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Covering and packing: dual problems

Covering: cover the vertices of a graph using as few structures as possible

Example: dominating set: covering using 1-balls
— domination number ~y(G)
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Covering and packing: dual problems

Covering: cover the vertices of a graph using as few structures as possible

Example: dominating set: covering using 1-balls
— domination number ~y(G)

Packing: pack as many structures as possible without interference

Example: dist. 3-independent set / 2-packing: packing 1-balls without overlap
— 2-packing number p2(G)
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Covering and packing: dual problems

Covering: cover the vertices of a graph using as few structures as possible

Example: dominating set: covering using 1-balls
— domination number ~y(G)

Packing: pack as many structures as possible without interference

Example: dist. 3-independent set / 2-packing: packing 1-balls without overlap
— 2-packing number p2(G)

These problems are dual (in the sense of LP) and p2(G) < ~v(G).
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Packing and covering problems

Classic packing and covering problems are typically NP-hard (Karp, 1971):
= Unless P = NP, there exists no efficient algorithm to solve them.

“Efficient algorithm”: polynomial-time in terms of the size of the input graph
(Cobham, Edmonds, 1965)

Richard C. Karp (1935-) Jack Edmonds (1934-) Alan B. Cobham (1927-2011)
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Broadcast domination

Definition - Dominating broadcast of graph G (Erwin, 2001)]

A function f : V(G) — N s.t. for every v € V(G), there exists x € V(G) with

e f(x) >0 and o f(x) > ds(x,v).
The cost of fis -, ¢y g (V).

Broadcast number v5(G): smallest cost of a dominating broadcast of G.
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Broadcast domination

Definition - Dominating broadcast of graph G (Erwin, 2001)]

A function f : V(G) — N s.t. for every v € V(G), there exists x € V(G) with

e f(x) >0 and o f(x) > ds(x,v).
The cost of fis -, ¢y g (V).

Broadcast number v5(G): smallest cost of a dominating broadcast of G.
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Broadcast domination: an interesting fact

n : number of vertices of the input graph

Theorem (Heggernes-Lokshtanov, 2006)]

We can find a minimum-cost dominating broadcast in polynomial time O(n®).

Proof idea:
o sufficient to find an efficient dominating broadcast (Erwin, 2001)
e The structure of broadcasting balls is a path or a cycle

e Dynamic programming on this structure
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The broadcasting balls may be pairwise disjoint (efficient broadcast)

Lemma (Erwin, 2001))

In an optimum broadcast which minimizes the number of broadcasting balls, no two
balls intersect.

B(vy,m1)

Assume r1 > r> and let u be in B(vi, n) N B(vz, r2).
Let u be the vertex on the shortest vi — v path at distance r» from vy.

— Replace B(vi, ) and B(vz, r2) by B(u, ri + r2).

Image credit: Behsaz-Salavatipour, 2015
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The structure of covering balls is a path or a cycle

Domination graph has broadcasting balls as vertex set, and two balls are adjacent IFF
there is an edge joining some vertices of the balls in G.

Lemma (Heggernes-Lokshtanov, 2006)]

In an optimum efficient broadcast which minimizes the number of broadcasting
balls, every ball has maximum degree 2 in the domination graph.

Assume r; > r» > r3.
u : vertex on shortest v — v; path at distance min{ri +r+1,rn — r2} from v.

— Replace the four balls by B(u,r 4+ ri + r» + 1).

Image credit: Behsaz-Salavatipour, 2015
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Broadcast domination: ILP formulation

Vertices: vi,..., Vp.

xik € {0,1}: whether vertex v; broadcasts with radius k
We want to minimize:

n n
Z Z k- Xik
k=1 i=1
subject to:
Z X,k > 1 for each vertex v;.
d(vi,vj)<k
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Broadcast domination: ILP formulation

Vertices: vi,..., Vp.

xik € {0,1}: whether vertex v; broadcasts with radius k

We want to minimize:

n n
Z Z k- Xik
k=1 i=1
subject to:
Z X,k > 1 for each vertex v;.
d(vj,vj)<k
Dual ILP:

We want to maximize:

n
>
i=1

subject to:

Z yi < k for each vertex v; and integer k < n.
d(vi,vj)<k,y;>0
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Multipacking

Definition - Multipacking of graph G (Brewster-Mynhardt-Teshima, 2014)]

A set S of vertices s.t. for every v € V(G) and every d € N, the d-ball By(v)
contains at most d vertices of S.

Multipacking number mp(G): largest size of a multipacking of G.

NOT a multipacking!
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Multipacking

Definition - Multipacking of graph G (Brewster-Mynhardt-Teshima, 2014)]

A set S of vertices s.t. for every v € V(G) and every d € N, the d-ball By(v)
contains at most d vertices of S.

Multipacking number mp(G): largest size of a multipacking of G.

still NOT a multipacking!
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Multipacking

Definition - Multipacking of graph G (Brewster-Mynhardt-Teshima, 2014)]

A set S of vertices s.t. for every v € V(G) and every d € N, the d-ball By(v)
contains at most d vertices of S.

Multipacking number mp(G): largest size of a multipacking of G.
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Multipacking

Definition - Multipacking of graph G (Brewster-Mynhardt-Teshima, 2014)]

A set S of vertices s.t. for every v € V(G) and every d € N, the d-ball By(v)
contains at most d vertices of S.

Multipacking number mp(G): largest size of a multipacking of G.

Open question

Can one compute a maximum-size multipacking in polynomial time?
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Bounds for undirected graphs : general graphs
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Broadcast domination and multipacking

The two problems are dual (in the sense of LP).

Proposition

For every graph G, we have mp(G) < 7,(G).

Equality holds for:
e trees (Mynhardt-Teshima, 2017)
e more generally, strongly chordal graphs (Brewster-MacGillivray-Yang, 2019)

e rectangular grids (Beaudou-Brewster, 2019)
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A chain of inequalities

diameter diam(G): largest distance between two vertices in G
eccentricity of a vertex v: largest possible distance from v to another vertex

radius rad(G): smallest eccentricity among all vertices

Proposition (Erwin, 2001 + Hartnell-Mynhardt, 2014))

For any graph G, [%—I < mp(G) < v(G) < rad(G) < diam(G).
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A chain of inequalities

diameter diam(G): largest distance between two vertices in G
eccentricity of a vertex v: largest possible distance from v to another vertex

radius rad(G): smallest eccentricity among all vertices

Proposition (Erwin, 2001 + Hartnell-Mynhardt, 2014)]

For any graph G, [%] < mp(G) < 7(G) < rad(G) < diam(G).

v(G) < rad(G): consider a radial vertex v. Set f(v) = rad(G).

@3
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A chain of inequalities

diameter diam(G): largest distance between two vertices in G
eccentricity of a vertex v: largest possible distance from v to another vertex

radius rad(G): smallest eccentricity among all vertices

Proposition (Erwin, 2001 + Hartnell-Mynhardt, 2014)]

For any graph G, [%1 < mp(G) < 7(G) < rad(G) < diam(G).

[%—I < mp(G): consider a diametral path P, select every third vertex.
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A chain of inequalities

diameter diam(G): largest distance between two vertices in G
eccentricity of a vertex v: largest possible distance from v to another vertex

radius rad(G): smallest eccentricity among all vertices

Proposition (Erwin, 2001 + Hartnell-Mynhardt, 2014)]

For any graph G, [%—I < mp(G) < v(G) < rad(G) < diam(G).

Corollary
\

For any graph G, we have v,(G) < 3mp(G), hence ;‘;((g)) <3

Question (Hartnell-Mynhardt, 2014)]

What is the largest possible ratio :f;f(?)?

Broadcast domination and multipacking in (di)graphs

Florent Foucaud



Theorem (Beaudou, Brewster, F., 2019)]

For any graph G, we have 7,(G) < 2mp(G) + 3, hence ;‘;((?) <2+e.
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Theorem (Beaudou, Brewster, F., 2019)]

For any graph G, we have 7,(G) < 2mp(G) + 3, hence % <2+e

mp

Lemma Proof sketch

Let u, v, x,y be 4 vertices with:
e d(u,v) =6k e d(x,u) =d(x,v) =3k e d(x,y) =3k + 3¢.

Then, mp(G) > 2k + £.

3k 3k

3k

3¢
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Theorem (Beaudou, Brewster, F., 2019)]

For any graph G, we have 7,(G) < 2mp(G) + 3, hence ;’;((?) <2+e.

Lemma Proof sketch

Let u, v, x,y be 4 vertices with:
e d(u,v) =6k e d(x,u) =d(x,v) =3k e d(x,y) =3k + 3¢.

Then, mp(G) > 2k + £.

Let diam(G) = 6k + i and rad(G) =3k + 3¢+ (0<i<6and0<j<3)
Apply the lemma with x, a vertex of eccentricity rad(G).
mp(G) > 2k + ¢
S diam(G) n rad(G)  diam(G)
- 3 3 6
rad2(G) e
ryb(ZG) —c ]

v

v
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Theorem (Beaudou, Brewster, F., 2019)]

For any graph G, we have 7,(G) < 2mp(G) + 3, hence ;’;’((?) <2+e.

Conjecture

For any graph G, we have v,(G) < 2mp(G).
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Theorem (Beaudou, Brewster, F., 2019)]

For any graph G, we have 7,(G) < 2mp(G) + 3, hence % <2+e

Conjecture

For any graph G, we have v,(G) < 2mp(G).

Theorem (Beaudou, Brewster, F., 2019)]

The conjecture is true when mp(G) < 4.
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C

onjecture

Theorem (Beaudou, Brewster, F., 2019)]

For any graph G, we have 7,(G) < 2mp(G) + 3, hence

G
mp(G)

7(G)

<2+4e.

Conjecture

For any graph G, we have v,(G) < 2mp(G).

Theorem (Beaudou, Brewster, F., 2019)]

The conjecture is true when mp(G) < 4.

Conjecture would be tight — infinitely many graphs G s.t. 7,(G) = 2mp(G):

Florent Foucaud

mp(G) =2 and 7,(G) = 4
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Connected graphs

Question

What happens for connected graphs?
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Connected graphs

Question

What happens for connected graphs?

Theorem (Bresar, Spacapan, 2019)]

For the hypercube Hy: y5(Hg) = d — 1.

Theorem (Rajendraprasad, Sani, Sasidharan, Sen, 2025+)]

For the hypercube Ha: [£] < mp(Ha) < ¢ + 6v/2d.
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Connected graphs

Question

What happens for connected graphs?

Theorem (Bresar, Spacapan, 2019)]

For the hypercube Hy: y5(Hg) = d — 1.

Theorem (Rajendraprasad, Sani, Sasidharan, Sen, 2025+)]

For the hypercube Ha: [£] < mp(Ha) < ¢ + 6v/2d.

Corollary

For connected graphs G, lim,(6)— o0 SUP { ;‘;((?)} = 2.
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Bounds for undirected graphs : chordal graphs
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Chordal graphs

Chordal graph: graph where every cycle of length 4 or more has a chord

Proposition

If G is a chordal graph, ~,(G) < [gmp(G)—l.
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Chordal graphs

Chordal graph: graph where every cycle of length 4 or more has a chord

Proposition

If G is a chordal graph, ~,(G) < [gmp(G)—l.

This can be proved using the following two theorems:

Theorem (Laskar, Shier, 1983)]

If G is a chordal graph with radius r and diameter d, then 2r < d + 2.

Theorem (Erwin 2001 & Hartnell-Mynhardt 2014)]

If G is a connected graph of order at least 2 having radius r, diameter d, multipack-
ing number mp(G), broadcast domination number ~,(G) and domination number

7(6). then [TF1] < mp(6) < 3(6) < min{~(6), r}.
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Bound for chordal graphs

Theorem (Das, F., Islam, Mukherjee, 2023)]

N W

10 . 75(G)
F ted chordal graphs G, — < lim su <
or connec grap 9 = pptim p { mp(G) [ =
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Bound for chordal graphs

Theorem (Das, F., Islam, Mukherjee, 2023)]

For connected chordal graphs G, %0 < lim sup{ W’;)(G) } < %

mp(G)— oo

Lemma

mp(sz) S 9k and ’Yb(GZk) = 10k.
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Complexity & algorithms for directed graphs
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Broadcast domination in directed graphs
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Broadcast domination in directed graphs

Note: an undirected graph can be seen as a symmetric directed graph!
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Broadcast domination in directed graphs

Broadcast domination for directed graphs:

A vertex v with f(v) = r broadcasts to all vertices at directed distance up to r.
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Some classes of directed graphs

General directed graphs (digraphs)

Symmetric digraphs = undirected graphs Directed acyclic graphs (DAGs)
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Algorithmic complexity of Broadcast domination

BROADCAST DOM
Input: A (directed) graph G, an integer k.
Question: Does G have a dominating broadcast of cost at most k?

Theorem (Heggernes-Lokshtanov, 2006)]

BROADCAST DOM can be solved in polynomial time O(n®) for undirected graphs.
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Algorithmic complexity of Broadcast domination

BROADCAST DOM
Input: A (directed) graph G, an integer k.
Question: Does G have a dominating broadcast of cost at most k?

Theorem (Heggernes-Lokshtanov, 2006)]

BROADCAST DOM can be solved in polynomial time O(n®) for undirected graphs.

Theorem (F., Gras, Perez, Sikora, 2020)]

BROADCAST DOM is NP-hard and W/{2]-hard: likely no algorithm of the form
f(k)poly(n), for any computable function 7.

Proof: Reductions from SET COVER.
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Algorithmic complexity for BROADCAST DOM (2)

BROADCAST DOM
Input: A (directed) graph G, an integer k.
Question: Does G have a dominating broadcast of cost at most k?

Theorem (F., Gras, Perez, Sikora, 2020)]

BROADCAST DOM is NP-hard and W/{2]-hard: likely no algorithm of the form
f(k)poly(n), for any computable function f.
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Algorithmic complexity for BROADCAST DOM (2)

BROADCAST DOM
Input: A (directed) graph G, an integer k.
Question: Does G have a dominating broadcast of cost at most k?

Theorem (F., Gras, Perez, Sikora, 2020)]

BROADCAST DOM is NP-hard and W/{2]-hard: likely no algorithm of the form
f(k)poly(n), for any computable function f.

Definition - Fixed-parameter-tractable problem]

An algorithmic problem with input / and parameter k is FPT parameterized by k
if it can be solved in time f(k) - [I|/°), where f is a computable function.
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Algorithmic complexity for BROADCAST DOM (2)

BROADCAST DOM
Input: A (directed) graph G, an integer k.
Question: Does G have a dominating broadcast of cost at most k?

Theorem (F., Gras, Perez, Sikora, 2020)]

BROADCAST DOM is NP-hard and W/[2]-hard: likely no algorithm of the form
f(k)poly(n), for any computable function f.

Definition - Fixed-parameter-tractable problem]

An algorithmic problem with input / and parameter k is FPT parameterized by k
if it can be solved in time f(k) - [I|/°), where f is a computable function.

Theorem (F., Gras, Perez, Sikora, 2020)]

FPT k9% n-time algorithm for BROADCAST DOM for directed acyclic graphs.

Proof: Lemma: There always exists an optimal broadcast where each broadcasting

vertex is covered only by itself.
— iterative branching, starting from the sources: a previously uncovered vertex is

either covered by itself, or by one of its broadcasting predecessors.

Broadcast domination and multipacking in (di)graphs
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Algorithmic complexity of Multipacking

MULTIPACKING
Input: A (directed) graph G, an integer k.
Question: Does G have a multipacking of size at least k7

(Note: OPEN for undirected graphs.)
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Algorithmic complexity of Multipacking

MULTIPACKING
Input: A (directed) graph G, an integer k.
Question: Does G have a multipacking of size at least k7

(Note: OPEN for undirected graphs.)

Theorem (F., Gras, Perez, Sikora, 2020)]

MULTIPACKING is NP-hard and W[1]-hard: likely no algorithm of the form
f(k)poly(n), for any computable function f.

Proof: Reduction from INDEPENDENT SET.
F2) Eg K Er_1k
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ithmic complexity landsc

all digraphs
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bipartite, no 2-cycles 4 bipartite, no 2-cycles
WI[2]-hard
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- kernel
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| ol L}
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of small max. degree

1 single-sourced layered DAGs

BROADCAST DOM
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MULTIPACKING
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Concluding remarks

Takeaway: Problems tend to become more difficult on digraphs (even DAGs)
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Concluding remarks

Takeaway: Problems tend to become more difficult on digraphs (even DAGs)

Open problems:

Bounds:
e Conjecture: v,(G) < 2mp(G) for any undirected graph G
e Better bounds for the multipacking number of the hypercube H4?

e What is a tight bound for connected undirected chordal graphs? ~,(G) < 1fgomp(G)?

Algorithmic complexity:
e Is MULTIPACKING NP-hard on undirected graphs?
o Is MULTIPACKING FPT (parameterized by solution size) for DAGs?

e Complexity of both problems on oriented trees?
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Concluding remarks

Takeaway: Problems tend to become more difficult on digraphs (even DAGs)

Open problems:

Bounds:
e Conjecture: v,(G) < 2mp(G) for any undirected graph G
e Better bounds for the multipacking number of the hypercube H4?

e What is a tight bound for connected undirected chordal graphs? ~,(G) < 1fgomp(G)?

Algorithmic complexity:
e Is MULTIPACKING NP-hard on undirected graphs?
o Is MULTIPACKING FPT (parameterized by solution size) for DAGs?

e Complexity of both problems on oriented trees?

Thanksl!
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