Bounding the broadcast domination number by the multipacking number

Florent Foucaud
(LABRI, Université de Bordeaux)
joint work with:
Laurent Beaudou
(Higher School of Economics, Moscow, Russia)
Richard C. Brewster
Bohdana Mitchell
(Thompson Rivers University, Kamloops, BC, Canada)

October 2019

Covering and packing: domination

Covering: cover the vertices of a graph using as few structures as possible Example: dominating set: covering using 1-balls \rightarrow domination number $\gamma(G)$

Covering and packing: domination

Covering: cover the vertices of a graph using as few structures as possible Example: dominating set: covering using 1-balls \rightarrow domination number $\gamma(G)$

Packing: pack as many structures as possible without interference
Example (1): independent set: packing 1-balls without overlap at centers \rightarrow independence number $\alpha(G)$

Covering and packing: dual problems

Covering: cover the vertices of a graph using as few structures as possible
Example: dominating set: covering using 1-balls \rightarrow domination number $\gamma(G)$

Covering and packing: dual problems

Covering: cover the vertices of a graph using as few structures as possible Example: dominating set: covering using 1-balls \rightarrow domination number $\gamma(G)$

Packing: pack as many structures as possible without interference
Example (2): dist. 3-independent set / 2-packing: packing 1-balls without overlap \rightarrow 2-packing number $\rho_{2}(G)$

Covering: cover the vertices of a graph using as few structures as possible Example: dominating set: covering using 1-balls \rightarrow domination number $\gamma(G)$

Packing: pack as many structures as possible without interference
Example (2): dist. 3-independent set / 2-packing: packing 1-balls without overlap \rightarrow 2-packing number $\rho_{2}(G)$

These problems are dual (in the sense of LP) and $\rho_{2}(G) \leq \gamma(G)$.

Broadcast domination

Definition - Dominating broadcast of graph G (Erwin, 2001)
A function $f: V(G) \rightarrow \mathbb{N}$ s.t. for every $v \in V(G)$, there exists $x \in V(G)$ with

$$
\text { - } f(x)>0 \text { and } \quad \bullet f(x) \geq d_{G}(x, v)
$$

The cost of f is $\sum_{v \in V(G)} f(v)$.
Broadcast number $\gamma_{b}(G)$: smallest cost of a dominating broadcast of G.

Broadcast domination

Definition - Dominating broadcast of graph G (Erwin, 2001)
A function $f: V(G) \rightarrow \mathbb{N}$ s.t. for every $v \in V(G)$, there exists $x \in V(G)$ with

- $f(x)>0$ and
- $f(x) \geq d_{G}(x, v)$.

The cost of f is $\sum_{v \in V(G)} f(v)$.
Broadcast number $\gamma_{b}(G)$: smallest cost of a dominating broadcast of G.

Broadcast domination

Definition - Dominating broadcast of graph G (Erwin, 2001)
A function $f: V(G) \rightarrow \mathbb{N}$ s.t. for every $v \in V(G)$, there exists $x \in V(G)$ with

- $f(x)>0$ and
- $f(x) \geq d_{G}(x, v)$.

The cost of f is $\sum_{v \in V(G)} f(v)$.
Broadcast number $\gamma_{b}(G)$: smallest cost of a dominating broadcast of G.

Broadcast domination

Definition - Dominating broadcast of graph G (Erwin, 2001)
A function $f: V(G) \rightarrow \mathbb{N}$ s.t. for every $v \in V(G)$, there exists $x \in V(G)$ with

$$
\text { - } f(x)>0 \text { and } \quad \bullet f(x) \geq d_{G}(x, v)
$$

The cost of f is $\sum_{v \in V(G)} f(v)$.
Broadcast number $\gamma_{b}(G)$: smallest cost of a dominating broadcast of G.

Broadcast domination

Definition - Dominating broadcast of graph G (Erwin, 2001)
A function $f: V(G) \rightarrow \mathbb{N}$ s.t. for every $v \in V(G)$, there exists $x \in V(G)$ with

- $f(x)>0$ and
- $f(x) \geq d_{G}(x, v)$.

The cost of f is $\sum_{v \in V(G)} f(v)$.
Broadcast number $\gamma_{b}(G)$: smallest cost of a dominating broadcast of G.

Theorem (Heggernes-Lokshtanov, 2006)
We can find a minimum-cost dominating broadcast in polynomial time $O\left(n^{6}\right)$.

Proof idea:

- find an efficient dominating broadcast (Erwin, 2001)
- The structure of covering balls is a path or a cycle
- Dynamic programming on this structure

Definition - Multipacking of graph G (Brewster-Mynhardt-Teshima, 2014)
A set S of vertices s.t. for every $v \in V(G)$ and every $d \in \mathbb{N}$, the d-ball $B_{d}(v)$ contains at most d vertices of S.

Multipacking number $\operatorname{mp}(G)$: largest size of a multipacking of G.

Definition - Multipacking of graph G (Brewster-Mynhardt-Teshima, 2014)
A set S of vertices s.t. for every $v \in V(G)$ and every $d \in \mathbb{N}$, the d-ball $B_{d}(v)$ contains at most d vertices of S.

Multipacking number $m p(G)$: largest size of a multipacking of G.

Definition - Multipacking of graph G (Brewster-Mynhardt-Teshima, 2014)
A set S of vertices s.t. for every $v \in V(G)$ and every $d \in \mathbb{N}$, the d-ball $B_{d}(v)$ contains at most d vertices of S.

Multipacking number $m p(G)$: largest size of a multipacking of G.

The two problems are dual (in the sense of LP). Proposition

For every graph G, we have $m p(G) \leq \gamma_{b}(G)$.

Equality holds for:

- trees (Mynhardt-Teshima, 2017)
- more generally, strongly chordal graphs (Brewster-MacGillivray-Yang, 2019)
- square grids (Beaudou-Brewster, 2018)

A chain of inequalities

Proposition (Erwin, 2001 + Hartnell-Mynhardt, 2014)
For any $G,\left\lceil\frac{\operatorname{diam}(G)+1}{3}\right\rceil \leq m p(G) \leq \gamma_{b}(G) \leq \operatorname{rad}(G) \leq \operatorname{diam}(G)$.

Proposition (Erwin, 2001 + Hartnell-Mynhardt, 2014)

$$
\text { For any } G,\left\lceil\frac{\operatorname{diam}(G)+1}{3}\right\rceil \leq m p(G) \leq \gamma_{b}(G) \leq \operatorname{rad}(G) \leq \operatorname{diam}(G)
$$

$\gamma_{b}(G) \leq \operatorname{rad}(G):$ consider a radial vertex v. Set $f(v)=\operatorname{rad}(G)$.

Proposition (Erwin, 2001 + Hartnell-Mynhardt, 2014)

$$
\text { For any } G,\left\lceil\frac{\operatorname{diam}(G)+1}{3}\right\rceil \leq m p(G) \leq \gamma_{b}(G) \leq \operatorname{rad}(G) \leq \operatorname{diam}(G)
$$

$\left\lceil\frac{\operatorname{diam}(G)+1}{3}\right\rceil \leq m p(G)$: consider a diametral path P, select every third vertex.

A chain of inequalities

Proposition (Erwin, 2001 + Hartnell-Mynhardt, 2014)

$$
\text { For any } G,\left\lceil\frac{\operatorname{diam}(G)+1}{3}\right\rceil \leq m p(G) \leq \gamma_{b}(G) \leq \operatorname{rad}(G) \leq \operatorname{diam}(G)
$$

Corollary
For any G, we have $\gamma_{b}(G)<3 m p(G)$, hence $\frac{\gamma_{b}(G)}{m p(G)}<3$.

Question (Hartnell-Mynhardt, 2014)
What is the largest possible ratio $\frac{\gamma_{b}(G)}{m p(G)}$?

Our theorem

Theorem (Beaudou, Brewster, F., Mitchell)
For any G, we have $\gamma_{b}(G) \leq 2 m p(G)+2$, hence $\frac{\gamma_{b}(G)}{m p(G)} \leq 2+\epsilon$.
\qquad
Theorem (Beaudou, Brewster, F., Mitchell)
For any G, we have $\gamma_{b}(G) \leq 2 m p(G)+2$, hence $\frac{\gamma_{b}(G)}{m p(G)} \leq 2+\epsilon$

Our theorem

Theorem (Beaudou, Brewster, F., Mitchell)
For any G, we have $\gamma_{b}(G) \leq 2 m p(G)+2$, hence $\frac{\gamma_{b}(G)}{m p(G)} \leq 2+\epsilon$.

Lemma

Proof sketch

Let u, v, x, y be 4 vertices with:

- $d(u, v)=6 k$
- $d(x, u)=d(x, v)=3 k$
- $d(x, y)=3 k+3 \ell$.

Then, $m p(G) \geq 2 k+\ell$.

Our theorem

Theorem (Beaudou, Brewster, F., Mitchell)
For any G, we have $\gamma_{b}(G) \leq 2 m p(G)+2$, hence $\frac{\gamma_{b}(G)}{m p(G)} \leq 2+\epsilon$.

Lemma

Proof sketch

Let u, v, x, y be 4 vertices with:

- $d(u, v)=6 k \quad \bullet d(x, u)=d(x, v)=3 k \quad \bullet d(x, y)=3 k+3 \ell$.

Then, $m p(G) \geq 2 k+\ell$.

Let $\operatorname{diam}(G)=6 k+i$ and $\operatorname{rad}(G)=3 k+3 \ell+j$
Apply the lemma with x, a vertex of eccentricity $\operatorname{rad}(G)$.

$$
\begin{aligned}
m p(G) & \geq 2 k+\ell \\
& \geq \frac{\operatorname{diam}(G)}{3}+\frac{\operatorname{rad}(G)}{3}-\frac{\operatorname{diam}(G)}{6}-c \\
& \geq \frac{\operatorname{rad}(G)}{2}-c \\
& \geq \frac{\gamma_{b}(G)}{2}-c
\end{aligned}
$$

Conjecture

Conjecture

For any G, we have $\gamma_{b}(G) \leq 2 m p(G)$.
Theorem (Beaudou, Brewster, F., Mitchell)
For any G, we have $\gamma_{b}(G) \leq 2 m p(G)+2$, hence $\frac{\gamma_{b}(G)}{m p(G)} \leq 2+\epsilon$.
\square
\square
\square
\qquad
. -
\qquad

Theorem (Beaudou, Brewster, F., Mitchell)
For any G, we have $\gamma_{b}(G) \leq 2 m p(G)+2$, hence $\frac{\gamma_{b}(G)}{m p(G)} \leq 2+\epsilon$.

Conjecture

For any G, we have $\gamma_{b}(G) \leq 2 m p(G)$.

Theorem (Beaudou, Brewster, F., Mitchell)
The conjecture is true when $m p(G) \leq 4$.

Theorem (Beaudou, Brewster, F., Mitchell)
For any G, we have $\gamma_{b}(G) \leq 2 m p(G)+2$, hence $\frac{\gamma_{b}(G)}{m p(G)} \leq 2+\epsilon$.

Conjecture

For any G, we have $\gamma_{b}(G) \leq 2 m p(G)$.

Theorem (Beaudou, Brewster, F., Mitchell)
The conjecture is true when $m p(G) \leq 4$.

Conjecture would be tight — infinitely many graphs G s.t. $\gamma_{b}(G)=2 m p(G)$:

$$
m p(G)=2 \text { and } \gamma_{b}(G)=4
$$

Connected graphs, general case

Question
What happens for connected graphs?

$$
\text { For any } G, \text { we have } \gamma_{b}(G) \leq 2 m p(G)
$$

Conjecture

For any G, we have $\gamma_{b}(G) \leq 2 m p(G)$.

Connected graphs, general case

Conjecture
For any G, we have $\gamma_{b}(G) \leq 2 m p(G)$.

Question
What happens for connected graphs?

Closest known connected family: $\gamma_{b}(G)=\frac{4}{3} m p(G)$
(Hartnell-Mynhardt, 2014)

Connected graphs, general case

Conjecture
For any G, we have $\gamma_{b}(G) \leq 2 m p(G)$.

Question
What happens for connected graphs?

Closest known connected family: $\gamma_{b}(G)=\frac{4}{3} m p(G)$
(Hartnell-Mynhardt, 2014)

Connected graphs, general case

Conjecture
For any G, we have $\gamma_{b}(G) \leq 2 m p(G)$.

Question
What happens for connected graphs?

Closest known connected family: $\gamma_{b}(G)=\frac{4}{3} m p(G)$
(Hartnell-Mynhardt, 2014)

Connected graphs, small case

Conjecture
For any G, we have $\gamma_{b}(G) \leq 2 m p(G)$.

Question

What happens for connected graphs?

Proposition

There is a connected graph G of order 24 with $m p(G)=3$ and $\gamma_{b}(G)=5$.

Connected graphs, small case

Conjecture
For any G, we have $\gamma_{b}(G) \leq 2 m p(G)$.

Question

What happens for connected graphs?

Proposition

There is a connected graph G of order 24 with $m p(G)=3$ and $\gamma_{b}(G)=5$.

Question
Is there a connected graph G with $m p(G)=3$ and $\gamma_{b}(G)=6$?

