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Location-domination
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Fire detection in a building

Detector can detect �re in its room and its neighborhood (through a door).

Each room must contain a detector or have one in an adjacent room.
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Modelisation with a graph

Graph G = (V ,E). Vertices: rooms.
Edges: between any two rooms connected by a door

Set of detectors = dominating set D ⊆ V : ∀u ∈ V ,N[u]∩D 6= /0

Domination number γ(G): smallest size of a dominating set of G
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Where is the �re ?

To locate the �re, we need more detectors.
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Locating the �re
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Locating the �re
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In each room with no detector, set of dominating detectors is distinct.

Florent Foucaud Identi�cation problems in graphs 6 / 24



Locating the �re
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Peter Slater, 1980's. Locating-dominating set D:
subset of vertices of G = (V ,E) which is:

dominating : ∀u ∈ V ,N[u]∩D 6= /0,

locating : ∀u,v ∈ V \D,N[u]∩D 6= N[v ]∩D.
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Peter Slater, 1980's. Locating-dominating set D:
subset of vertices of G = (V ,E) which is:

dominating : ∀u ∈ V ,N[u]∩D 6= /0,

locating : ∀u,v ∈ V \D,N[u]∩D 6= N[v ]∩D.

γL(G): location-domination number of G ,
minimum size of a locating-dominating set of G .

Remark: γ(G)≤ γL(G)
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Examples: paths

Domination number: γ(Pn) =
⌈
n

3

⌉

Location-domination number: γL(Pn) =
⌈
2n

5

⌉
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Bounds

G graph of order n, γL(G) = k. Then n ≤ 2k +k−1, i.e. γL(G) = Ω(logn).

Theorem (Slater, 1980's)
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Theorem (Slater, 1980's)

Tight example (k = 4):
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Bounds

G graph of order n, γL(G) = k. Then n ≤ 2k +k−1, i.e. γL(G) = Ω(logn).

Theorem (Slater, 1980's)

G tree of order n, γL(G) = k. Then n ≤ 3k−1, i.e. γL(G)≥ n+1

3
.

Theorem (Slater, 1980's)

G planar graph, order n, γL(G) = k. Then n ≤ 7k−10, i.e. γL(G)≥ n+10

7
.

Theorem (Rall & Slater, 1980's)

Tight examples:
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Interval graphs

Intersection graph of intervals of the real line.

De�nition - Interval graph

I1 I4

I2 I5

I3
1

2

3

4 5
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Lower bound for interval graphs

G interval graph of order n, γL(G) = k.

Then n ≤ k(k+3)
2

, i.e. γL(G) = Ω(
√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)
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, i.e. γL(G) = Ω(
√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

1 2

3

4

1−1 2−3

1−2 2−4

1−4

1−3 3−4

Locating-dominating D of size k.

De�ne zones using the right points of intervals in D.

Each vertex intersects a consecutive set of intervals of D when ordered by
left points.

→ n ≤ ∑
k
i=1

(k− i) +k = k(k+3)
2

.
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Lower bound for interval graphs

G interval graph of order n, γL(G) = k.

Then n ≤ k(k+3)
2

, i.e. γL(G) = Ω(
√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

Tight:
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Permutation graphs

Given two parallel lines A and B:
intersection graph of segments joining A and B.

De�nition - Permutation graph
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Lower bound for permutation graphs

G permutation graph of order n, γL(G) = k.
Then n ≤ k2 +k−2, i.e. γL(G) = Ω(

√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

Locating-sominating set D of size k: k +1 �top zones� and k +1 �bottom
zones�

Only one segment in V \D for one pair of zones

→ n ≤ (k +1)2 +k

Careful counting for the precise bound

Tight:
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Metric dimension
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Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them

Does the �GPS� approach also work in undirected unweighted graphs?

Question

Florent Foucaud Identi�cation problems in graphs 14 / 24



Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them

Does the �GPS� approach also work in undirected unweighted graphs?

Question

Florent Foucaud Identi�cation problems in graphs 14 / 24



Metric dimension

Now, w ∈ V (G) distinguishes {u,v} if dist(w ,u) 6= dist(w ,v)

R ⊆ V (G) resolving set of G :

∀u 6= v in V (G), there exists w ∈ R that distinguishes {u,v}.

De�nition - Resolving set (Slater, 1975 - Harary & Melter, 1976)
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Metric dimension

Now, w ∈ V (G) distinguishes {u,v} if dist(w ,u) 6= dist(w ,v)

R ⊆ V (G) resolving set of G :

∀u 6= v in V (G), there exists w ∈ R that distinguishes {u,v}.

De�nition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

w

MD(G): metric dimension of G , minimum size of a resolving set of G .
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Remarks

• Any locating-dominating set is a resolving set, hence MD(G)≤ γL(G).

• A locating-dominating set can be seen as a �distance-1-resolving set�.

Remark

MD(G) = 1 ⇔ G is a path

Proposition

Florent Foucaud Identi�cation problems in graphs 16 / 24



Remarks

• Any locating-dominating set is a resolving set, hence MD(G)≤ γL(G).

• A locating-dominating set can be seen as a �distance-1-resolving set�.

Remark

MD(G) = 1 ⇔ G is a path

Proposition

Florent Foucaud Identi�cation problems in graphs 16 / 24



Bounds with diameter

Example of path: no bound n ≤ f (MD(G)) possible.

G of order n, diameter D, MD(G) = k. Then n ≤Dk +k.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)

(diameter: maximum distance between two vertices)

G interval graph or permutation graph of order n, MD(G) = k,
diameter D. Then n = O(Dk2) i.e. k = Ω

(√
n

D

)
.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

→ Proofs are similar as for locating-dominating sets.

→ Bounds are tight (up to constant factors).

Florent Foucaud Identi�cation problems in graphs 17 / 24



Bounds with diameter

Example of path: no bound n ≤ f (MD(G)) possible.

G of order n, diameter D, MD(G) = k. Then n ≤Dk +k.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)

(diameter: maximum distance between two vertices)

G interval graph or permutation graph of order n, MD(G) = k,
diameter D. Then n = O(Dk2) i.e. k = Ω

(√
n

D

)
.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

→ Proofs are similar as for locating-dominating sets.

→ Bounds are tight (up to constant factors).

Florent Foucaud Identi�cation problems in graphs 17 / 24



Bounds with diameter

Example of path: no bound n ≤ f (MD(G)) possible.

G of order n, diameter D, MD(G) = k. Then n ≤Dk +k.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)

(diameter: maximum distance between two vertices)

G interval graph or permutation graph of order n, MD(G) = k,
diameter D. Then n = O(Dk2) i.e. k = Ω

(√
n

D

)
.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

→ Proofs are similar as for locating-dominating sets.

→ Bounds are tight (up to constant factors).

Florent Foucaud Identi�cation problems in graphs 17 / 24



Algorithmic complexity
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Complexity - Interval and permutation graphs

INPUT: Graph G , integer k.
QUESTION: Is there a locating-dominating set of G of size k?

LOCATING-DOMINATING SET

LOCATING-DOMINATING SET is NP-complete for graphs that are both
interval and permutation.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

Reduction from 3-DIMENSIONAL MATCHING.

Main idea: an interval can separate pairs of intervals far away from each other
(without a�ecting what lies in between)
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Interval and permutation graphs

INPUT: Graph G , integer k.
QUESTION: Is there a resolving set of G of size k?

METRIC DIMENSION

Reduction from LOCATING-DOMINATING SET to METRIC DIMENSION:

MD(G ′) = γL(G )+2

G

METRIC DIMENSION is NP-complete for graphs that are both interval and
permutation (and have diameter 2).

Corollary (F., Mertzios, Naserasr, Parreau, Valicov)
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An FPT algorithm for METRIC DIMENSION on interval graphs

Note: METRIC DIMENSION W[2]-hard even for subcubic bipartite graphs
−→ probably no f (k)poly(n)-time algorithm

METRIC DIMENSION can be solved in time 2O(k4)n on interval graphs.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

Ideas:
• use dynamic programming on a path-decomposition of G4.

• each bag has size O(k2).

• it su�ces to separate vertices at distance 2

• �transmission� lemma for separation constraints
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Open problems

Investigate bounds for other �geometric� graphs, for MD and γL

Complexity of LOCATING-DOMINATING SET, METRIC DIMENSION on
unit interval graphs

Complexity of METRIC DIMENSION for bounded treewidth

Parameterized complexity of METRIC DIMENSION: planar graphs,
chordal graphs, permutation graphs...

THANKS FOR YOUR ATTENTION
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Complexity of LOCATING-DOMINATING SET

trees cographs

bounded cliquewidth

bounded treewidth

unit interval

permutation

bipartite permutation

interval
co-bipartite

line of bipartite

bipartite

planar bipartite

split

co-comparability

quasi-line

line

comparability chordal

claw-freeperfect

polynomial

NP-complete

OPEN
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Complexity of METRIC DIMENSION

trees

outerplanar

cographs chain

bounded cliquewidth

bounded treewidth

bounded
pathwidth

series-parallel

bounded distance
to forest (FVS)

bounded cyclomatic number

bounded distance
to linear forest

bounded vertex cover

unit interval

permutation

bipartite permutation

interval
co-bipartite

line of bipartite

bipartite
planar

split

co-comparability

quasi-line
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