L(G)$.
- A locating-dominating set can be seen as a "distance-1-resolving set".

Example of path: no bound $n \leq f(MD(G))$ possible.

Example of path: no bound $n \leq f(MD(G))$ possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)

G of order n, diameter D, MD(G) = k. Then $n \le D^k + k$.

(diameter: maximum distance between two vertices)

Example of path: no bound $n \leq f(MD(G))$ possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)

G of order n, diameter D, MD(G) = k. Then $n \le D^k + k$.

(diameter: maximum distance between two vertices)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

G interval graph or permutation graph of order n, MD(G) = k, diameter D. Then $n = O(Dk^2)$ i.e. $k = \Omega(\sqrt{\frac{n}{D}})$.

 \rightarrow Proofs are similar as for locating-dominating sets.

 \rightarrow Bounds are tight (up to constant factors).

Algorithmic complexity

LOCATING-DOMINATING SET

INPUT: Graph G, integer k. **QUESTION**: Is there a locating-dominating set of G of size k? LOCATING-DOMINATING SET

INPUT: Graph G, integer k. **QUESTION**: Is there a locating-dominating set of G of size k?

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

Reduction from 3-DIMENSIONAL MATCHING.

Main idea: an interval can separate pairs of intervals **far away** from each other (without affecting what lies in between)

METRIC DIMENSION

INPUT: Graph G, integer k. **QUESTION**: Is there a resolving set of G of size k?

METRIC DIMENSION

INPUT: Graph G, integer k. **QUESTION**: Is there a resolving set of G of size k?

Reduction from LOCATING-DOMINATING SET to METRIC DIMENSION:

 $MD(G') = \gamma_L(G) + 2$

Corollary (F., Mertzios, Naserasr, Parreau, Valicov)

METRIC DIMENSION is NP-complete for graphs that are both interval and permutation (and have diameter 2).

Note: METRIC DIMENSION W[2]-hard even for subcubic bipartite graphs \rightarrow probably no f(k)poly(n)-time algorithm

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

METRIC DIMENSION can be solved in time $2^{O(k^4)}n$ on interval graphs.

ldeas:

- use dynamic programming on a path-decomposition of G^4 .
- each bag has size $O(k^2)$.
- it suffices to separate vertices at distance 2
- "transmission" lemma for separation constraints

- Investigate bounds for other "geometric" graphs, for MD and γ_L
- Complexity of LOCATING-DOMINATING SET, METRIC DIMENSION on unit interval graphs
- Complexity of METRIC DIMENSION for bounded treewidth
- Parameterized complexity of METRIC DIMENSION: planar graphs, chordal graphs, permutation graphs...

- Investigate bounds for other "geometric" graphs, for MD and γ_L
- Complexity of LOCATING-DOMINATING SET, METRIC DIMENSION on unit interval graphs
- Complexity of METRIC DIMENSION for bounded treewidth
- Parameterized complexity of METRIC DIMENSION: planar graphs, chordal graphs, permutation graphs...

THANKS FOR YOUR ATTENTION

Complexity of LOCATING-DOMINATING SET

Complexity of METRIC DIMENSION

Florent Foucaud