Broadcast domination and multipacking in graphs and digraphs

Florent Foucaud (Université Clermont Auvergne, France)

joint works with:

Laurent Beaudou (Université Clermont Auvergne, France) Richard C. Brewster (Thompson Rivers University, Canada)

Benjamin Gras (Université d'Orléans, France) Anthony Perez (Université d'Orléans, France) Florian Sikora (Université Paris-Dauphine, France)

Sandip Das (Indian Statistical Institute, India) Sk Samim Islam (Indian Statistical Institute, India)

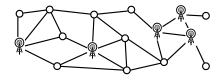
Joydeep Mukherjee (Ramakrishna Mission Vivekananda Edu. and Res. Institute, India)

Covering and packing: dual problems

Covering: cover the vertices of a graph using as few structures as possible

Example: dominating set: covering using 1-balls

 \rightarrow domination number $\gamma(G)$

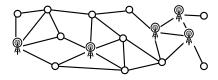


Covering and packing: dual problems

Covering: cover the vertices of a graph using as few structures as possible

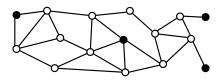
Example: dominating set: covering using 1-balls

 \rightarrow domination number $\gamma(G)$



Packing: pack as many structures as possible without interference

Example: dist. 3-independent set / 2-packing: packing 1-balls without overlap \rightarrow 2-packing number $\rho_2(G)$

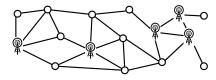


Covering and packing: dual problems

Covering: cover the vertices of a graph using as few structures as possible

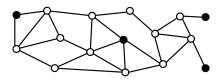
Example: dominating set: covering using 1-balls

 \rightarrow domination number $\gamma(G)$



Packing: pack as many structures as possible without interference

Example: dist. 3-independent set / 2-packing: packing 1-balls without overlap \rightarrow 2-packing number $\rho_2(G)$



These problems are dual (in the sense of LP) and $\rho_2(G) \leq \gamma(G)$.

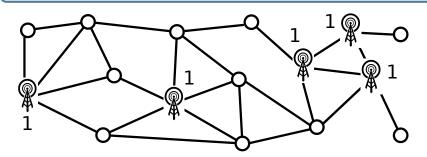
Definition - Dominating broadcast of graph *G* (Erwin, 2001)

A function $f:V(G)\to\mathbb{N}$ s.t. for every $v\in V(G)$, there exists $x\in V(G)$ with

•
$$f(x) > 0$$
 and • $f(x) \ge d_G(x, v)$.

•
$$f(x) \geq d_G(x, v)$$

The cost of f is $\sum_{v \in V(G)} f(v)$.



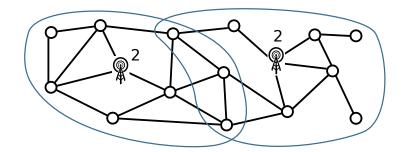
Definition - Dominating broadcast of graph G (Erwin, 2001)

A function $f:V(G)\to\mathbb{N}$ s.t. for every $v\in V(G)$, there exists $x\in V(G)$ with

•
$$f(x) > 0$$
 and • $f(x) \ge d_G(x, v)$.

•
$$f(x) \geq d_G(x, v)$$

The cost of f is $\sum_{v \in V(G)} f(v)$.



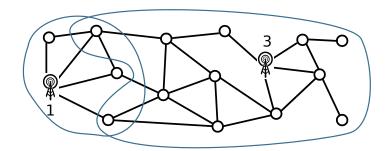
Definition - Dominating broadcast of graph *G* (Erwin, 2001)

A function $f:V(G)\to\mathbb{N}$ s.t. for every $v\in V(G)$, there exists $x\in V(G)$ with

•
$$f(x) > 0$$
 and • $f(x) \ge d_G(x, v)$.

•
$$f(x) \geq d_G(x, v)$$

The cost of f is $\sum_{v \in V(G)} f(v)$.



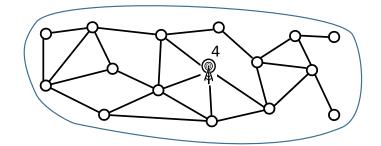
Definition - Dominating broadcast of graph *G* (Erwin, 2001)

A function $f:V(G)\to\mathbb{N}$ s.t. for every $v\in V(G)$, there exists $x\in V(G)$ with

•
$$f(x) > 0$$
 and • $f(x) \ge d_G(x, v)$.

•
$$f(x) \geq d_G(x, v)$$

The cost of f is $\sum_{v \in V(G)} f(v)$.



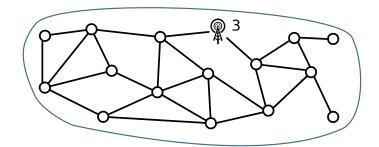
Definition - Dominating broadcast of graph *G* (Erwin, 2001)

A function $f:V(G)\to\mathbb{N}$ s.t. for every $v\in V(G)$, there exists $x\in V(G)$ with

•
$$f(x) > 0$$
 and • $f(x) \ge d_G(x, v)$.

•
$$f(x) \geq d_G(x, v)$$

The cost of f is $\sum_{v \in V(G)} f(v)$.



Broadcast domination: an interesting fact

Theorem (Heggernes-Lokshtanov, 2006)

We can find a minimum-cost dominating broadcast in polynomial time $O(n^6)$.

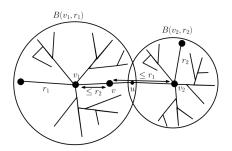
Proof idea:

- sufficient to find an efficient dominating broadcast (Erwin, 2001)
- The structure of broadcasting balls is a path or a cycle
- Dynamic programming on this structure

The broadcasting balls may be pairwise disjoint (efficient broadcast)

Lemma (Erwin, 2001)

In an optimum broadcast which minimizes the number of broadcasting balls, no two balls intersect.



Assume $r_1 \geq r_2$ and let u be in $B(v_1, r_1) \cap B(v_2, r_2)$.

Let u be the vertex on the shortest $v_1 - v$ path at distance r_2 from v_1 .

 \rightarrow Replace $B(v_1, r_1)$ and $B(v_2, r_2)$ by $B(u, r_1 + r_2)$.

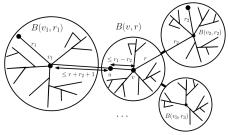
Image credit: Behsaz-Salavatipour, 2015

The structure of covering balls is a path or a cycle

Domination graph has broadcasting balls as vertex set, and two balls are adjacent IFF there is an edge joining some vertices of the balls in G.

Lemma (Heggernes-Lokshtanov, 2006)

In an optimum efficient broadcast which minimizes the number of broadcasting balls, every ball has maximum degree 2 in the domination graph.



Assume $r_1 \ge r_2 \ge r_3$.

u: vertex on shortest $v - v_1$ path at distance min $\{r_1 + r + 1, r_1 - r_2\}$ from v.

 \rightarrow Replace the four balls by $B(u, r + r_1 + r_2 + 1)$.

Image credit: Behsaz-Salavatipour, 2015

Broadcast domination: ILP formulation

Vertices: v_1, \ldots, v_n .

 $x_{i,k} \in \{0,1\}$: whether vertex v_i broadcasts with radius k

We want to minimize:

$$\sum_{k=1}^n \sum_{i=1}^n k \cdot x_{i,k}$$

subject to:

$$\sum_{d(v_i,v_j) \le k} x_{i,k} \ge 1$$
 for each vertex v_j .

Broadcast domination: ILP formulation

Vertices: v_1, \ldots, v_n .

 $x_{i,k} \in \{0,1\}$: whether vertex v_i broadcasts with radius k

We want to minimize:

$$\sum_{k=1}^{n} \sum_{i=1}^{n} k \cdot x_{i,k}$$

subject to:

$$\sum_{d(v_i,v_j) \leq k} x_{i,k} \geq 1$$
 for each vertex v_j .

Dual ILP:

We want to maximize:

$$\sum_{i=1}^n y_i$$

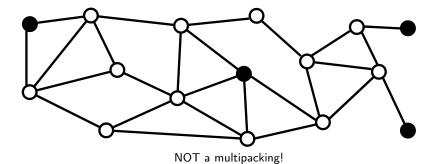
subject to:

$$\sum_{d(v_i,v_j) \le k, y_j \ge 0} y_i \le k \text{ for each vertex } v_j \text{ and integer } k \le n.$$

Definition - Multipacking of graph *G* (Brewster-Mynhardt-Teshima, 2014)

A set S of vertices s.t. for every $v \in V(G)$ and every $d \in \mathbb{N}$, the d-ball $B_d(v)$ contains at most d vertices of S.

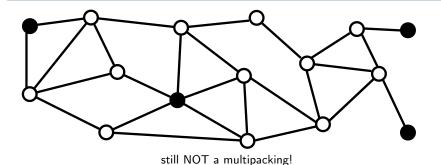
Multipacking number mp(G): largest size of a multipacking of G.



Definition - Multipacking of graph *G* (Brewster-Mynhardt-Teshima, 2014)

A set S of vertices s.t. for every $v \in V(G)$ and every $d \in \mathbb{N}$, the d-ball $B_d(v)$ contains at most d vertices of S.

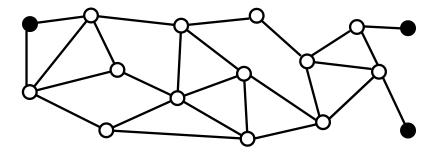
Multipacking number mp(G): largest size of a multipacking of G.



Definition - Multipacking of graph *G* (Brewster-Mynhardt-Teshima, 2014)

A set S of vertices s.t. for every $v \in V(G)$ and every $d \in \mathbb{N}$, the d-ball $B_d(v)$ contains at most d vertices of S.

Multipacking number mp(G): largest size of a multipacking of G.



Definition - Multipacking of graph *G* (Brewster-Mynhardt-Teshima, 2014)

A set S of vertices s.t. for every $v \in V(G)$ and every $d \in \mathbb{N}$, the d-ball $B_d(v)$ contains at most d vertices of S.

Multipacking number mp(G): largest size of a multipacking of G.

Open question

Can one compute a maximum-size multipacking in polynomial time?

Bounds for undirected graphs : general graphs

Broadcast domination and multipacking

The two problems are dual (in the sense of LP).

Proposition

For every graph G, we have $mp(G) \leq \gamma_b(G)$.

Equality holds for:

- trees (Mynhardt-Teshima, 2017)
- more generally, strongly chordal graphs (Brewster-MacGillivray-Yang, 2019)
- rectangular grids (Beaudou-Brewster, 2019)

diameter diam(G): largest distance between two vertices in G eccentricity of a vertex v: largest possible distance from v to another vertex radius rad(G): smallest eccentricity among all vertices

Proposition (Erwin, 2001 + Hartnell-Mynhardt, 2014)

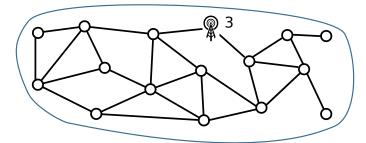
For any graph G, $\left\lceil \frac{diam(G)+1}{3} \right\rceil \leq mp(G) \leq \gamma_b(G) \leq rad(G) \leq diam(G)$.

diameter diam(G): largest distance between two vertices in G eccentricity of a vertex v: largest possible distance from v to another vertex radius rad(G): smallest eccentricity among all vertices

Proposition (Erwin, 2001 + Hartnell-Mynhardt, 2014)

For any graph
$$G$$
, $\left\lceil \frac{diam(G)+1}{3} \right\rceil \leq mp(G) \leq \gamma_b(G) \leq rad(G) \leq diam(G)$.

 $\gamma_b(G) \leq rad(G)$: consider a radial vertex v. Set f(v) = rad(G).

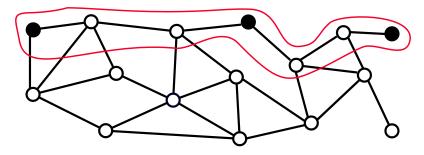


diameter diam(G): largest distance between two vertices in G eccentricity of a vertex v: largest possible distance from v to another vertex radius rad(G): smallest eccentricity among all vertices

Proposition (Erwin, 2001 + Hartnell-Mynhardt, 2014)

For any graph
$$G$$
, $\left\lceil \frac{diam(G)+1}{3} \right\rceil \leq mp(G) \leq \gamma_b(G) \leq rad(G) \leq diam(G)$.

 $\left\lceil \frac{diam(G)+1}{3} \right\rceil \leq mp(G)$: consider a diametral path P, select every third vertex.



diameter diam(G): largest distance between two vertices in G eccentricity of a vertex v: largest possible distance from v to another vertex radius rad(G): smallest eccentricity among all vertices

Proposition (Erwin, 2001 + Hartnell-Mynhardt, 2014)

For any graph
$$G$$
, $\left\lceil \frac{diam(G)+1}{3} \right\rceil \leq mp(G) \leq \gamma_b(G) \leq rad(G) \leq diam(G)$.

Corollary

For any graph G, we have $\gamma_b(G) < 3mp(G)$, hence $\frac{\gamma_b(G)}{mp(G)} < 3$.

Question (Hartnell-Mynhardt, 2014)

What is the largest possible ratio $\frac{\gamma_b(G)}{mp(G)}$?

Our theorem

Theorem (Beaudou, Brewster, F., 2019)

For any graph G, we have $\gamma_b(G) \leq 2mp(G) + 3$, hence $\frac{\gamma_b(G)}{mp(G)} \leq 2 + \epsilon$.

Our theorem

Theorem (Beaudou, Brewster, F., 2019)

For any graph G, we have $\gamma_b(G) \leq 2mp(G) + 3$, hence $\frac{\gamma_b(G)}{mp(G)} \leq 2 + \epsilon$.

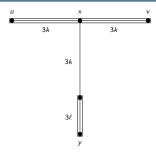
Lemma

Proof sketch

Let u, v, x, y be 4 vertices with:

- d(u, v) = 6k d(x, u) = d(x, v) = 3k $d(x, y) = 3k + 3\ell$.

Then, $mp(G) \geq 2k + \ell$.



Our theorem

Theorem (Beaudou, Brewster, F., 2019)

For any graph G, we have $\gamma_b(G) \leq 2mp(G) + 3$, hence $\frac{\gamma_b(G)}{mp(G)} \leq 2 + \epsilon$.

Lemma

Proof sketch

Let u, v, x, y be 4 vertices with:

•
$$d(u, v) = 6$$

•
$$d(u, v) = 6k$$
 • $d(x, u) = d(x, v) = 3k$ • $d(x, y) = 3k + 3\ell$.

$$d(x,y) = 3k + 3\ell.$$

Then,
$$mp(G) \ge 2k + \ell$$
.

Let
$$diam(G) = 6k + i$$
 and $rad(G) = 3k + 3\ell + j$

 $(0 \le i \le 6 \text{ and } 0 \le i \le 3)$

Apply the lemma with x, a vertex of eccentricity rad(G).

$$mp(G) \ge 2k + \ell$$

$$\ge \frac{diam(G)}{3} + \frac{rad(G)}{3} - \frac{diam(G)}{6} - c$$

$$\ge \frac{rad(G)}{2} - c$$

$$\ge \frac{\gamma_b(G)}{3} - c$$

Conjecture

Theorem (Beaudou, Brewster, F., 2019)

For any graph G, we have $\gamma_b(G) \leq 2mp(G) + 3$, hence $\frac{\gamma_b(G)}{mp(G)} \leq 2 + \epsilon$.

Conjecture

For any graph G, we have $\gamma_b(G) \leq 2mp(G)$.

Conjecture

Theorem (Beaudou, Brewster, F., 2019)

For any graph G, we have $\gamma_b(G) \leq 2mp(G) + 3$, hence $\frac{\gamma_b(G)}{mp(G)} \leq 2 + \epsilon$.

Conjecture

For any graph G, we have $\gamma_b(G) \leq 2mp(G)$.

Theorem (Beaudou, Brewster, F., 2019)

The conjecture is true when $mp(G) \leq 4$.

Conjecture

Theorem (Beaudou, Brewster, F., 2019)

For any graph G, we have $\gamma_b(G) \leq 2mp(G) + 3$, hence $\frac{\gamma_b(G)}{mp(G)} \leq 2 + \epsilon$.

Conjecture

For any graph G, we have $\gamma_b(G) \leq 2mp(G)$.

Theorem (Beaudou, Brewster, F., 2019)

The conjecture is true when $mp(G) \leq 4$.

Conjecture would be tight — infinitely many graphs G s.t. $\gamma_b(G) = 2mp(G)$:

$$mp(G) = 2$$
 and $\gamma_b(G) = 4$

Connected graphs

Conjecture

For any graph G, we have $\gamma_b(G) \leq 2mp(G)$.

Question

What happens for connected graphs?

Connected graphs

Conjecture

For any graph G, we have $\gamma_b(G) \leq 2mp(G)$.

Question

What happens for connected graphs?

Theorem (Brešar, Špacapan, 2019)

For the hypercube H_d : $\gamma_b(H_d) = d - 1$.

Theorem (Rajendraprasad, Sani, Sasidharan, Sen, 2025+)

For the hypercube H_d : $\lfloor \frac{d}{2} \rfloor \leq mp(H_d) \leq \frac{d}{2} + 6\sqrt{2d}$.

Connected graphs

Conjecture

For any graph G, we have $\gamma_b(G) \leq 2mp(G)$.

Question

What happens for connected graphs?

Theorem (Brešar, Špacapan, 2019)

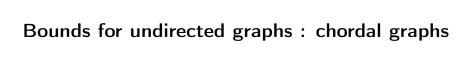
For the hypercube H_d : $\gamma_b(H_d) = d - 1$.

Theorem (Rajendraprasad, Sani, Sasidharan, Sen, 2025+)

For the hypercube H_d : $\lfloor \frac{d}{2} \rfloor \leq mp(H_d) \leq \frac{d}{2} + 6\sqrt{2d}$.

Corollary

For connected graphs G, $\lim_{mp(G)\to\infty}\sup\left\{\frac{\gamma_b(G)}{mp(G)}\right\}=2.$



Chordal graphs

Chordal graph: graph where every cycle of length 4 or more has a chord

Proposition

If G is a chordal graph,
$$\gamma_b(G) \leq \left\lceil \frac{3}{2} mp(G) \right\rceil$$
.

Chordal graphs

Chordal graph: graph where every cycle of length 4 or more has a chord

Proposition

If G is a chordal graph,
$$\gamma_b(G) \leq \left\lceil \frac{3}{2} mp(G) \right\rceil$$
.

This can be proved using the following two theorems:

Theorem (Laskar, Shier, 1983)

If G is a chordal graph with radius r and diameter d, then $2r \le d + 2$.

Theorem (Erwin 2001 & Hartnell-Mynhardt 2014)

If G is a connected graph of order at least 2 having radius r, diameter d, multipacking number mp(G), broadcast domination number $\gamma_b(G)$ and domination number $\gamma(G)$, then $\left\lceil \frac{d+1}{3} \right\rceil \leq mp(G) \leq \gamma_b(G) \leq min\{\gamma(G), r\}$.

Bound for chordal graphs

Theorem (Das, F., Islam, Mukherjee, 2023)

For connected chordal graphs G, $\frac{10}{9} \leq \lim_{mp(G) \to \infty} \sup \left\{ \frac{\gamma_b(G)}{mp(G)} \right\} \leq \frac{3}{2}$.

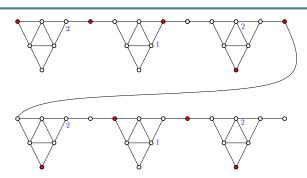
Bound for chordal graphs

Theorem (Das, F., Islam, Mukherjee, 2023)

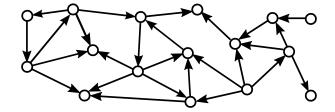
For connected chordal graphs G, $\frac{10}{9} \leq \lim_{mp(G) \to \infty} \sup \left\{ \frac{\gamma_b(G)}{mp(G)} \right\} \leq \frac{3}{2}$.

Lemma

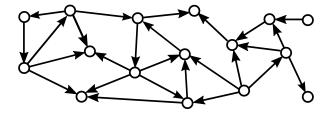
$$mp(G_{2k}) \leq 9k \text{ and } \gamma_b(G_{2k}) = 10k.$$



Broadcast domination in directed graphs

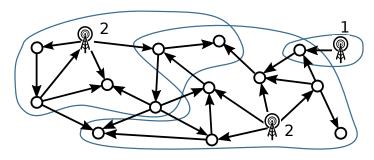


Broadcast domination in directed graphs



Note: an undirected graph can be seen as a symmetric directed graph!

Broadcast domination in directed graphs



Broadcast domination for directed graphs:

A vertex v with f(v) = r broadcasts to all vertices at directed distance up to r.

Complexity of Broadcast domination

BROADCAST DOM

Input: A (directed) graph G, an integer k.

Question: Does G have a dominating broadcast of cost at most k?

Theorem (Heggernes-Lokshtanov, 2006)

BROADCAST DOM can be solved in polynomial time $O(n^6)$ for **undirected graphs**.

Complexity of Broadcast domination

BROADCAST DOM

Input: A (directed) graph G, an integer k.

Question: Does G have a dominating broadcast of cost at most k?

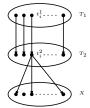
Theorem (Heggernes-Lokshtanov, 2006)

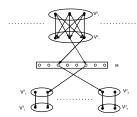
BROADCAST DOM can be solved in polynomial time $O(n^6)$ for undirected graphs.

Theorem (F., Gras, Perez, Sikora, 2020)

BROADCAST DOM is NP-hard and W[2]-hard: likely no algorithm of the form f(k)poly(n), for any computable function f.

Proof: Reductions from SET COVER.





Complexity for BROADCAST DOM (2)

BROADCAST DOM

Input: A (directed) graph G, an integer k.

Question: Does G have a dominating broadcast of cost at most k?

Theorem (F., Gras, Perez, Sikora, 2020)

BROADCAST DOM is NP-hard and W[2]-hard: likely no algorithm of the form f(k)poly(n), for any computable function f.

Complexity for BROADCAST DOM (2)

BROADCAST DOM

Input: A (directed) graph G, an integer k.

Question: Does G have a dominating broadcast of cost at most k?

Theorem (F., Gras, Perez, Sikora, 2020)

BROADCAST DOM is NP-hard and W[2]-hard: likely no algorithm of the form f(k)poly(n), for any computable function f.

Theorem (F., Gras, Perez, Sikora, 2020)

 $k^{O(k)}$ n-time algorithm for BROADCAST DOM for directed acyclic graphs.

Proof:

Lemma: There always exists an optimal broadcast where each broadcasting vertex is covered only by itself.

 \rightarrow iterative branching, starting from the sources.

Complexity for BROADCAST DOM (3)

BROADCAST DOM

Input: A (directed) graph G, an integer k.

Question: Does G have a dominating broadcast of cost at most k?

Theorem (F., Gras, Perez, Sikora, 2020)

BROADCAST DOM is NP-hard and W[2]-hard: likely no algorithm of the form f(k)poly(n), for any computable function f.

Complexity for BROADCAST DOM (3)

BROADCAST DOM

Input: A (directed) graph G, an integer k.

Question: Does G have a dominating broadcast of cost at most k?

Theorem (F., Gras, Perez, Sikora, 2020)

BROADCAST DOM is NP-hard and W[2]-hard: likely no algorithm of the form f(k)poly(n), for any computable function f.

Theorem (F., Gras, Perez, Sikora, 2020)

There is a linear-time algorithm for BROADCAST DOM on single-source layered directed graphs.

Proof:

Lemma: there always exists an optimal broadcast where the broadcasting vertices are all in layers of size 1, and no vertex is covered twice.

 \rightarrow Easy top-down procedure.

Complexity for BROADCAST DOM (4)

BROADCAST DOM

Input: A (directed) graph G, an integer k.

Question: Does G have a dominating broadcast of cost at most k?

Theorem (F., Gras, Perez, Sikora, 2020)

BROADCAST DOM is NP-hard and W[2]-hard: likely no algorithm of the form f(k)poly(n), for any computable function f.

Complexity for BROADCAST DOM (4)

BROADCAST DOM

Input: A (directed) graph G, an integer k.

Question: Does G have a dominating broadcast of cost at most k?

Theorem (F., Gras, Perez, Sikora, 2020)

BROADCAST DOM is NP-hard and W[2]-hard: likely no algorithm of the form f(k)poly(n), for any computable function f.

Theorem (F., Gras, Perez, Sikora, 2020)

BROADCAST DOM is FPT parameterized by solution cost k and max. degree d.

Proof:

A YES-instance has at most $k(k+1)d^k$ vertices.

Complexity of Multipacking

MULTIPACKING

Input: A (directed) graph G, an integer k.

Question: Does G have a multipacking of size at least k?

(Note: OPEN for undirected graphs.)

Complexity of Multipacking

MULTIPACKING

Input: A (directed) graph G, an integer k.

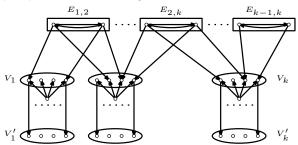
Question: Does G have a multipacking of size at least k?

(Note: OPEN for undirected graphs.)

Theorem (F., Gras, Perez, Sikora, 2020)

MULTIPACKING is NP-hard and W[1]-hard: likely no algorithm of the form f(k)poly(n), for any computable function f.

Proof: Reduction from INDEPENDENT SET.



Complexity of Multipacking (2)

MULTIPACKING

Input: A (directed) graph G, an integer k.

Question: Does G have a multipacking of size at least k?

Theorem (F., Gras, Perez, Sikora, 2020)

MULTIPACKING is NP-hard and W[1]-hard: likely no algorithm of the form f(k)poly(n), for any computable function f.

Complexity of Multipacking (2)

MULTIPACKING

Input: A (directed) graph G, an integer k.

Question: Does G have a multipacking of size at least k?

Theorem (F., Gras, Perez, Sikora, 2020)

MULTIPACKING is NP-hard and W[1]-hard: likely no algorithm of the form f(k)poly(n), for any computable function f.

Theorem (F., Gras, Perez, Sikora, 2020)

There is a linear-time algorithm for MULTIPACKING on single-source layered directed graphs.

Proof:

Lemma: There always exists an optimal multipacking that intersects each layer at most once.

→ Bottom-up dynamic programming.

Complexity of Multipacking (3)

MULTIPACKING

Input: A (directed) graph G, an integer k.

Question: Does G have a multipacking of size at least k?

Theorem (F., Gras, Perez, Sikora, 2020)

MULTIPACKING is NP-hard and W[1]-hard: likely no algorithm of the form f(k)poly(n), for any computable function f.

Complexity of Multipacking (3)

MULTIPACKING

Input: A (directed) graph G, an integer k.

Question: Does G have a multipacking of size at least k?

Theorem (F., Gras, Perez, Sikora, 2020)

MULTIPACKING is NP-hard and W[1]-hard: likely no algorithm of the form f(k)poly(n), for any computable function f.

Theorem (F., Gras, Perez, Sikora, 2020)

MULTIPACKING is FPT parameterized by solution cost k and max. degree d.

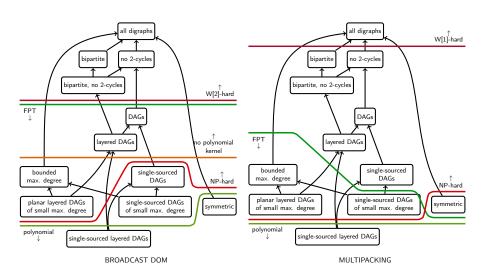
Proof:

If G has a path of length 3k - 3: return YES.

If there is a *minimum absorbing set* of size k (computable by reduction to HITTING SET): return YES.

Otherwise: the instance has at most $d^{O(k)}$ vertices.

Complexity landscapes



Open questions

Bounds:

- Is the conjecture true that for any undirected graph G, $\gamma_b(G) \leq 2mp(G)$?
- Better bounds for the multipacking number of the hypercube H_d ?
- What is a tight bound for connected undirected chordal graphs? $\gamma_b(G) \leq \frac{10}{9} mp(G)$?
- What about directed graphs?

Complexity:

- Is MULTIPACKING NP-hard on undirected graphs?
- Is MULTIPACKING FPT (par. by solution size) for DAGs?
- Complexity of both problems on oriented trees?

Open questions

Bounds:

- Is the conjecture true that for any undirected graph G, $\gamma_b(G) \leq 2mp(G)$?
- Better bounds for the multipacking number of the hypercube H_d ?
- What is a tight bound for connected undirected chordal graphs? $\gamma_b(G) \leq \frac{10}{9} mp(G)$?
- What about directed graphs?

Complexity:

- Is MULTIPACKING NP-hard on undirected graphs?
- Is MULTIPACKING FPT (par. by solution size) for DAGs?
- Complexity of both problems on oriented trees?

Thanks!