Bounding the broadcast domination number by the multipacking number

Florent Foucaud (LABRI, Université de Bordeaux)

joint work with:

Laurent Beaudou (Higher School of Economics, Moscow, Russia)

Richard C. Brewster Bohdana Mitchell (Thompson Rivers University, Kamloops, BC, Canada)

October 2019

Covering and packing: domination

Covering: cover the vertices of a graph using as few structures as possible

Example: dominating set: covering using 1-balls

 \rightarrow domination number $\gamma(G)$

Covering and packing: domination

Covering: cover the vertices of a graph using as few structures as possible

Example: dominating set: covering using 1-balls

 \rightarrow domination number $\gamma(G)$

Packing: pack as many structures as possible without interference

Example (1): independent set: packing 1-balls without overlap at centers \rightarrow independence number $\alpha(G)$

Covering and packing: dual problems

Covering: cover the vertices of a graph using as few structures as possible

Example: dominating set: covering using 1-balls (C)

 \rightarrow domination number $\gamma(G)$

Covering and packing: dual problems

Covering: cover the vertices of a graph using as few structures as possible

Example: dominating set: covering using 1-balls (C)

 \rightarrow domination number $\gamma(G)$

Packing: pack as many structures as possible without interference

Example (2): dist. 3-independent set / 2-packing: packing 1-balls without overlap \rightarrow 2-packing number $\rho_2(G)$

Covering and packing: dual problems

Covering: cover the vertices of a graph using as few structures as possible

Example: dominating set: covering using 1-balls (C)

 \rightarrow domination number $\gamma(G)$

Packing: pack as many structures as possible without interference

Example (2): dist. 3-independent set / 2-packing: packing 1-balls without overlap \rightarrow 2-packing number $\rho_2(G)$

These problems are dual (in the sense of LP) and $\rho_2(G) \leq \gamma(G)$.

Broadcast number $\gamma_b(G)$: smallest cost of a dominating broadcast of G.

Theorem (Heggernes-Lokshtanov, 2006)

We can find a minimum-cost dominating broadcast in polynomial time $O(n^6)$.

Proof idea:

- find an efficient dominating broadcast (Erwin, 2001)
- The structure of covering balls is a path or a cycle
- Dynamic programming on this structure

Definition - Multipacking of graph *G* (Brewster-Mynhardt-Teshima, 2014)

A set S of vertices s.t. for every $v \in V(G)$ and every $d \in \mathbb{N}$, the d-ball $B_d(v)$ contains at most d vertices of S.

Multipacking number mp(G): largest size of a multipacking of G.

Definition - Multipacking of graph *G* (Brewster-Mynhardt-Teshima, 2014)

A set S of vertices s.t. for every $v \in V(G)$ and every $d \in \mathbb{N}$, the d-ball $B_d(v)$ contains at most d vertices of S.

Multipacking number mp(G): largest size of a multipacking of G.

Definition - Multipacking of graph G (Brewster-Mynhardt-Teshima, 2014)

A set S of vertices s.t. for every $v \in V(G)$ and every $d \in \mathbb{N}$, the d-ball $B_d(v)$ contains at most d vertices of S.

Multipacking number mp(G): largest size of a multipacking of G.

The two problems are dual (in the sense of LP).

PropositionFor every graph G, we have $mp(G) \leq \gamma_b(G)$.

Equality holds for:

- trees (Mynhardt-Teshima, 2017)
- more generally, strongly chordal graphs (Brewster-MacGillivray-Yang, 2019)
- square grids (Beaudou-Brewster, 2018)

For any
$$G$$
, $\left\lceil \frac{diam(G)+1}{3} \right\rceil \leq mp(G) \leq \gamma_b(G) \leq rad(G) \leq diam(G)$.

For any
$$G$$
, $\left\lceil \frac{diam(G)+1}{3} \right\rceil \leq mp(G) \leq \gamma_b(G) \leq rad(G) \leq diam(G)$.

 $\gamma_b(G) \leq rad(G)$: consider a radial vertex v. Set f(v) = rad(G).

For any
$$G$$
, $\left\lceil \frac{diam(G)+1}{3} \right\rceil \leq mp(G) \leq \gamma_b(G) \leq rad(G) \leq diam(G)$.

 $\left\lceil \frac{diam(G)+1}{3} \right\rceil \leq mp(G)$: consider a diametral path P, select every third vertex.

For any
$$G$$
, $\left\lceil \frac{diam(G)+1}{3} \right\rceil \leq mp(G) \leq \gamma_b(G) \leq rad(G) \leq diam(G)$.

Corollary

For any G, we have
$$\gamma_b(G) < 3mp(G)$$
, hence $\frac{\gamma_b(G)}{mp(G)} < 3$.

Question (Hartnell-Mynhardt, 2014)

What is the largest possible ratio $\frac{\gamma_b(G)}{mp(G)}$?

Our theorem

Theorem (Beaudou, Brewster, F., Mitchell)

For any G, we have $\gamma_b(G) \leq 2mp(G) + 2$, hence $\frac{\gamma_b(G)}{mp(G)} \leq 2 + \epsilon$.

Our theorem

Theorem (Beaudou, Brewster, F., Mitchell)

For any G, we have $\gamma_b(G) \leq 2mp(G) + 2$, hence $\frac{\gamma_b(G)}{mp(G)} \leq 2 + \epsilon$.

Proof sketchLet u, v, x, y be 4 vertices with:• d(u, v) = 6k• d(x, u) = d(x, v) = 3k• $d(x, y) = 3k + 3\ell$.Then, $mp(G) \ge 2k + \ell$.

Our theorem

Lemma

Theorem (Beaudou, Brewster, F., Mitchell)

For any G, we have $\gamma_b(G) \leq 2mp(G) + 2$, hence $\frac{\gamma_b(G)}{mp(G)} \leq 2 + \epsilon$.

Proof sketch

Let u, v, x, y be 4 vertices with:

• d(u, v) = 6k • d(x, u) = d(x, v) = 3k • $d(x, y) = 3k + 3\ell$.

Then,
$$mp(G) \geq 2k + \ell$$
.

Let diam(G) = 6k + i and $rad(G) = 3k + 3\ell + j$ Apply the lemma with x, a vertex of eccentricity rad(G).

 $(0 \le i < 6 \text{ and } 0 \le j < 3)$

$$mp(G) \ge 2k + \ell$$

 $\ge rac{diam(G)}{3} + rac{rad(G)}{3} - rac{diam(G)}{6} - c$
 $\ge rac{rad(G)}{2} - c$
 $\ge rac{\gamma_b(G)}{2} - c$

Conjecture

Theorem (Beaudou, Brewster, F., Mitchell)

For any G, we have $\gamma_b(G) \leq 2mp(G) + 2$, hence $\frac{\gamma_b(G)}{mp(G)} \leq 2 + \epsilon$.

Conjecture

For any G, we have $\gamma_b(G) \leq 2mp(G)$.

Conjecture

Theorem (Beaudou, Brewster, F., Mitchell)

For any G, we have $\gamma_b(G) \leq 2mp(G) + 2$, hence $\frac{\gamma_b(G)}{mp(G)} \leq 2 + \epsilon$.

Conjecture

For any G, we have
$$\gamma_b(G) \leq 2mp(G)$$
.

Theorem (Beaudou, Brewster, F., Mitchell)

The conjecture is true when $mp(G) \leq 4$.

Conjecture

Theorem (Beaudou, Brewster, F., Mitchell)

For any G, we have $\gamma_b(G) \leq 2mp(G) + 2$, hence $\frac{\gamma_b(G)}{mp(G)} \leq 2 + \epsilon$.

Conjecture

For any G, we have
$$\gamma_b(G) \leq 2mp(G)$$
.

Theorem (Beaudou, Brewster, F., Mitchell)

The conjecture is true when $mp(G) \leq 4$.

Conjecture would be tight — infinitely many graphs G s.t. $\gamma_b(G) = 2mp(G)$:

mp(G) = 2 and $\gamma_b(G) = 4$

Connected graphs, small case

Connected graphs, small case

