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Covering and packing: dual problems

Covering: cover the vertices of a graph using as few structures as possible

Example: dominating set: covering using 1-balls
→ domination number γ(G)

Packing: pack as many structures as possible without interference

Example: dist. 3-independent set / 2-packing: packing 1-balls without overlap
→ 2-packing number ρ2(G)

These problems are dual (in the sense of LP) and ρ2(G) ≤ γ(G).
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Broadcast domination

A function f : V (G) → N s.t. for every v ∈ V (G), there exists x ∈ V (G) with

• f (x) > 0 and • f (x) ≥ dG (x , v).

The cost of f is
∑

v∈V (G) f (v).

Broadcast number γb(G): smallest cost of a dominating broadcast of G .

Definition - Dominating broadcast of graph G (Erwin, 2001)
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Broadcast domination: an interesting fact

We can find a minimum-cost dominating broadcast in polynomial time O(n6).

Theorem (Heggernes-Lokshtanov, 2006)

Proof idea:

• sufficient to find an efficient dominating broadcast (Erwin, 2001)

• The structure of broadcasting balls is a path or a cycle

• Dynamic programming on this structure

Florent Foucaud Broadcast domination and multipacking in (di)graphs 6 / 30



The broadcasting balls may be pairwise disjoint (efficient broadcast)

In an optimum broadcast which minimizes the number of broadcasting balls, no two
balls intersect.

Lemma (Erwin, 2001)

Assume r1 ≥ r2 and let u be in B(v1, r1) ∩ B(v2, r2).

Let u be the vertex on the shortest v1 − v path at distance r2 from v1.

→ Replace B(v1, r1) and B(v2, r2) by B(u, r1 + r2).

Image credit: Behsaz-Salavatipour, 2015
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The structure of covering balls is a path or a cycle

Domination graph has broadcasting balls as vertex set, and two balls are adjacent IFF
there is an edge joining some vertices of the balls in G .

In an optimum efficient broadcast which minimizes the number of broadcasting
balls, every ball has maximum degree 2 in the domination graph.

Lemma (Heggernes-Lokshtanov, 2006)

Assume r1 ≥ r2 ≥ r3.

u : vertex on shortest v − v1 path at distance min{r1 + r + 1, r1 − r2} from v .

→ Replace the four balls by B(u, r + r1 + r2 + 1).

Image credit: Behsaz-Salavatipour, 2015
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Broadcast domination: ILP formulation

Vertices: v1, . . . , vn.

xi,k ∈ {0, 1}: whether vertex vi broadcasts with radius k

We want to minimize:

n∑
k=1

n∑
i=1

k · xi,k

subject to: ∑
d(vi ,vj )≤k

xi,k ≥ 1 for each vertex vj .

Dual ILP:

We want to maximize:

n∑
i=1

yi

subject to: ∑
d(vi ,vj )≤k,yj≥0

yi ≤ k for each vertex vj and integer k ≤ n.
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Multipacking

A set S of vertices s.t. for every v ∈ V (G) and every d ∈ N, the d-ball Bd(v)
contains at most d vertices of S .

Multipacking number mp(G): largest size of a multipacking of G .

Definition - Multipacking of graph G (Brewster-Mynhardt-Teshima, 2014)

NOT a multipacking!
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Multipacking

A set S of vertices s.t. for every v ∈ V (G) and every d ∈ N, the d-ball Bd(v)
contains at most d vertices of S .

Multipacking number mp(G): largest size of a multipacking of G .

Definition - Multipacking of graph G (Brewster-Mynhardt-Teshima, 2014)

Can one compute a maximum-size multipacking in polynomial time?

Open question
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Bounds for undirected graphs : general graphs
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Broadcast domination and multipacking

The two problems are dual (in the sense of LP).

For every graph G , we have mp(G) ≤ γb(G).

Proposition

Equality holds for:

• trees (Mynhardt-Teshima, 2017)

• more generally, strongly chordal graphs (Brewster-MacGillivray-Yang, 2019)

• rectangular grids (Beaudou-Brewster, 2019)
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A chain of inequalities

diameter diam(G): largest distance between two vertices in G

eccentricity of a vertex v : largest possible distance from v to another vertex
radius rad(G): smallest eccentricity among all vertices

For any graph G ,
⌈

diam(G)+1
3

⌉
≤ mp(G) ≤ γb(G) ≤ rad(G) ≤ diam(G).

Proposition (Erwin, 2001 + Hartnell-Mynhardt, 2014)
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⌈

diam(G)+1
3

⌉
≤ mp(G) ≤ γb(G) ≤ rad(G) ≤ diam(G).

Proposition (Erwin, 2001 + Hartnell-Mynhardt, 2014)

γb(G) ≤ rad(G): consider a radial vertex v . Set f (v) = rad(G).

3
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A chain of inequalities

diameter diam(G): largest distance between two vertices in G

eccentricity of a vertex v : largest possible distance from v to another vertex
radius rad(G): smallest eccentricity among all vertices

For any graph G ,
⌈

diam(G)+1
3

⌉
≤ mp(G) ≤ γb(G) ≤ rad(G) ≤ diam(G).

Proposition (Erwin, 2001 + Hartnell-Mynhardt, 2014)

⌈
diam(G)+1

3

⌉
≤ mp(G): consider a diametral path P, select every third vertex.
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A chain of inequalities

diameter diam(G): largest distance between two vertices in G

eccentricity of a vertex v : largest possible distance from v to another vertex
radius rad(G): smallest eccentricity among all vertices

For any graph G ,
⌈

diam(G)+1
3

⌉
≤ mp(G) ≤ γb(G) ≤ rad(G) ≤ diam(G).

Proposition (Erwin, 2001 + Hartnell-Mynhardt, 2014)

For any graph G , we have γb(G) < 3mp(G), hence γb(G)
mp(G)

< 3.

Corollary

What is the largest possible ratio γb(G)
mp(G)

?

Question (Hartnell-Mynhardt, 2014)
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Our theorem

For any graph G , we have γb(G) ≤ 2mp(G) + 3, hence γb(G)
mp(G)

≤ 2 + ϵ.

Theorem (Beaudou, Brewster, F., 2019)
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Our theorem

For any graph G , we have γb(G) ≤ 2mp(G) + 3, hence γb(G)
mp(G)

≤ 2 + ϵ.

Theorem (Beaudou, Brewster, F., 2019)

Proof sketch

Let u, v , x , y be 4 vertices with:
• d(u, v) = 6k • d(x , u) = d(x , v) = 3k • d(x , y) = 3k + 3ℓ.

Then, mp(G) ≥ 2k + ℓ.

Lemma

xu v

y

3k 3k

3k

3ℓ
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Proof sketch

Let u, v , x , y be 4 vertices with:
• d(u, v) = 6k • d(x , u) = d(x , v) = 3k • d(x , y) = 3k + 3ℓ.

Then, mp(G) ≥ 2k + ℓ.

Lemma

Let diam(G) = 6k + i and rad(G) = 3k + 3ℓ+ j (0 ≤ i < 6 and 0 ≤ j < 3)

Apply the lemma with x , a vertex of eccentricity rad(G).

mp(G) ≥ 2k + ℓ

≥ diam(G)

3
+

rad(G)

3
− diam(G)

6
− c

≥ rad(G)

2
− c

≥ γb(G)

2
− c □
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Conjecture

For any graph G , we have γb(G) ≤ 2mp(G) + 3, hence γb(G)
mp(G)

≤ 2 + ϵ.

Theorem (Beaudou, Brewster, F., 2019)

For any graph G , we have γb(G) ≤ 2mp(G).

Conjecture

The conjecture is true when mp(G) ≤ 4.

Theorem (Beaudou, Brewster, F., 2019)

Conjecture would be tight — infinitely many graphs G s.t. γb(G) = 2mp(G):

mp(G) = 2 and γb(G) = 4
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Connected graphs

For any graph G , we have γb(G) ≤ 2mp(G).

Conjecture

What happens for connected graphs?

Question

For the hypercube Hd : γb(Hd) = d − 1.

Theorem (Brešar, Špacapan, 2019)

For the hypercube Hd : ⌊ d
2 ⌋ ≤ mp(Hd) ≤ d

2 + 6
√

2d .

Theorem (Rajendraprasad, Sani, Sasidharan, Sen, 2025+)

For connected graphs G , limmp(G)→∞ sup

{
γb(G)
mp(G)

}
= 2.

Corollary
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Bounds for undirected graphs : chordal graphs
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Chordal graphs

Chordal graph: graph where every cycle of length 4 or more has a chord

If G is a chordal graph, γb(G) ≤
⌈3
2
mp(G)

⌉
.

Proposition

This can be proved using the following two theorems:

If G is a chordal graph with radius r and diameter d , then 2r ≤ d + 2.

Theorem (Laskar, Shier, 1983)

If G is a connected graph of order at least 2 having radius r , diameter d , multipack-
ing number mp(G), broadcast domination number γb(G) and domination number

γ(G), then
⌈d + 1

3

⌉
≤ mp(G) ≤ γb(G) ≤ min{γ(G), r}.

Theorem (Erwin 2001 & Hartnell-Mynhardt 2014)
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Bound for chordal graphs

For connected chordal graphs G ,
10
9

≤ lim
mp(G)→∞

sup

{
γb(G)

mp(G)

}
≤ 3

2
.

Theorem (Das, F., Islam, Mukherjee, 2023)

mp(G2k) ≤ 9k and γb(G2k) = 10k.

Lemma

2

1

2

2

1

2
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Complexity & algorithms for directed graphs
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Broadcast domination in directed graphs

Broadcast domination for directed graphs:

A vertex v with f (v) = r broadcasts to all vertices at directed distance up to r .
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Broadcast domination in directed graphs

Note: an undirected graph can be seen as a symmetric directed graph!

Broadcast domination for directed graphs:

A vertex v with f (v) = r broadcasts to all vertices at directed distance up to r .
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Broadcast domination in directed graphs

1

2

2

Broadcast domination for directed graphs:

A vertex v with f (v) = r broadcasts to all vertices at directed distance up to r .
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Complexity of Broadcast domination

BROADCAST DOM
Input: A (directed) graph G , an integer k.
Question: Does G have a dominating broadcast of cost at most k?

BROADCAST DOM can be solved in polynomial time O(n6) for undirected graphs.

Theorem (Heggernes-Lokshtanov, 2006)

BROADCAST DOM is NP-hard and W [2]-hard: likely no algorithm of the form
f (k)poly(n), for any computable function f .

Theorem (F., Gras, Perez, Sikora, 2020)

Proof: Reductions from SET COVER.

t1
i

t2
i

T1

T2

X

V0
i

V1
i

M

V2
k

V3
k

V2
1

V3
1
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Complexity for BROADCAST DOM (2)

BROADCAST DOM
Input: A (directed) graph G , an integer k.
Question: Does G have a dominating broadcast of cost at most k?

BROADCAST DOM is NP-hard and W [2]-hard: likely no algorithm of the form
f (k)poly(n), for any computable function f .

Theorem (F., Gras, Perez, Sikora, 2020)

kO(k)n-time algorithm for BROADCAST DOM for directed acyclic graphs.

Theorem (F., Gras, Perez, Sikora, 2020)

Proof:

Lemma: There always exists an optimal broadcast where each broadcasting vertex is
covered only by itself.

→ iterative branching, starting from the sources.
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Complexity for BROADCAST DOM (3)

BROADCAST DOM
Input: A (directed) graph G , an integer k.
Question: Does G have a dominating broadcast of cost at most k?

BROADCAST DOM is NP-hard and W [2]-hard: likely no algorithm of the form
f (k)poly(n), for any computable function f .

Theorem (F., Gras, Perez, Sikora, 2020)

There is a linear-time algorithm for BROADCAST DOM on single-source layered
directed graphs.

Theorem (F., Gras, Perez, Sikora, 2020)

Proof:

Lemma: there always exists an optimal broadcast where the broadcasting vertices are
all in layers of size 1, and no vertex is covered twice.

→ Easy top-down procedure.
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Complexity for BROADCAST DOM (4)

BROADCAST DOM
Input: A (directed) graph G , an integer k.
Question: Does G have a dominating broadcast of cost at most k?

BROADCAST DOM is NP-hard and W [2]-hard: likely no algorithm of the form
f (k)poly(n), for any computable function f .

Theorem (F., Gras, Perez, Sikora, 2020)

BROADCAST DOM is FPT parameterizd by solution cost k and max. degree d .

Theorem (F., Gras, Perez, Sikora, 2020)

Proof:

A YES-instance has at most k(k + 1)dk vertices.
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Complexity of Multipacking

MULTIPACKING
Input: A (directed) graph G , an integer k.
Question: Does G have a multipacking of size at least k?

(Note: OPEN for undirected graphs.)

MULTIPACKING is NP-hard and W [1]-hard: likely no algorithm of the form
f (k)poly(n), for any computable function f .

Theorem (F., Gras, Perez, Sikora, 2020)

Proof: Reduction from INDEPENDENT SET.

V1 Vk

V ′
k

V ′
1

E1,2 E2,k Ek−1,k
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Complexity of Multipacking (2)

MULTIPACKING
Input: A (directed) graph G , an integer k.
Question: Does G have a multipacking of size at least k?

MULTIPACKING is NP-hard and W [1]-hard: likely no algorithm of the form
f (k)poly(n), for any computable function f .

Theorem (F., Gras, Perez, Sikora, 2020)

There is a linear-time algorithm for MULTIPACKING on single-source layered di-
rected graphs.

Theorem (F., Gras, Perez, Sikora, 2020)

Proof:

Lemma: There always exists an optimal multipacking that intersects each layer at
most once.

→ Bottom-up dynamic programming.

Florent Foucaud Broadcast domination and multipacking in (di)graphs 27 / 30



Complexity of Multipacking (2)

MULTIPACKING
Input: A (directed) graph G , an integer k.
Question: Does G have a multipacking of size at least k?

MULTIPACKING is NP-hard and W [1]-hard: likely no algorithm of the form
f (k)poly(n), for any computable function f .

Theorem (F., Gras, Perez, Sikora, 2020)

There is a linear-time algorithm for MULTIPACKING on single-source layered di-
rected graphs.

Theorem (F., Gras, Perez, Sikora, 2020)

Proof:

Lemma: There always exists an optimal multipacking that intersects each layer at
most once.

→ Bottom-up dynamic programming.

Florent Foucaud Broadcast domination and multipacking in (di)graphs 27 / 30



Complexity of Multipacking (3)

MULTIPACKING
Input: A (directed) graph G , an integer k.
Question: Does G have a multipacking of size at least k?

MULTIPACKING is NP-hard and W [1]-hard: likely no algorithm of the form
f (k)poly(n), for any computable function f .

Theorem (F., Gras, Perez, Sikora, 2020)

MULTIPACKING is FPT parameterizd by solution cost k and max. degree d .

Theorem (F., Gras, Perez, Sikora, 2020)

Proof:

If G has a path of length 3k − 3: return YES.

If there is a minimum absorbing set of size k (computable by reduction to HITTING
SET): return YES.

Otherwise: the instance has at most dO(k) vertices.
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Complexity landscapes
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Open questions

Bounds:

• Is the conjecture true that for any undirected graph G , γb(G) ≤ 2mp(G)?

• Better bounds for the multipacking number of the hypercube Hd?

• What is a tight bound for connected undirected chordal graphs? γb(G) ≤ 10
9 mp(G)?

• What about directed graphs?

Complexity:

• Is MULTIPACKING NP-hard on undirected graphs?

• Is MULTIPACKING FPT (par. by solution size) for DAGs?

• Complexity of both problems on oriented trees?

Thanks!
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