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Covering and packing: dual problems

Covering: cover the vertices of a graph using as few structures as possible

Example: dominating set: covering using 1-balls
→ domination number γ(G)

Packing: pack as many structures as possible without interference

Example: dist. 3-independent set / 2-packing: packing 1-balls without overlap
→ 2-packing number ρ2(G)

These problems are dual (in the sense of LP) and ρ2(G) ≤ γ(G).
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Broadcast domination

A function f : V (G)→ N s.t. for every v ∈ V (G), there exists x ∈ V (G) with

• f (x) > 0 and • f (x) ≥ dG (x , v).

The cost of f is
∑

v∈V (G) f (v).

Broadcast number γb(G): smallest cost of a dominating broadcast of G .

De�nition - Dominating broadcast of graph G (Erwin, 2001)

1

1

1
1

1

Florent Foucaud Broadcast domination and multipacking 3 / 19



Broadcast domination

A function f : V (G)→ N s.t. for every v ∈ V (G), there exists x ∈ V (G) with

• f (x) > 0 and • f (x) ≥ dG (x , v).

The cost of f is
∑

v∈V (G) f (v).

Broadcast number γb(G): smallest cost of a dominating broadcast of G .

De�nition - Dominating broadcast of graph G (Erwin, 2001)

2
2

Florent Foucaud Broadcast domination and multipacking 3 / 19



Broadcast domination

A function f : V (G)→ N s.t. for every v ∈ V (G), there exists x ∈ V (G) with

• f (x) > 0 and • f (x) ≥ dG (x , v).

The cost of f is
∑

v∈V (G) f (v).

Broadcast number γb(G): smallest cost of a dominating broadcast of G .

De�nition - Dominating broadcast of graph G (Erwin, 2001)

3

1

Florent Foucaud Broadcast domination and multipacking 3 / 19



Broadcast domination

A function f : V (G)→ N s.t. for every v ∈ V (G), there exists x ∈ V (G) with

• f (x) > 0 and • f (x) ≥ dG (x , v).

The cost of f is
∑

v∈V (G) f (v).

Broadcast number γb(G): smallest cost of a dominating broadcast of G .

De�nition - Dominating broadcast of graph G (Erwin, 2001)

4

Florent Foucaud Broadcast domination and multipacking 3 / 19



Broadcast domination

A function f : V (G)→ N s.t. for every v ∈ V (G), there exists x ∈ V (G) with

• f (x) > 0 and • f (x) ≥ dG (x , v).

The cost of f is
∑

v∈V (G) f (v).

Broadcast number γb(G): smallest cost of a dominating broadcast of G .

De�nition - Dominating broadcast of graph G (Erwin, 2001)

3

Florent Foucaud Broadcast domination and multipacking 3 / 19



Broadcast domination: an interesting fact

We can �nd a minimum-cost dominating broadcast in polynomial time O(n6).

Theorem (Heggernes-Lokshtanov, 2006)

Proof idea:

• �nd an e�cient dominating broadcast (Erwin, 2001)

• The structure of covering balls is a path or a cycle

• Dynamic programming on this structure
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Multipacking

A set S of vertices s.t. for every v ∈ V (G) and every d ∈ N, the d-ball Bd (v)
contains at most d vertices of S .

Multipacking number mp(G): largest size of a multipacking of G .

De�nition - Multipacking of graph G (Brewster-Mynhardt-Teshima, 2014)

NOT a multipacking!
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Bounds for undirected graphs

Florent Foucaud Broadcast domination and multipacking 6 / 19



Broadcast domination and multipacking

The two problems are dual (in the sense of LP).

For every graph G , we have mp(G) ≤ γb(G).

Proposition

Equality holds for:

• trees (Mynhardt-Teshima, 2017)

• more generally, strongly chordal graphs (Brewster-MacGillivray-Yang, 2019)

• square grids (Beaudou-Brewster, 2018)
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A chain of inequalities

For any graph G ,
⌈
diam(G)+1

3

⌉
≤ mp(G) ≤ γb(G) ≤ rad(G) ≤ diam(G).

Proposition (Erwin, 2001 + Hartnell-Mynhardt, 2014)
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For any graph G ,
⌈
diam(G)+1

3

⌉
≤ mp(G) ≤ γb(G) ≤ rad(G) ≤ diam(G).

Proposition (Erwin, 2001 + Hartnell-Mynhardt, 2014)

γb(G) ≤ rad(G): consider a radial vertex v . Set f (v) = rad(G).

3
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A chain of inequalities

For any graph G ,
⌈
diam(G)+1

3

⌉
≤ mp(G) ≤ γb(G) ≤ rad(G) ≤ diam(G).

Proposition (Erwin, 2001 + Hartnell-Mynhardt, 2014)

⌈
diam(G)+1

3

⌉
≤ mp(G): consider a diametral path P, select every third vertex.
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A chain of inequalities

For any graph G ,
⌈
diam(G)+1

3

⌉
≤ mp(G) ≤ γb(G) ≤ rad(G) ≤ diam(G).

Proposition (Erwin, 2001 + Hartnell-Mynhardt, 2014)

For any graph G , we have γb(G) < 3mp(G), hence
γ
b
(G)

mp(G)
< 3.

Corollary

What is the largest possible ratio
γ
b
(G)

mp(G)
?

Question (Hartnell-Mynhardt, 2014)
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Our theorem

For any graph G , we have γb(G) ≤ 2mp(G) + 3, hence
γ
b
(G)

mp(G)
≤ 2+ ε.

Theorem (Beaudou, Brewster, F., 2018)
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Our theorem

For any graph G , we have γb(G) ≤ 2mp(G) + 3, hence
γ
b
(G)

mp(G)
≤ 2+ ε.

Theorem (Beaudou, Brewster, F., 2018)

Proof sketch

Let u, v , x , y be 4 vertices with:
• d(u, v) = 6k • d(x , u) = d(x , v) = 3k • d(x , y) = 3k + 3`.

Then, mp(G) ≥ 2k + `.

Lemma

xu v

y
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Our theorem
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Proof sketch

Let u, v , x , y be 4 vertices with:
• d(u, v) = 6k • d(x , u) = d(x , v) = 3k • d(x , y) = 3k + 3`.

Then, mp(G) ≥ 2k + `.

Lemma

Let diam(G) = 6k + i and rad(G) = 3k + 3`+ j (0 ≤ i < 6 and 0 ≤ j < 3)

Apply the lemma with x , a vertex of eccentricity rad(G).

mp(G) ≥ 2k + `

≥ diam(G)

3
+

rad(G)

3
− diam(G)

6
− c

≥ rad(G)

2
− c

≥ γb(G)

2
− c �
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Conjecture

For any graph G , we have γb(G) ≤ 2mp(G) + 3, hence
γ
b
(G)

mp(G)
≤ 2+ ε.

Theorem (Beaudou, Brewster, F., 2018)

For any graph G , we have γb(G) ≤ 2mp(G).

Conjecture

The conjecture is true when mp(G) ≤ 4.

Theorem (Beaudou, Brewster, F., 2018)

Conjecture would be tight � in�nitely many graphs G s.t. γb(G) = 2mp(G):

mp(G) = 2 and γb(G) = 4
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Connected graphs, general case

For any graph G , we have γb(G) ≤ 2mp(G).

Conjecture

What happens for connected graphs?

Question

Closest known connected family: γb(G) = 4
3
mp(G) (Hartnell-Mynhardt, 2014)

4

Here: mp(G) = 3 and γb(G) = 4.
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Connected graphs, small case

For any graph G , we have γb(G) ≤ 2mp(G).

Conjecture

What happens for connected graphs?

Question

There is a connected graph G of order 24 with mp(G) = 3 and γb(G) = 5.

Proposition

Is there a connected graph G with mp(G) = 3 and γb(G) = 6?

Question
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Complexity & Algorithms for directed graphs
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Broadcast domination in directed graphs

Broadcast domination for directed graphs:

A vertex v with f (v) = r broadcasts to all vertices at directed distance up to r .
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Broadcast domination in directed graphs

Note: an undirected graph can be seen as a symmetric directed graph!

Broadcast domination for directed graphs:

A vertex v with f (v) = r broadcasts to all vertices at directed distance up to r .

Florent Foucaud Broadcast domination and multipacking 14 / 19



Broadcast domination in directed graphs

1

2

2

Broadcast domination for directed graphs:

A vertex v with f (v) = r broadcasts to all vertices at directed distance up to r .
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Complexity of Broadcast domination

BROADCAST DOM
Input: A (directed) graph G , an integer k.
Question: Does G have a dominating broadcast of cost at most k?

BROADCAST DOM can be solved in polynomial time O(n6) for undirected graphs.

Theorem (Heggernes-Lokshtanov, 2006)

BROADCAST DOM is NP-hard and W [2]-hard: likely no algorithm of the form
f (k)poly(n), for any computable function f .

Theorem (F., Gras, Perez, Sikora, 2019)

Proof: Reductions from SET COVER.

t1
i

t2
i

T1

T2

X

V0
i

V1
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Complexity for BROADCAST DOM

BROADCAST DOM
Input: A (directed) graph G , an integer k.
Question: Does G have a dominating broadcast of cost at most k?

BROADCAST DOM is NP-hard and W [2]-hard: likely no algorithm of the form
f (k)poly(n), for any computable function f .

Theorem (F., Gras, Perez, Sikora, 2019)

There is an O(ckn)-time algorithm for BROADCAST DOM for directed acyclic
graphs.

Theorem (F., Gras, Perez, Sikora, 2019)

There is a linear-time algorithm for BROADCAST DOM on single-source layered
directed graphs.

Theorem (F., Gras, Perez, Sikora, 2019)
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Complexity of Multipacking

MULTIPACKING
Input: A (directed) graph G , an integer k.
Question: Does G have a multipacking of size at least k?

(Note: OPEN for undirected graphs.)

MULTIPACKING is NP-hard and W [1]-hard: likely no algorithm of the form
f (k)poly(n), for any computable function f .

Theorem (F., Gras, Perez, Sikora, 2019)

Proof: Reduction from INDEPENDENT SET.

V1 Vk

V ′
k

V ′
1

E1,2 E2,k Ek−1,k
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Complexity of Multipacking

MULTIPACKING is NP-hard and W [1]-hard: likely no algorithm of the form
f (k)poly(n), for any computable function f .

Theorem (F., Gras, Perez, Sikora, 2019)

There is a linear-time algorithm for MULTIPACKING on single-source layered di-
rected graphs.

Theorem (F., Gras, Perez, Sikora, 2019)
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Open questions

Bounds:

• Is the conjecture true that for any undirected graph G , γb(G) ≤ 2mp(G)?

• What is a tight bound for connected undirected graphs? γb(G) ≤ 4
3
mp(G)?

• What about directed graphs?

Complexity:

• Is MULTIPACKING NP-hard on undirected graphs?

• Complexity of both problems on oriented trees?

Thanks!
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