Modification Problems

H-Colouring

Vertex Deletion and Edge Deletion

Switching *H*-colouring

# Parameterized complexity of modification problems on edge-coloured and signed graph homomorphisms

Fl. Foucaud, H. Hocquard, D. Lajou, V. Mitsou, Th. Pierron

17 may 2019

| Modification | Problems |  |
|--------------|----------|--|
|              |          |  |





# 2 H-Colouring





| Modification Problems<br>●○○ | H-Colouring<br>000000 | Vertex Deletion and Edge Deletion | Switching <i>H</i> -colouring |
|------------------------------|-----------------------|-----------------------------------|-------------------------------|
| Overview                     |                       |                                   |                               |



# 2 H-Colouring

**3** Vertex Deletion and Edge Deletion



H-Colouring

Vertex Deletion and Edge Deletion

Switching *H*-colouring

#### Problem

Take  $\mathcal{P}$  a graph property. Can we modify G so that  $\mathcal{P}(G)$  is true?

## Take $\mathcal{P}$ a graph property. Can we modify G so that $\mathcal{P}(G)$ is true? And how to do it "optimally"?

Take  $\mathcal{P}$  a graph property. Can we modify G so that  $\mathcal{P}(G)$  is true? And how to do it "optimally"?

We will see three types of modifications:

Take  $\mathcal{P}$  a graph property. Can we modify G so that  $\mathcal{P}(G)$  is true? And how to do it "optimally"?

We will see three types of modifications:

• Vertex Deletion

Take  $\mathcal{P}$  a graph property. Can we modify G so that  $\mathcal{P}(G)$  is true? And how to do it "optimally"?

We will see three types of modifications:

- Vertex Deletion
- Edge Deletion

Take  $\mathcal{P}$  a graph property. Can we modify G so that  $\mathcal{P}(G)$  is true? And how to do it "optimally"?

We will see three types of modifications:

- Vertex Deletion
- Edge Deletion
- Switching

| Modification Problems<br>○O● | H-Colouring<br>000000 | Vertex Deletion and Edge Deletion | Switching <i>H</i> -colouring |
|------------------------------|-----------------------|-----------------------------------|-------------------------------|
| Examples                     |                       |                                   |                               |

| $\mathcal{P}$ | Vertex Deletion | Edge Deletion |
|---------------|-----------------|---------------|
|               |                 |               |
|               |                 |               |
|               |                 |               |
|               |                 |               |

| Modification Problems<br>○0● | H-Colouring<br>000000 | Vertex Deletion and Edge Deletion | Switching <i>H</i> -colouring |
|------------------------------|-----------------------|-----------------------------------|-------------------------------|
| Examples                     |                       |                                   |                               |

| $\mathcal{P}$  | Vertex Deletion | Edge Deletion |
|----------------|-----------------|---------------|
| Being Edgeless |                 |               |
|                |                 |               |
|                |                 |               |
|                |                 |               |

| Modification Problems<br>○0● | H-Colouring<br>000000 | Vertex Deletion and Edge Deletion | Switching <i>H</i> -colouring |
|------------------------------|-----------------------|-----------------------------------|-------------------------------|
| Examples                     |                       |                                   |                               |

| $\mathcal{P}$  | Vertex Deletion | Edge Deletion |
|----------------|-----------------|---------------|
| Being Edgeless | Vertex Cover    |               |
|                |                 |               |
|                |                 |               |
|                |                 |               |

| Modification Problems<br>○O● | H-Colouring<br>000000 | Vertex Deletion and Edge Deletion | Switching <i>H</i> -colouring |
|------------------------------|-----------------------|-----------------------------------|-------------------------------|
| Examples                     |                       |                                   |                               |

| $\mathcal{P}$  | Vertex Deletion | Edge Deletion |
|----------------|-----------------|---------------|
| Being Edgeless | Vertex Cover    | Trivial       |
|                |                 |               |
|                |                 |               |
|                |                 |               |

| Modification Problems<br>○O● | H-Colouring<br>000000 | Vertex Deletion and Edge Deletion | Switching <i>H</i> -colouring |
|------------------------------|-----------------------|-----------------------------------|-------------------------------|
| Examples                     |                       |                                   |                               |

| $\mathcal{P}$   | Vertex Deletion | Edge Deletion |
|-----------------|-----------------|---------------|
| Being Edgeless  | Vertex Cover    | Trivial       |
| Being Bipartite |                 |               |
|                 |                 |               |
|                 |                 |               |

| Modification Problems<br>○0● | H-Colouring<br>000000 | Vertex Deletion and Edge Deletion | Switching <i>H</i> -colouring |
|------------------------------|-----------------------|-----------------------------------|-------------------------------|
| Examples                     |                       |                                   |                               |

| $\mathcal{P}$   | Vertex Deletion       | Edge Deletion |
|-----------------|-----------------------|---------------|
| Being Edgeless  | Vertex Cover          | Trivial       |
| Being Bipartite | ODD CYCLE TRANSVERSAL |               |
|                 |                       |               |
|                 |                       |               |

| Modification Problems<br>○0● | H-Colouring<br>000000 | Vertex Deletion and Edge Deletion | Switching H-colouring |
|------------------------------|-----------------------|-----------------------------------|-----------------------|
| Examples                     |                       |                                   |                       |

| $\mathcal{P}$   | Vertex Deletion       | Edge Deletion      |
|-----------------|-----------------------|--------------------|
| Being Edgeless  | Vertex Cover          | Trivial            |
| Being Bipartite | ODD CYCLE TRANSVERSAL | Edge Bipartization |
|                 |                       |                    |
|                 |                       |                    |

| Modification Problems<br>○○● | <i>H</i> -Colouring<br>000000 | Vertex Deletion and Edge Deletion | Switching <i>H</i> -colouring |
|------------------------------|-------------------------------|-----------------------------------|-------------------------------|
| Examples                     |                               |                                   |                               |

| $\mathcal{P}$   | Vertex Deletion       | Edge Deletion      |
|-----------------|-----------------------|--------------------|
| Being Edgeless  | Vertex Cover          | Trivial            |
| Being Bipartite | ODD CYCLE TRANSVERSAL | Edge Bipartization |
| Being Planar    |                       |                    |
|                 |                       |                    |

| Modification Problems<br>○○● | H-Colouring<br>000000 | Vertex Deletion and Edge Deletion | Switching <i>H</i> -colouring |
|------------------------------|-----------------------|-----------------------------------|-------------------------------|
| Examples                     |                       |                                   |                               |

| $\mathcal{P}$   | Vertex Deletion        | Edge Deletion      |
|-----------------|------------------------|--------------------|
| Being Edgeless  | Vertex Cover           | Trivial            |
| Being Bipartite | Odd Cycle Transversal  | Edge Bipartization |
| Being Planar    | PLANAR VERTEX DELETION |                    |
|                 |                        |                    |

| Modification Problems<br>○0● | H-Colouring<br>000000 | Vertex Deletion and Edge Deletion | Switching <i>H</i> -colouring |
|------------------------------|-----------------------|-----------------------------------|-------------------------------|
| Examples                     |                       |                                   |                               |

| $\mathcal{P}$   | Vertex Deletion        | Edge Deletion        |
|-----------------|------------------------|----------------------|
| Being Edgeless  | Vertex Cover           | Trivial              |
| Being Bipartite | Odd Cycle Transversal  | Edge Bipartization   |
| Being Planar    | PLANAR VERTEX DELETION | Planar Edge Deletion |
|                 |                        |                      |

| Modification Problems<br>○O● | H-Colouring<br>000000 | Vertex Deletion and Edge Deletion | Switching H-colouring |
|------------------------------|-----------------------|-----------------------------------|-----------------------|
| Examples                     |                       |                                   |                       |

| $\mathcal{P}$     | Vertex Deletion        | Edge Deletion        |
|-------------------|------------------------|----------------------|
| Being Edgeless    | Vertex Cover           | Trivial              |
| Being Bipartite   | ODD CYCLE TRANSVERSAL  | Edge Bipartization   |
| Being Planar      | PLANAR VERTEX DELETION | Planar Edge Deletion |
| $\chi(G) \leq 12$ |                        |                      |

| Modification Problems<br>○0● | H-Colouring | Vertex Deletion and Edge Deletion | Switching <i>H</i> -colouring |
|------------------------------|-------------|-----------------------------------|-------------------------------|
| Examples                     |             |                                   |                               |

| $\mathcal{P}$     | Vertex Deletion        | Edge Deletion        |
|-------------------|------------------------|----------------------|
| Being Edgeless    | Vertex Cover           | Trivial              |
| Being Bipartite   | Odd Cycle Transversal  | Edge Bipartization   |
| Being Planar      | PLANAR VERTEX DELETION | Planar Edge Deletion |
| $\chi(G) \leq 12$ | VD $K_{12}$ -Colouring |                      |

| Modification Problems<br>○0● | H-Colouring<br>000000 | Vertex Deletion and Edge Deletion | Switching <i>H</i> -colouring |
|------------------------------|-----------------------|-----------------------------------|-------------------------------|
| Examples                     |                       |                                   |                               |

| $\mathcal{P}$     | Vertex Deletion        | Edge Deletion          |
|-------------------|------------------------|------------------------|
| Being Edgeless    | Vertex Cover           | Trivial                |
| Being Bipartite   | Odd Cycle Transversal  | Edge Bipartization     |
| Being Planar      | PLANAR VERTEX DELETION | Planar Edge Deletion   |
| $\chi(G) \leq 12$ | VD $K_{12}$ -Colouring | ED $K_{12}$ -Colouring |

| Modification Problems<br>○0● | <i>H</i> -Colouring<br>000000 | Vertex Deletion and Edge Deletion | Switching |
|------------------------------|-------------------------------|-----------------------------------|-----------|
| Examples                     |                               |                                   |           |

| $\mathcal{P}$     | Vertex Deletion        | Edge Deletion          |
|-------------------|------------------------|------------------------|
| Being Edgeless    | Vertex Cover           | Trivial                |
| Being Bipartite   | Odd Cycle Transversal  | Edge Bipartization     |
| Being Planar      | PLANAR VERTEX DELETION | Planar Edge Deletion   |
| $\chi(G) \leq 12$ | VD $K_{12}$ -Colouring | ED $K_{12}$ -Colouring |

Many more: Edge Dominating Set, Eulerian Deletion, Feedback Vertex Set...

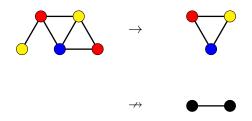
| Modification | Problems |
|--------------|----------|
|              |          |


Switching *H*-colouring

# Overview






**3** Vertex Deletion and Edge Deletion











Input: A graph G. Question: Does there exist a homomorphism from G to H?

Input: A graph G. Question: Does there exist a homomorphism from G to H?

• G is edgeless iff  $G \to K_1$ ,

Input: A graph G. Question: Does there exist a homomorphism from G to H?

- G is edgeless iff  $G \to K_1$ ,
- G is bipartite iff  $G \to K_2$ ,

Input: A graph G. Question: Does there exist a homomorphism from G to H?

- G is edgeless iff  $G \to K_1$ ,
- G is bipartite iff  $G \to K_2$ ,
- $\chi(G) \leq t \text{ iff } G \to K_t.$

Input: A graph G. Question: Does there exist a homomorphism from G to H?

- G is edgeless iff  $G \to K_1$ ,
- G is bipartite iff  $G \to K_2$ ,
- $\chi(G) \leq t \text{ iff } G \to K_t.$

#### Theorem (Hell and Nešetřil)

H-COLOURING is polynomial if H has a loop or is bipartite. It is NP-Complete otherwise.

### Definition (core)

The core of H is the smallest subgraph C of H such that  $H \rightarrow C$ . If C = H then H is a core.

## Definition (core)

The core of H is the smallest subgraph C of H such that  $H \rightarrow C$ . If C = H then H is a core.

We have :

 $G \rightarrow H$  iff  $G \rightarrow C$ .

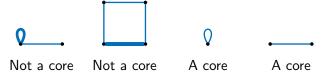
## Definition (core)

The core of H is the smallest subgraph C of H such that  $H \rightarrow C$ . If C = H then H is a core.

We have :

 $G \rightarrow H$  iff  $G \rightarrow C$ .




Not a core Not a core

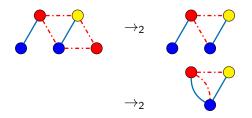
## Definition (core)

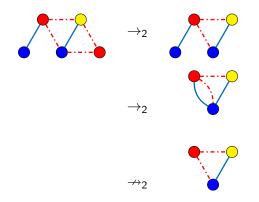

The core of H is the smallest subgraph C of H such that  $H \rightarrow C$ . If C = H then H is a core.

We have :

 $G \to H$  iff  $G \to C$ .






H-Colouring ○○○○●○ Vertex Deletion and Edge Deletion

Switching H-colouring

### Definition





## Problem (H-COLOURING<sub>t</sub>)

Input: A t-edge-coloured graph G. Question: Does there exist a homomorphism from G to H?

Switching *H*-colouring

# Overview



# 2 H-Colouring





Theorem (R. C. Brewster, R. Dedić, F. Huard and J. Queen)

The *H*-COLOURING<sub>t</sub> problem is polynomial in the following cases:

- H has order 2,
- *H* has order 3, is loop-free and contains no monochromatic triangle.

Theorem (R. C. Brewster, R. Dedić, F. Huard and J. Queen)

The *H*-COLOURING<sub>t</sub> problem is polynomial in the following cases:

- H has order 2,
- *H* has order 3, is loop-free and contains no monochromatic triangle.

## Theorem (R. C. Brewster)

The H-COLOURING<sub>t</sub> problem is polynomial when H is a path.

Theorem (R. C. Brewster, R. Dedić, F. Huard and J. Queen)

The *H*-COLOURING<sub>t</sub> problem is polynomial in the following cases:

- H has order 2,
- *H* has order 3, is loop-free and contains no monochromatic triangle.

## Theorem (R. C. Brewster)

The H-COLOURING<sub>t</sub> problem is polynomial when H is a path.

Theorem (R. C. Brewster and P. Hell)

The H-COLOURING<sub>t</sub> problem is polynomial for some cycles.

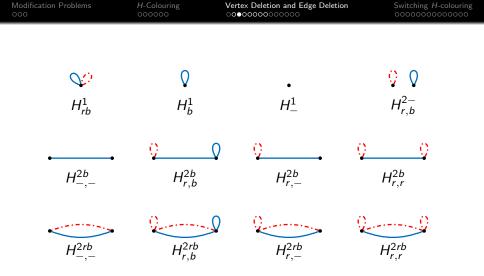



Figure: The twelve 2-edge-coloured graphs of order at most 2.

## Theorem (Lewis and Yannakakis)

The  $\mathcal{P}$  VERTEX-DELETION problem for nontrivial graph-properties  $\mathcal{P}$  that are hereditary on induced subgraphs is NP-complete.

### Theorem (Lewis and Yannakakis)

The  $\mathcal{P}$  VERTEX-DELETION problem for nontrivial graph-properties  $\mathcal{P}$  that are hereditary on induced subgraphs is NP-complete.

## Corollary (of the proof)

The  $\mathcal{P}$  VERTEX-DELETION problem for nontrivial properties  $\mathcal{P}$ , on loopless t-edge-coloured graphs, that are hereditary on induced subgraphs and true for all independent sets is NP-hard.

 $\underset{000}{\text{Modification Problems}}$ 

H-Colouring

Vertex Deletion and Edge Deletion

#### Theorem

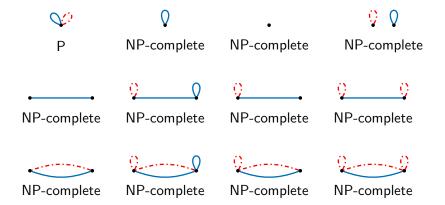
For a core H, the problem is trivial iff H is composed of one vertex with t coloured loops of different colours. In this case, all t-edge-coloured graphs G verify  $G \rightarrow_t H$ .

 $\underset{000}{\mathsf{Modification}} \text{ Problems}$ 

H-Colouring

Vertex Deletion and Edge Deletion

Switching H-colouring


#### Theorem

For a core H, the problem is trivial iff H is composed of one vertex with t coloured loops of different colours. In this case, all t-edge-coloured graphs G verify  $G \rightarrow_t H$ .

#### Theorem

The problem VERTEX DELETION H-COLOURING<sub>t</sub> for a *t*-edge-coloured graph H is polynomial if H contains a vertex having all t coloured loops and NP-complete otherwise.

| Modification Problems | H-Colouring<br>000000 | Vertex Deletion and Edge Deletion<br>○0000●0000000 | Switching <i>H</i> -colouring |
|-----------------------|-----------------------|----------------------------------------------------|-------------------------------|
|                       |                       |                                                    |                               |



Modification Problems


#### Theorem

Let H be an edge-coloured core of order at most 2. If each colour of H induces a set of loops or contains all three possible edges, then EDGE DELETION H-COLOURING<sub>t</sub> lies in P, otherwise it is NP-complete.

Alternate formulation, if H contains one of these two, then it is NP-complete:



| Modification Problems |             | Vertex Deletion and Edge Deletion<br>○○○○○○○●○○○○○○ | Switching H-colouring |
|-----------------------|-------------|-----------------------------------------------------|-----------------------|
| <b>\</b> ∕?           | 0           | •                                                   | ♀ ♀                   |
| ₽                     | P           | P                                                   | P                     |
| ••                    | ♀ੵੵੵੵੵੵ     | e NP-complete                                       | <u>ပ္နဲ</u>           |
| NP-complete           | NP-complete |                                                     | NP-complete           |
| NP-complete           | NP-complete | e NP-complete                                       | NP-complete           |



## Theorem (R. C. Brewster, R. Dedić, F. Huard and J. Queen)

The H-COLOURING<sub>t</sub> problem is polynomial when H has order 2 by reduction to 2-SAT.

| $E_i(H)$       | Clause                                         |
|----------------|------------------------------------------------|
| Ø              |                                                |
| Ø              | $\perp$                                        |
| {00}           | $(\overline{x_u})(\overline{x_v})$             |
| {01}           | $(x_u + x_v)(\overline{x_u} + \overline{x_v})$ |
| {11}           | $(x_u)(x_v)$                                   |
| $\{00, 01\}$   | $(\overline{x_u} + \overline{x_v})$            |
| $\{01, 11\}$   | $(x_u + x_v)$                                  |
| $\{00, 11\}$   | $(x_u + \overline{x_v})(\overline{x_u} + x_v)$ |
| $\{00,01,11\}$ | Т                                              |

### Problem (VARIABLE DELETION ALMOST 2-SAT)

Input: A 2-CNF formula F, an integer k.

Parameter: k.

Question: Is there a set of k variables that can be deleted from F (together with the clauses containing them) so that the resulting formula is satisfiable?

Switching *H*-colouring

### Problem (VARIABLE DELETION ALMOST 2-SAT)

Input: A 2-CNF formula F, an integer k.

Parameter: k.

Question: Is there a set of k variables that can be deleted from F (together with the clauses containing them) so that the resulting formula is satisfiable?

## Problem (CLAUSE DELETION ALMOST 2-SAT)

Input: A 2-CNF formula F, an integer k. Parameter: k. Question: Is there a set of k clauses that can be deleted from F so

that the resulting formula is satisfiable?

### Problem (VARIABLE DELETION ALMOST 2-SAT)

Input: A 2-CNF formula F, an integer k.

Parameter: k.

Question: Is there a set of k variables that can be deleted from F (together with the clauses containing them) so that the resulting formula is satisfiable?

### Problem (CLAUSE DELETION ALMOST 2-SAT)

Input: A 2-CNF formula F, an integer k. Parameter: k. Question: Is there a set of k clauses that can be deleted from F so that the resulting formula is satisfiable?

CLAUSE DELETION ALMOST 2-SAT and VARIABLE DELETION ALMOST 2-SAT were proved to be FPT (I. Razgon and B. O'Sullivan for the former and M. Cygan *et al.* for the later).

| Modification Problems |                                              | Vertex Deletion and Edge Deletion<br>○○○○○○○○○●○○○                                        | Switching H-colouring             |
|-----------------------|----------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------|
|                       |                                              |                                                                                           |                                   |
| $E_i(H)$              | Clause before                                | Clause after modification                                                                 |                                   |
| Ø                     | $\perp$                                      | $(x_u + x_v)(\overline{x_u} + x_v)(x_u + \overline{x_v})(\overline{x_v})(\overline{x_v})$ | $\overline{u} + \overline{x_v}$ ) |
| {00}                  | $(\overline{x_u})(\overline{x_v})$           | $(\overline{x_u} + x_v)(\overline{x_u} + \overline{x_v})(\overline{x_v} + x_u)$           |                                   |
| {01}                  | $(x_u + x_v)(\overline{x_u} + \overline{x})$ | $(x_u + x_v)(\overline{x_u} + \overline{x_v})$                                            |                                   |
| {11}                  | $(x_u)(x_v)$                                 | $(x_u + x_v)(x_u + \overline{x_v})(x_v + \overline{x_u})$                                 |                                   |
| $\{00, 01\}$          | $(\overline{x_u} + \overline{x_v})$          | $(\overline{x_u} + \overline{x_v})$                                                       |                                   |
| $\{01, 11\}$          | $(x_u + x_v)$                                | $(x_u + x_v)$                                                                             |                                   |
| $\{00, 11\}$          | $(x_u + \overline{x_v})(\overline{x_u} + x)$ | $(x_u + \overline{x_v})(\overline{x_u} + x_v)$                                            |                                   |
| $\{00, 01, 11\}$      | Т                                            | Т                                                                                         |                                   |

| Modification Problems |                                                | ertex Deletion and Edge Deletion                                                          | Switching H-colouring           |
|-----------------------|------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------|
|                       |                                                |                                                                                           |                                 |
| $E_i(H)$              | Clause before                                  | Clause after modification                                                                 |                                 |
| Ø                     | $\perp$                                        | $(x_u + x_v)(\overline{x_u} + x_v)(x_u + \overline{x_v})(\overline{x_u})(\overline{x_v})$ | $\overline{u} + \overline{x_v}$ |
| {00}                  | $(\overline{x_u})(\overline{x_v})$             | $(\overline{x_u} + x_v)(\overline{x_u} + \overline{x_v})(\overline{x_v} + x_u)$           |                                 |
| {01}                  | $(x_u + x_v)(\overline{x_u} + \overline{x_v})$ | $(x_u + x_v)(\overline{x_u} + \overline{x_v})$                                            |                                 |
| $\{11\}$              | $(x_u)(x_v)$                                   | $(x_u + x_v)(x_u + \overline{x_v})(x_v + \overline{x_u})$                                 |                                 |
| $\{00, 01\}$          | $(\overline{x_u} + \overline{x_v})$            | $(\overline{x_u} + \overline{x_v})$                                                       |                                 |
| $\{01, 11\}$          | $(x_u + x_v)$                                  | $(x_u + x_v)$                                                                             |                                 |
| $\{00, 11\}$          | $(x_u + \overline{x_v})(\overline{x_u} + x_v)$ | ) $(x_u + \overline{x_v})(\overline{x_u} + x_v)$                                          |                                 |
| $\{00, 01, 11\}$      | Т                                              | Т                                                                                         |                                 |

### Theorem

If H has order 2 then there exists an FPT algorithm for VERTEX DELETION H-COLOURING<sub>t</sub>.

## Problem (GROUP DELETION ALMOST 2-SAT)

Input: A 2-CNF formula F, an integer k, and a partition of the clauses of F into groups such that each group has a variable appears in all of its clauses. Parameter: k.

Question: Is there a set of k groups of clauses that can be deleted from F so that the resulting formula is satisfiable?

## Problem (GROUP DELETION ALMOST 2-SAT)

Input: A 2-CNF formula F, an integer k, and a partition of the clauses of F into groups such that each group has a variable appears in all of its clauses.

Parameter: k.

Question: Is there a set of k groups of clauses that can be deleted from F so that the resulting formula is satisfiable?

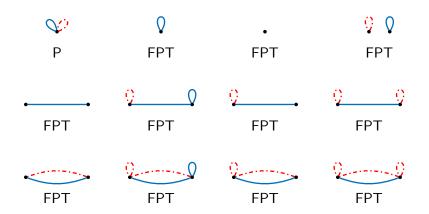
#### Theorem

GROUP DELETION ALMOST 2-SAT is solvable in FPT time.

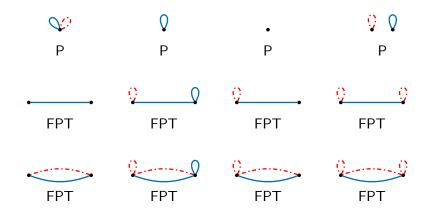
## Problem (GROUP DELETION ALMOST 2-SAT)

Input: A 2-CNF formula F, an integer k, and a partition of the clauses of F into groups such that each group has a variable appears in all of its clauses. Parameter: k

Question: Is there a set of k groups of clauses that can be deleted from F so that the resulting formula is satisfiable?


#### Theorem

GROUP DELETION ALMOST 2-SAT is solvable in FPT time.


#### Corollary

If H has order 2 then there exists an FPT algorithm for EDGE DELETION H-COLOURING<sub>t</sub>.

| Modification Problems | H-Colouring<br>000000 | Vertex Deletion and Edge Deletion | Switching <i>H</i> -colouring |
|-----------------------|-----------------------|-----------------------------------|-------------------------------|
| Vertex Deletion       | n                     |                                   |                               |

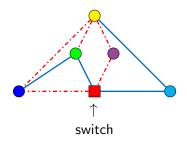


| Modification Problems | H-Colouring<br>000000 | Vertex Deletion and Edge Deletion | Switching <i>H</i> -colouring |
|-----------------------|-----------------------|-----------------------------------|-------------------------------|
| Edge Deletion         |                       |                                   |                               |
|                       |                       |                                   |                               |

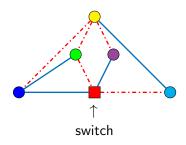


| Modification | Problems |
|--------------|----------|
|              |          |

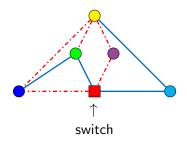


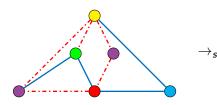


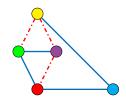

# 2 H-Colouring

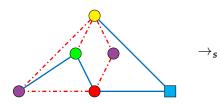


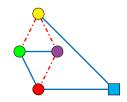


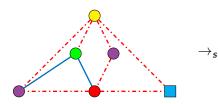


A signed graph G is a graph where each edge can be either positive or negative. Moreover we can switch at each vertex v. Switching at v consists in inverting the signs of all edges incident with v.

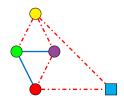


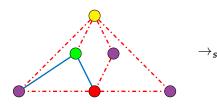


A signed graph G is a graph where each edge can be either positive or negative. Moreover we can switch at each vertex v. Switching at v consists in inverting the signs of all edges incident with v.





A signed graph G is a graph where each edge can be either positive or negative. Moreover we can switch at each vertex v. Switching at v consists in inverting the signs of all edges incident with v.
















We consider two types of homomorphisms:

- G →<sub>s</sub> H: We can switch on G an arbitrary number of times to get G' and G' →<sub>2</sub> H,
- G →<sup>≤k</sup><sub>s</sub> H: We can switch on G at most k times to get G' and G' →<sub>2</sub> H.

We consider two types of homomorphisms:

- G →<sub>s</sub> H: We can switch on G an arbitrary number of times to get G' and G' →<sub>2</sub> H,
- G →<sup>≤k</sup><sub>s</sub> H: We can switch on G at most k times to get G' and G' →<sub>2</sub> H.

## Problem (SIGNED *H*-COLOURING)

Input: G. Question: Does  $G \rightarrow_s H$ ?

## Problem (SWITCHING *H*-COLOURING)

Input : G and k. Parameter: k. Question: Does  $G \rightarrow_{s}^{\leq k} H$  ?

| Modification Problems       | H-Colouring | Vertex Deletion and Edge Deletion | Switching <i>H</i> -colouring |
|-----------------------------|-------------|-----------------------------------|-------------------------------|
|                             |             |                                   |                               |
| $\mathcal{F}_{\mathcal{F}}$ | Q           |                                   | <b>♀ ♀</b>                    |
| ?                           | ?           | ?                                 | ?                             |
| ••                          | <u> </u>    | <u>0</u>                          | <u>0     0</u>                |
| ?                           | ?           | ?                                 | ?                             |
|                             |             | 2                                 | 0                             |
| ?                           | ?           | ?                                 | ?                             |

| Modification Problems       | H-Colouring<br>000000                 | Vertex Deletion and Edge Deletio | Switching <i>H</i> -colouring                |
|-----------------------------|---------------------------------------|----------------------------------|----------------------------------------------|
|                             |                                       |                                  |                                              |
|                             |                                       |                                  |                                              |
| $\mathcal{Q}_{\mathcal{O}}$ | 0                                     |                                  | 0 0                                          |
|                             | ¥                                     | •                                | 4 ¥                                          |
| Р                           | ?                                     | Р                                | ?                                            |
|                             |                                       |                                  |                                              |
| ••                          | <u> </u>                              | <u>()</u>                        | <u>0      0         0                   </u> |
| ?                           | ?                                     | ?                                | 7                                            |
|                             |                                       | •                                | ·                                            |
|                             | 0 0                                   | 0                                | р р                                          |
|                             | · · · · · · · · · · · · · · · · · · · | ······                           |                                              |
| ?                           | ?                                     | ?                                | ?                                            |

29/39

| Modification Problems       | H-Colouring<br>000000 | Vertex Deletion and Edge Deletio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n Switching <i>H</i> -colouring              |
|-----------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
|                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |
|                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |
| $\mathcal{O}_{\mathcal{O}}$ | Q                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Q Q                                          |
| P                           | ?                     | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ?                                            |
|                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |
| ••                          | <u> </u>              | <u>()</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>0       0         0                  </u> |
| ?                           | ?                     | ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ?                                            |
|                             | 0 0                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25 25                                        |
| •                           |                       | New York Street |                                              |
| Р                           | ?                     | ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ?                                            |

## An extension of a result from Zaslavsky gives:

### Theorem

If G is a signed graph with a given signature (i.e. edge-colouring), then we can test in polynomial time if G can be made all positive. Moreover we can compute in polynomial time the number of switchings required to do so.

## An extension of a result from Zaslavsky gives:

### Theorem

If G is a signed graph with a given signature (i.e. edge-colouring), then we can test in polynomial time if G can be made all positive. Moreover we can compute in polynomial time the number of switchings required to do so.

Theorem (Brewster, Foucaud, Hell, Naserasr and Brewster, Siggers)

Let H be a signed graph. SIGNED H-COLOURING is polynomial if the switching core of H has at most two edges, and NP-complete otherwise.

| Modification Problems       | H-Colouring<br>000000 | Vertex Deletion and Edge Deletion | Switching <i>H</i> -colouring |
|-----------------------------|-----------------------|-----------------------------------|-------------------------------|
|                             |                       |                                   |                               |
|                             |                       |                                   |                               |
| $\mathcal{O}_{\mathcal{O}}$ | 0                     | •                                 | ♀ ♀                           |
| Р                           | ?                     | Р                                 | ?                             |
|                             | 0                     | 0                                 | 0 0                           |
| ••                          | ¥V                    | ¥•                                | ¥¥                            |
| ?                           | ?                     | ?                                 | <u> </u>                      |
| <>                          | 2                     | 0                                 | 00                            |
| Р                           | ?                     | ?                                 | ?                             |

31/39

| Modification Problems       | H-Colouring | Vertex Deletion and Edge Deleti | on Switching H-colouring |
|-----------------------------|-------------|---------------------------------|--------------------------|
|                             |             |                                 |                          |
|                             |             |                                 |                          |
| $\mathcal{Q}_{\mathcal{C}}$ | Q           | •                               | 9 Q                      |
| Р                           | Р           | Р                               | Р                        |
|                             |             |                                 |                          |
| ••                          | <u>0</u>    | Q <u>Q</u> .                    | <u>0       0</u>         |
| ?                           | ?           | ?                               | ?                        |
|                             | 25          | 0 0                             | D D                      |



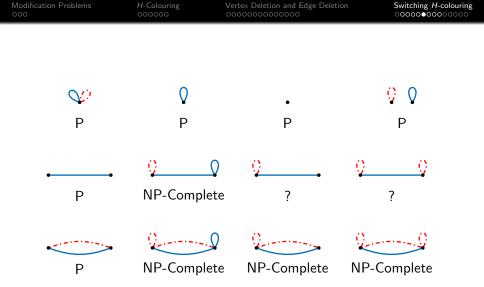
Ρ

?





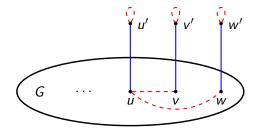
?

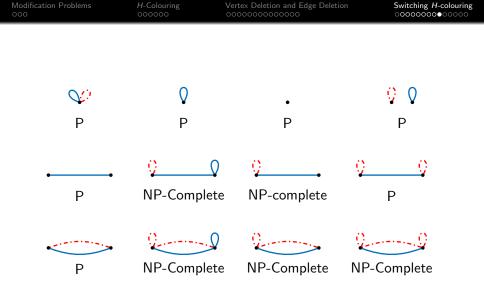

| Modification Problems<br>000 000000                                                                                                                | Vertex Deletion and Edge I | Deletion Switching H-colouring |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------|
|                                                                                                                                                    |                            |                                |
|                                                                                                                                                    |                            |                                |
| $\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$ | ) .                        | 9 Q                            |
| P I                                                                                                                                                | р Р                        | Р                              |
|                                                                                                                                                    |                            |                                |
| ·• •                                                                                                                                               | <u> </u>                   | <u> </u>                       |
| Р                                                                                                                                                  | ???                        | ?                              |
| 0                                                                                                                                                  | 0 0                        | 0                              |

Ρ

?

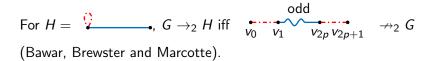
?


?




For  $H = \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ ,  $G \rightarrow_2 H$  iff G has no cycles with an odd number of positive edges (Bawar, Brewster and Marcotte).

| Modification Problems | H-Colouring | Vertex Deletion and Edge Deletion | Switching <i>H</i> -colouring |
|-----------------------|-------------|-----------------------------------|-------------------------------|
|                       |             |                                   |                               |


# For $H = \frac{1}{2}$ , reduction from VERTEX COVER.





## 

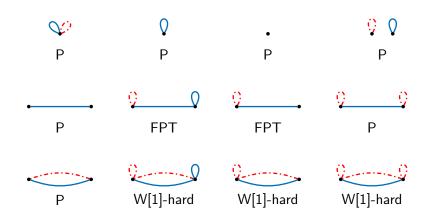
For  $H = \bigcirc$ ,  $G \rightarrow_2 H$  iff  $\longrightarrow 2 G$  (Bawar, Brewster and Marcotte).  $\Rightarrow$  We have an FPT branching algorithm.



For  $H = \bigcup_{v_0 \to 2}^{odd} H$  iff  $\bigcup_{v_0 \to 2}^{odd} V_{2p} V_{2p+1} \to 2^{odd} G$ (Bawar, Brewster and Marcotte). The only way to remove such a path is to switch at one of  $V_0, V_1, V_{2p}, V_{2p+1}$ .

 What about :




What about :



### Theorem

For these three graphs SWITCHING H-COLOURING is W[1]-hard.

| Modification Problems | H-Colouring<br>000000 | Vertex Deletion and Edge Deletion | Switching <i>H</i> -colouring |
|-----------------------|-----------------------|-----------------------------------|-------------------------------|
| Switching             |                       |                                   |                               |



| Modification Problems | H-Colouring<br>000000 | Vertex Deletion and Edge Deletion | Switching <i>H</i> -colouring |
|-----------------------|-----------------------|-----------------------------------|-------------------------------|
| Open questions        | ;                     |                                   |                               |

• What about other *H*'s ?

## Open questions

- What about other *H*'s ?
- What about VERTEX DELETION SIGNED H-COLOURING ?
- What about Edge Deletion Signed H-Colouring ?

## Open questions

- What about other *H*'s ?
- What about VERTEX DELETION SIGNED H-COLOURING ?
- What about Edge Deletion Signed *H*-Colouring ?
- Find other polynomial cases for H-COLOURING<sub>t</sub>.

## Open questions

- What about other *H*'s ?
- What about VERTEX DELETION SIGNED H-COLOURING ?
- What about Edge Deletion Signed *H*-Colouring ?
- Find other polynomial cases for H-COLOURING<sub>t</sub>.

Thank you for your attention!