

Broadcast domination and multipacking in graphs and digraphs

Florent Foucaud (Université Clermont Auvergne, France)

joint works with:

Laurent Beaudou (Université Clermont Auvergne, France)

Richard C. Brewster (Thompson Rivers University, Canada)

Benjamin Gras (Université d'Orléans, France)

Anthony Perez (Université d'Orléans, France)

Florian Sikora (Université Paris-Dauphine, France)

Sandip Das (Indian Statistical Institute, India)

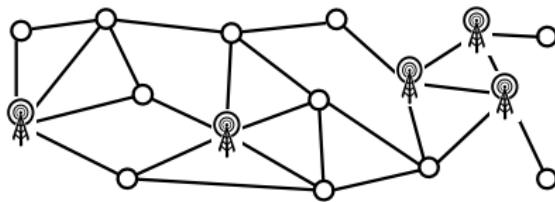
Sk Samim Islam (Indian Statistical Institute, India)

Joydeep Mukherjee (Ramakrishna Mission Vivekananda Edu. and Res. Institute, India)

January 2026

Covering: cover the vertices of a graph using as few structures as possible

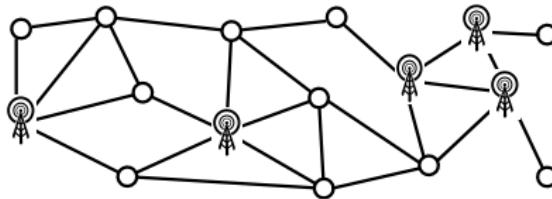
Example: **dominating set:** covering using 1-balls
→ **domination number** $\gamma(G)$



Covering: cover the vertices of a graph using as few structures as possible

Example: dominating set: covering using 1-balls

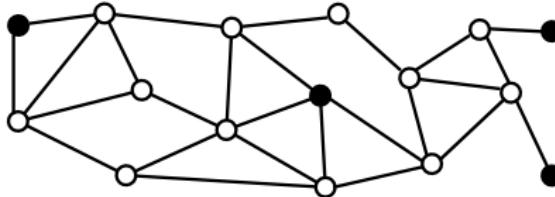
→ domination number $\gamma(G)$



Packing: pack as many structures as possible without interference

Example: dist. 3-independent set / 2-packing: packing 1-balls without overlap

→ 2-packing number $\rho_2(G)$

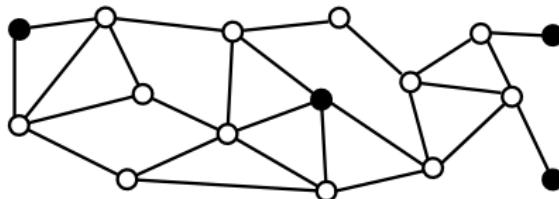


Covering: cover the vertices of a graph using as few structures as possible

Example: dominating set: covering using 1-balls
→ domination number $\gamma(G)$

Packing: pack as many structures as possible without interference

Example: dist. 3-independent set / 2-packing: packing 1-balls without overlap
→ 2-packing number $\rho_2(G)$



These problems are dual (in the sense of LP) and $\rho_2(G) \leq \gamma(G)$.

Classic packing and covering problems are typically **NP-hard** (Karp, 1971):

⇒ Unless $P = NP$, there exists no efficient algorithm to solve them.

“Efficient algorithm”: polynomial-time in terms of the size of the input graph
(Cobham, Edmonds, 1965)

Richard C. Karp (1935-)

Jack Edmonds (1934-)

Alan B. Cobham (1927-2011)

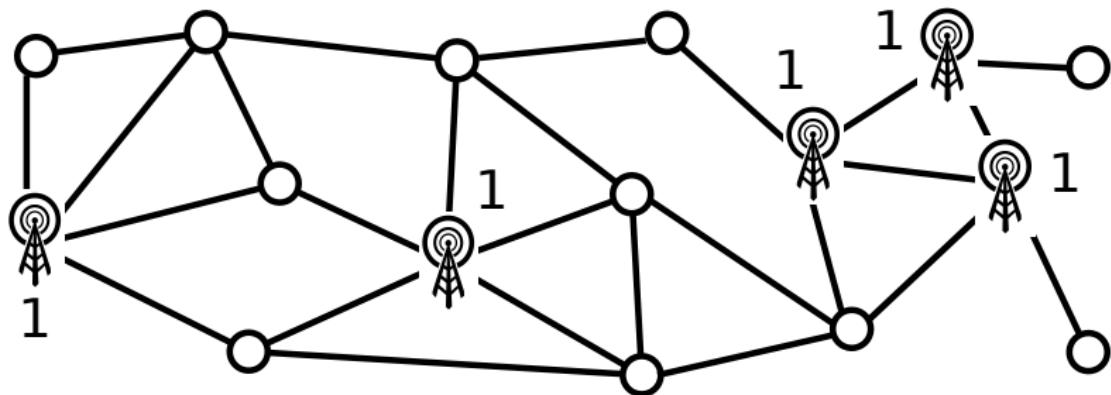
Definition - Dominating broadcast of graph G (Erwin, 2001)

A function $f : V(G) \rightarrow \mathbb{N}$ s.t. for every $v \in V(G)$, there exists $x \in V(G)$ with

- $f(x) > 0$ and
- $f(x) \geq d_G(x, v)$.

The **cost** of f is $\sum_{v \in V(G)} f(v)$.

Broadcast number $\gamma_b(G)$: smallest cost of a dominating broadcast of G .



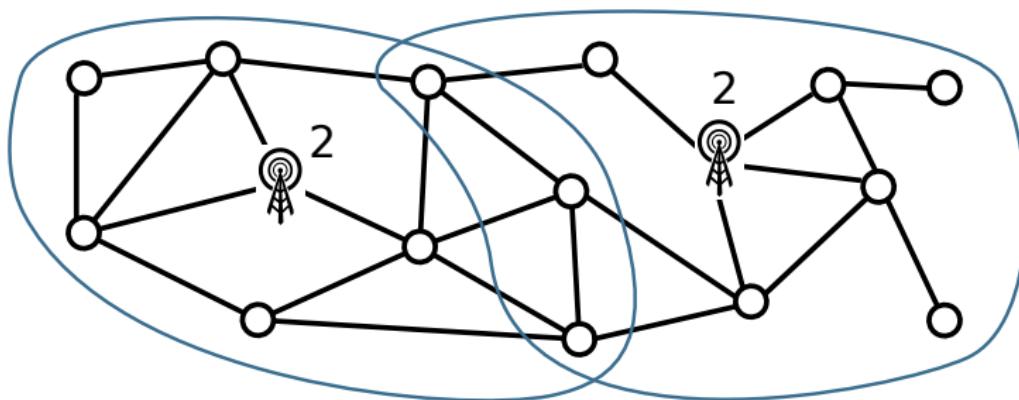
Definition - Dominating broadcast of graph G (Erwin, 2001)

A function $f : V(G) \rightarrow \mathbb{N}$ s.t. for every $v \in V(G)$, there exists $x \in V(G)$ with

- $f(x) > 0$ and
- $f(x) \geq d_G(x, v)$.

The **cost** of f is $\sum_{v \in V(G)} f(v)$.

Broadcast number $\gamma_b(G)$: smallest cost of a dominating broadcast of G .



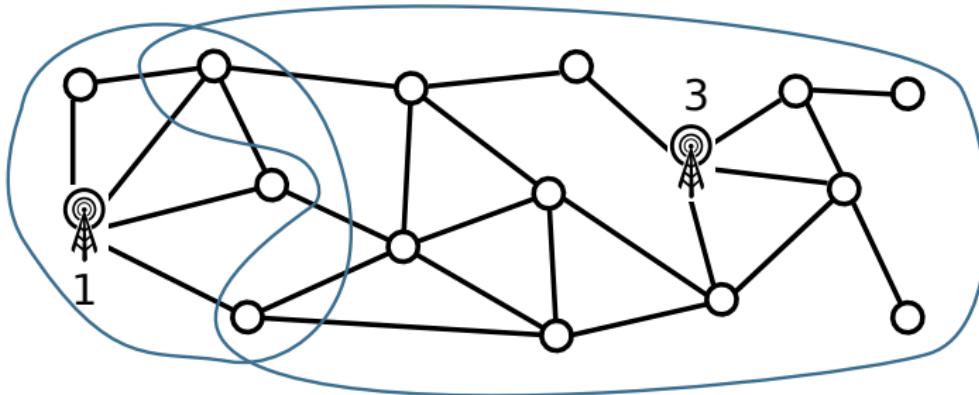
Definition - Dominating broadcast of graph G (Erwin, 2001)

A function $f : V(G) \rightarrow \mathbb{N}$ s.t. for every $v \in V(G)$, there exists $x \in V(G)$ with

- $f(x) > 0$ and
- $f(x) \geq d_G(x, v)$.

The **cost** of f is $\sum_{v \in V(G)} f(v)$.

Broadcast number $\gamma_b(G)$: smallest cost of a dominating broadcast of G .



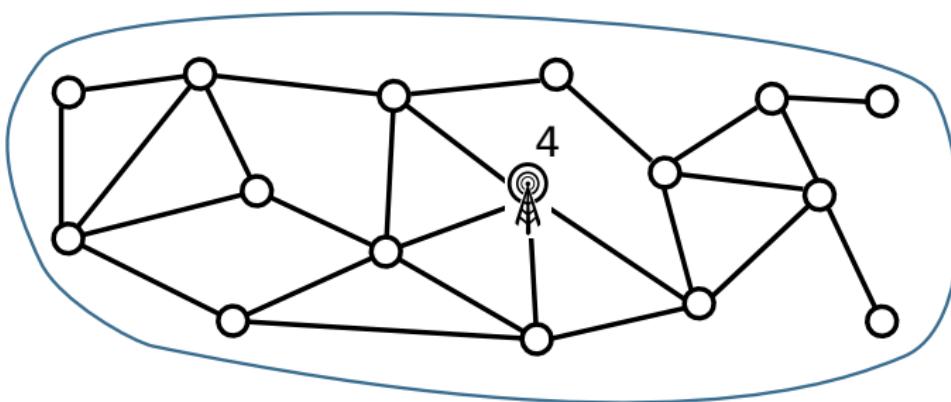
Definition - Dominating broadcast of graph G (Erwin, 2001)

A function $f : V(G) \rightarrow \mathbb{N}$ s.t. for every $v \in V(G)$, there exists $x \in V(G)$ with

- $f(x) > 0$ and
- $f(x) \geq d_G(x, v)$.

The **cost** of f is $\sum_{v \in V(G)} f(v)$.

Broadcast number $\gamma_b(G)$: smallest cost of a dominating broadcast of G .



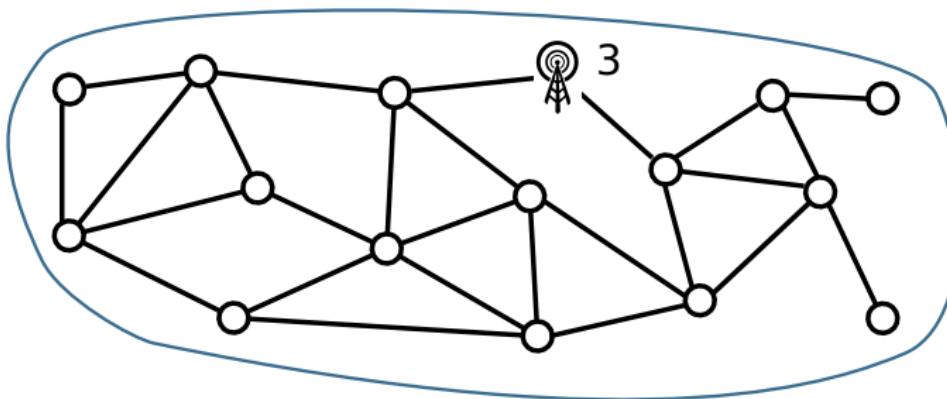
Definition - Dominating broadcast of graph G (Erwin, 2001)

A function $f : V(G) \rightarrow \mathbb{N}$ s.t. for every $v \in V(G)$, there exists $x \in V(G)$ with

- $f(x) > 0$ and
- $f(x) \geq d_G(x, v)$.

The **cost** of f is $\sum_{v \in V(G)} f(v)$.

Broadcast number $\gamma_b(G)$: smallest cost of a dominating broadcast of G .



n : number of vertices of the input graph

Theorem (Heggernes-Lokshtanov, 2006)

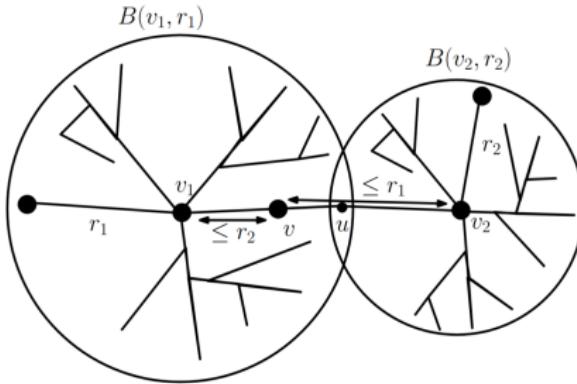
We can find a minimum-cost dominating broadcast in polynomial time $O(n^6)$.

Proof idea:

- sufficient to find an **efficient** dominating broadcast (Erwin, 2001)
- The structure of broadcasting balls is a path or a cycle
- Dynamic programming on this structure

Lemma (Erwin, 2001)

In an optimum broadcast which minimizes the number of broadcasting balls, no two balls intersect.



Assume $r_1 \geq r_2$ and let u be in $B(v_1, r_1) \cap B(v_2, r_2)$.

Let u be the vertex on the shortest $v_1 - v$ path at distance r_2 from v_1 .

→ Replace $B(v_1, r_1)$ and $B(v_2, r_2)$ by $B(u, r_1 + r_2)$.

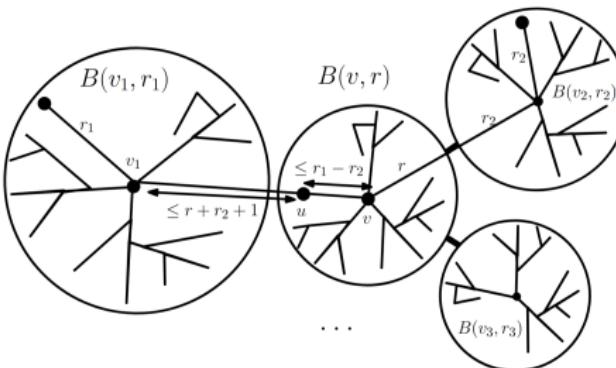
Image credit: Behsaz-Salavatipour, 2015

The structure of covering balls is a path or a cycle

Domination graph has broadcasting balls as vertex set, and two balls are adjacent IFF there is an edge joining some vertices of the balls in G .

Lemma (Heggernes-Lokshtanov, 2006)

In an optimum efficient broadcast which minimizes the number of broadcasting balls, every ball has maximum degree 2 in the domination graph.



Assume $r_1 \geq r_2 \geq r_3$.

u : vertex on shortest $v - v_1$ path at distance $\min\{r_1 + r + 1, r_1 - r_2\}$ from v .

→ Replace the four balls by $B(u, r + r_1 + r_2 + 1)$.

Image credit: Behsaz-Salavatipour, 2015

Broadcast domination: ILP formulation

Vertices: v_1, \dots, v_n .

$x_{i,k} \in \{0, 1\}$: whether vertex v_i broadcasts with radius k

We want to minimize:

$$\sum_{k=1}^n \sum_{i=1}^n k \cdot x_{i,k}$$

subject to:

$$\sum_{d(v_i, v_j) \leq k} x_{i,k} \geq 1 \text{ for each vertex } v_j.$$

Vertices: v_1, \dots, v_n .

$x_{i,k} \in \{0, 1\}$: whether vertex v_i broadcasts with radius k

We want to minimize:

$$\sum_{k=1}^n \sum_{i=1}^n k \cdot x_{i,k}$$

subject to:

$$\sum_{\substack{d(v_i, v_j) \leq k}} x_{i,k} \geq 1 \text{ for each vertex } v_j.$$

Dual ILP:

We want to maximize:

$$\sum_{i=1}^n y_i$$

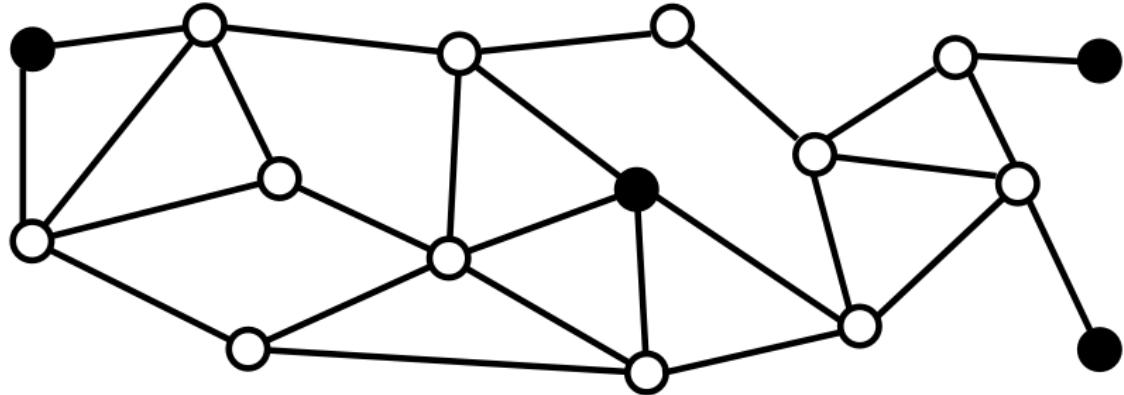
subject to:

$$\sum_{\substack{d(v_i, v_j) \leq k, y_j \geq 0}} y_i \leq k \text{ for each vertex } v_j \text{ and integer } k \leq n.$$

Definition - Multipacking of graph G (Brewster-Mynhardt-Teshima, 2014)

A set S of vertices s.t. for every $v \in V(G)$ and every $d \in \mathbb{N}$, the d -ball $B_d(v)$ contains at most d vertices of S .

Multipacking number $mp(G)$: largest size of a multipacking of G .

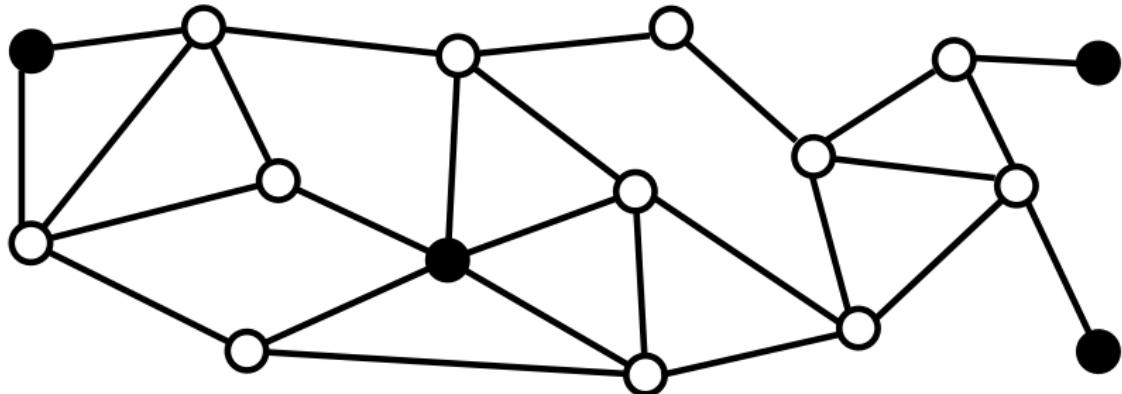


NOT a multipacking!

Definition - Multipacking of graph G (Brewster-Mynhardt-Teshima, 2014)

A set S of vertices s.t. for every $v \in V(G)$ and every $d \in \mathbb{N}$, the d -ball $B_d(v)$ contains at most d vertices of S .

Multipacking number $mp(G)$: largest size of a multipacking of G .

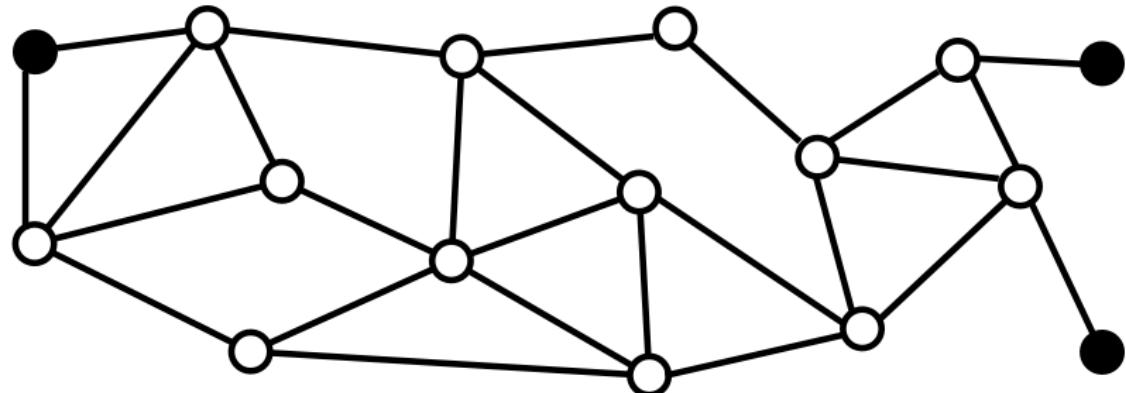


still NOT a multipacking!

Definition - Multipacking of graph G (Brewster-Mynhardt-Teshima, 2014)

A set S of vertices s.t. for every $v \in V(G)$ and every $d \in \mathbb{N}$, the d -ball $B_d(v)$ contains at most d vertices of S .

Multipacking number $mp(G)$: largest size of a multipacking of G .



Definition - Multipacking of graph G (Brewster-Mynhardt-Teshima, 2014)

A set S of vertices s.t. for every $v \in V(G)$ and every $d \in \mathbb{N}$, the d -ball $B_d(v)$ contains at most d vertices of S .

Multipacking number $mp(G)$: largest size of a multipacking of G .

Open question

Can one compute a maximum-size multipacking in polynomial time?

Bounds for undirected graphs : general graphs

The two problems are **dual** (in the sense of LP).

Proposition

For every graph G , we have $mp(G) \leq \gamma_b(G)$.

Equality holds for:

- **trees** (Mynhardt-Teshima, 2017)
- more generally, **strongly chordal graphs** (Brewster-MacGillivray-Yang, 2019)
- **rectangular grids** (Beaudou-Brewster, 2019)

diameter $diam(G)$: largest distance between two vertices in G

eccentricity of a vertex v : largest possible distance from v to another vertex

radius $rad(G)$: smallest eccentricity among all vertices

Proposition (Erwin, 2001 + Hartnell-Mynhardt, 2014)

For any graph G , $\left\lceil \frac{diam(G)+1}{3} \right\rceil \leq mp(G) \leq \gamma_b(G) \leq rad(G) \leq diam(G)$.

diameter $diam(G)$: largest distance between two vertices in G

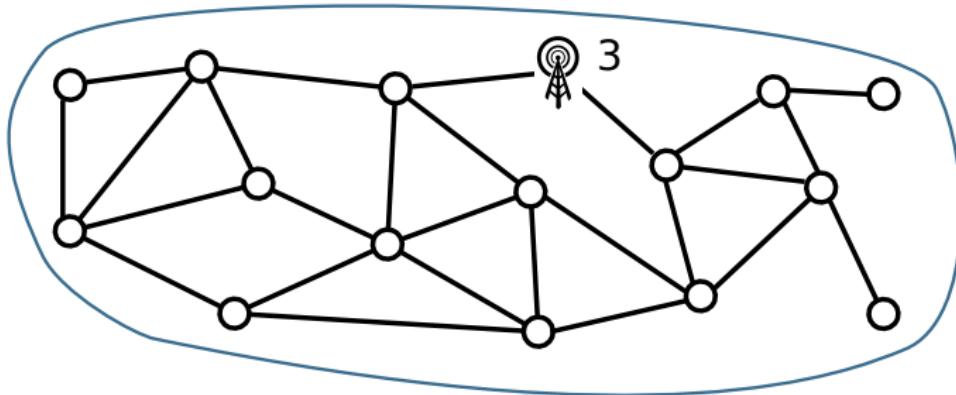
eccentricity of a vertex v : largest possible distance from v to another vertex

radius $rad(G)$: smallest eccentricity among all vertices

Proposition (Erwin, 2001 + Hartnell-Mynhardt, 2014)

For any graph G , $\left\lceil \frac{diam(G)+1}{3} \right\rceil \leq mp(G) \leq \gamma_b(G) \leq rad(G) \leq diam(G)$.

$\gamma_b(G) \leq rad(G)$: consider a radial vertex v . Set $f(v) = rad(G)$.



diameter $diam(G)$: largest distance between two vertices in G

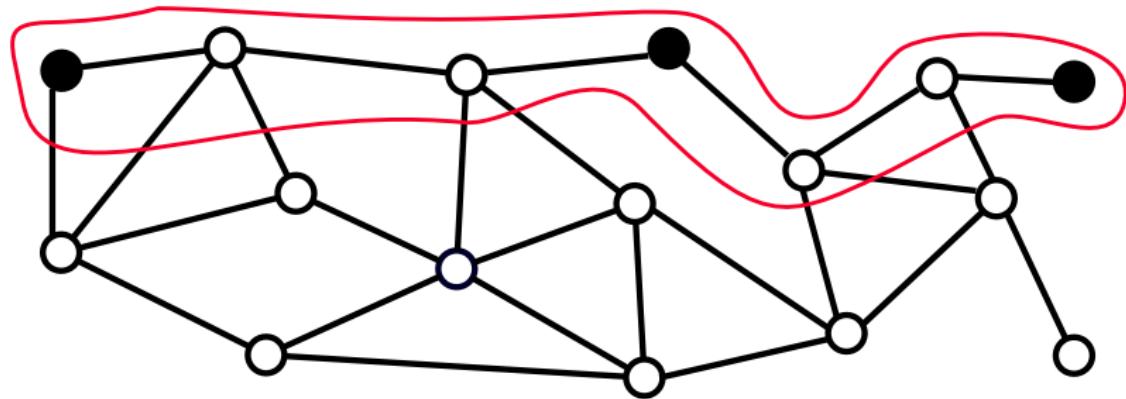
eccentricity of a vertex v : largest possible distance from v to another vertex

radius $rad(G)$: smallest eccentricity among all vertices

Proposition (Erwin, 2001 + Hartnell-Mynhardt, 2014)

For any graph G , $\left\lceil \frac{diam(G)+1}{3} \right\rceil \leq mp(G) \leq \gamma_b(G) \leq rad(G) \leq diam(G)$.

$\left\lceil \frac{diam(G)+1}{3} \right\rceil \leq mp(G)$: consider a **diametral path** P , select every third vertex.



diameter $diam(G)$: largest distance between two vertices in G

eccentricity of a vertex v : largest possible distance from v to another vertex

radius $rad(G)$: smallest eccentricity among all vertices

Proposition (Erwin, 2001 + Hartnell-Mynhardt, 2014)

For any graph G , $\left\lceil \frac{diam(G)+1}{3} \right\rceil \leq mp(G) \leq \gamma_b(G) \leq rad(G) \leq diam(G)$.

Corollary

For any graph G , we have $\gamma_b(G) < 3mp(G)$, hence $\frac{\gamma_b(G)}{mp(G)} < 3$.

Question (Hartnell-Mynhardt, 2014)

What is the largest possible ratio $\frac{\gamma_b(G)}{mp(G)}$?

Theorem (Beaudou, Brewster, F., 2019)

For any graph G , we have $\gamma_b(G) \leq 2mp(G) + 3$, hence $\frac{\gamma_b(G)}{mp(G)} \leq 2 + \epsilon$.

Theorem (Beaudou, Brewster, F., 2019)

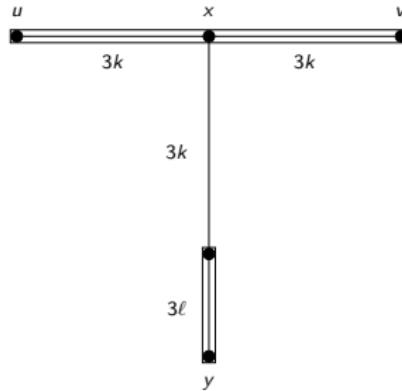
For any graph G , we have $\gamma_b(G) \leq 2mp(G) + 3$, hence $\frac{\gamma_b(G)}{mp(G)} \leq 2 + \epsilon$.

Lemma**Proof sketch**

Let u, v, x, y be 4 vertices with:

- $d(u, v) = 6k$
- $d(x, u) = d(x, v) = 3k$
- $d(x, y) = 3k + 3\ell$.

Then, $mp(G) \geq 2k + \ell$.



Theorem (Beaudou, Brewster, F., 2019)

For any graph G , we have $\gamma_b(G) \leq 2mp(G) + 3$, hence $\frac{\gamma_b(G)}{mp(G)} \leq 2 + \epsilon$.

Lemma**Proof sketch**

Let u, v, x, y be 4 vertices with:

- $d(u, v) = 6k$
- $d(x, u) = d(x, v) = 3k$
- $d(x, y) = 3k + 3\ell$.

Then, $mp(G) \geq 2k + \ell$.

Let $diam(G) = 6k + i$ and $rad(G) = 3k + 3\ell + j$ $(0 \leq i < 6 \text{ and } 0 \leq j < 3)$
 Apply the lemma with x , a vertex of eccentricity $rad(G)$.

$$\begin{aligned}
 mp(G) &\geq 2k + \ell \\
 &\geq \frac{diam(G)}{3} + \frac{rad(G)}{3} - \frac{diam(G)}{6} - c \\
 &\geq \frac{rad(G)}{2} - c \\
 &\geq \frac{\gamma_b(G)}{2} - c
 \end{aligned}$$

□

Theorem (Beaudou, Brewster, F., 2019)

For any graph G , we have $\gamma_b(G) \leq 2mp(G) + 3$, hence $\frac{\gamma_b(G)}{mp(G)} \leq 2 + \epsilon$.

Conjecture

For any graph G , we have $\gamma_b(G) \leq 2mp(G)$.

Theorem (Beaudou, Brewster, F., 2019)

For any graph G , we have $\gamma_b(G) \leq 2mp(G) + 3$, hence $\frac{\gamma_b(G)}{mp(G)} \leq 2 + \epsilon$.

Conjecture

For any graph G , we have $\gamma_b(G) \leq 2mp(G)$.

Theorem (Beaudou, Brewster, F., 2019)

The conjecture is true when $mp(G) \leq 4$.

Theorem (Beaudou, Brewster, F., 2019)

For any graph G , we have $\gamma_b(G) \leq 2mp(G) + 3$, hence $\frac{\gamma_b(G)}{mp(G)} \leq 2 + \epsilon$.

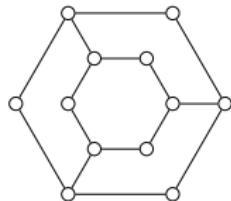
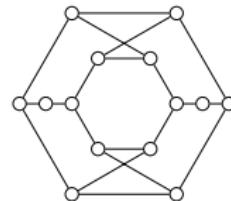
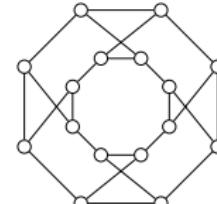
Conjecture

For any graph G , we have $\gamma_b(G) \leq 2mp(G)$.

Theorem (Beaudou, Brewster, F., 2019)

The conjecture is true when $mp(G) \leq 4$.

Conjecture would be tight — infinitely many graphs G s.t. $\gamma_b(G) = 2mp(G)$:



$$mp(G) = 2 \text{ and } \gamma_b(G) = 4$$

Question

What happens for **connected** graphs?

Question

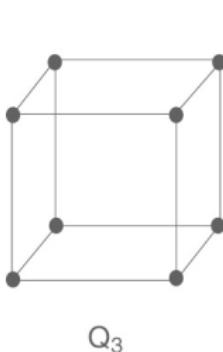
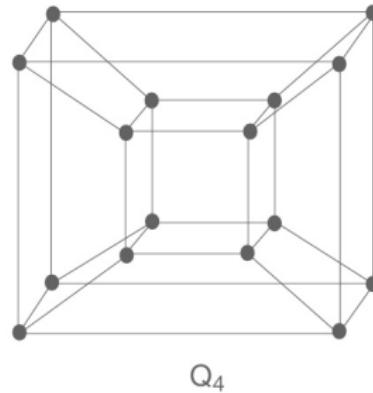
What happens for **connected** graphs?

Theorem (Brešar, Špacapan, 2019)

For the **hypercube** H_d : $\gamma_b(H_d) = d - 1$.

Theorem (Rajendraprasad, Sani, Sasidharan, Sen, 2025+)

For the **hypercube** H_d : $\lfloor \frac{d}{2} \rfloor \leq mp(H_d) \leq \frac{d}{2} + 6\sqrt{2d}$.



Question

What happens for **connected** graphs?

Theorem (Brešar, Špacapan, 2019)

For the **hypercube** H_d : $\gamma_b(H_d) = d - 1$.

Theorem (Rajendraprasad, Sani, Sasidharan, Sen, 2025+)

For the **hypercube** H_d : $\lfloor \frac{d}{2} \rfloor \leq mp(H_d) \leq \frac{d}{2} + 6\sqrt{2d}$.

Corollary

For connected graphs G , $\lim_{mp(G) \rightarrow \infty} \sup \left\{ \frac{\gamma_b(G)}{mp(G)} \right\} = 2$.

Bounds for undirected graphs : chordal graphs

Chordal graph: graph where every cycle of length 4 or more has a *chord*

Proposition

If G is a chordal graph, $\gamma_b(G) \leq \left\lceil \frac{3}{2}mp(G) \right\rceil$.

Chordal graph: graph where every cycle of length 4 or more has a *chord*

Proposition

If G is a chordal graph, $\gamma_b(G) \leq \left\lceil \frac{3}{2} mp(G) \right\rceil$.

This can be proved using the following two theorems:

Theorem (Laskar, Shier, 1983)

If G is a chordal graph with radius r and diameter d , then $2r \leq d + 2$.

Theorem (Erwin 2001 & Hartnell-Mynhardt 2014)

If G is a connected graph of order at least 2 having radius r , diameter d , multipacking number $mp(G)$, broadcast domination number $\gamma_b(G)$ and domination number $\gamma(G)$, then $\left\lceil \frac{d + 1}{3} \right\rceil \leq mp(G) \leq \gamma_b(G) \leq \min\{\gamma(G), r\}$.

Theorem (Das, F., Islam, Mukherjee, 2023)

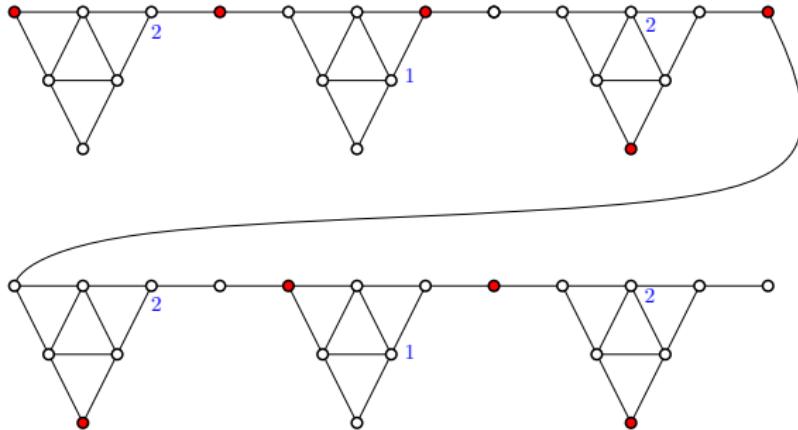
$$\text{For connected chordal graphs } G, \frac{10}{9} \leq \lim_{mp(G) \rightarrow \infty} \sup \left\{ \frac{\gamma_b(G)}{mp(G)} \right\} \leq \frac{3}{2}.$$

Theorem (Das, F., Islam, Mukherjee, 2023)

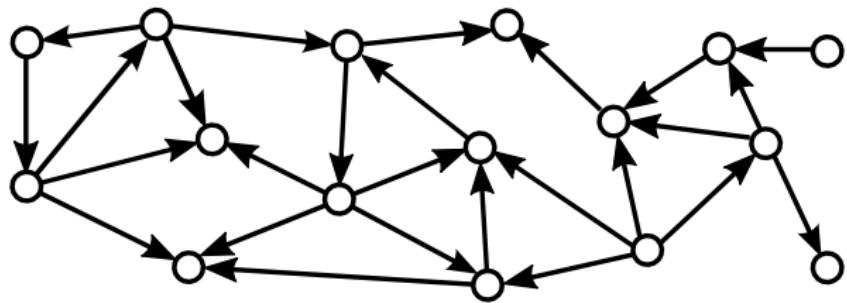
For connected chordal graphs G , $\frac{10}{9} \leq \lim_{mp(G) \rightarrow \infty} \sup \left\{ \frac{\gamma_b(G)}{mp(G)} \right\} \leq \frac{3}{2}$.

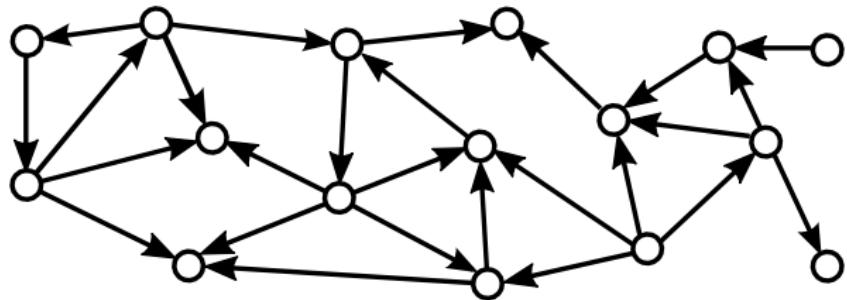
Lemma

$mp(G_{2k}) \leq 9k$ and $\gamma_b(G_{2k}) = 10k$.

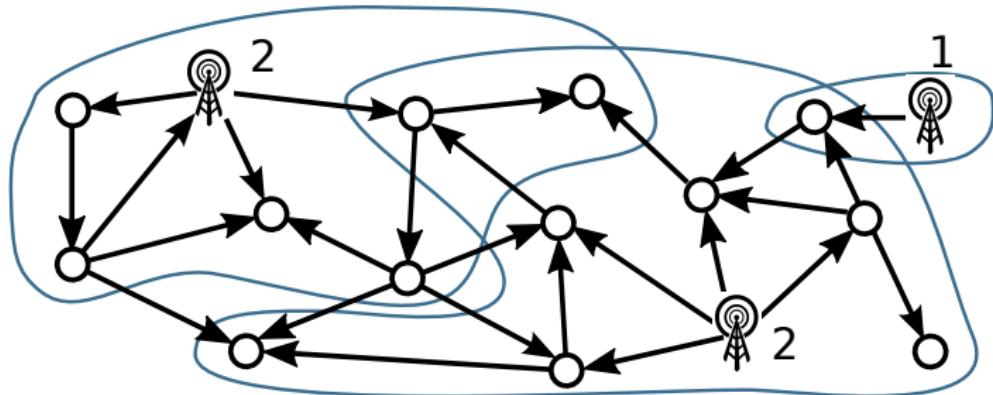


Complexity & algorithms for directed graphs



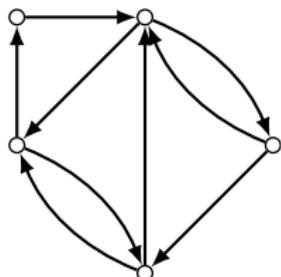


Note: an **undirected** graph can be seen as a **symmetric** directed graph!

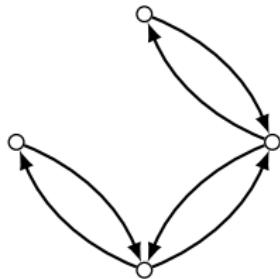


Broadcast domination for directed graphs:

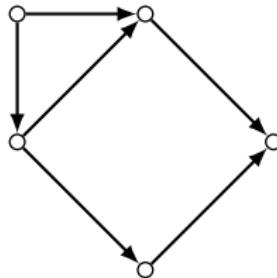
A vertex v with $f(v) = r$ broadcasts to all vertices at [directed distance](#) up to r .



General directed graphs (digraphs)



Symmetric digraphs = undirected graphs



Directed acyclic graphs (DAGs)

BROADCAST DOM

Input: A (directed) graph G , an integer k .

Question: Does G have a dominating broadcast of cost at most k ?

Theorem (Heggernes-Lokshtanov, 2006)

BROADCAST DOM can be solved in **polynomial time** $O(n^6)$ for **undirected graphs**.

BROADCAST DOM

Input: A (directed) graph G , an integer k .

Question: Does G have a dominating broadcast of cost at most k ?

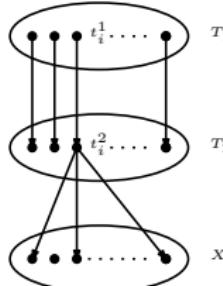
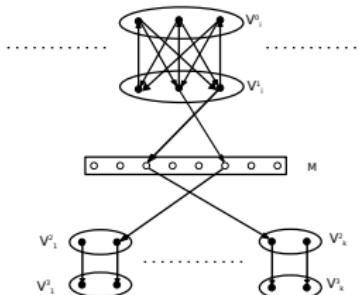
Theorem (Heggernes-Lokshtanov, 2006)

BROADCAST DOM can be solved in **polynomial time** $O(n^6)$ for **undirected graphs**.

Theorem (F., Gras, Perez, Sikora, 2020)

BROADCAST DOM is NP-hard and $W[2]$ -hard: likely no algorithm of the form $f(k)\text{poly}(n)$, for any computable function f .

Proof: Reductions from SET COVER.



BROADCAST DOM

Input: A (directed) graph G , an integer k .

Question: Does G have a dominating broadcast of cost at most k ?

Theorem (F., Gras, Perez, Sikora, 2020)

BROADCAST DOM is NP-hard and $W[2]$ -hard: likely no algorithm of the form $f(k)poly(n)$, for any computable function f .

BROADCAST DOM

Input: A (directed) graph G , an integer k .

Question: Does G have a dominating broadcast of cost at most k ?

Theorem (F., Gras, Perez, Sikora, 2020)

BROADCAST DOM is NP-hard and $W[2]$ -hard: likely no algorithm of the form $f(k)poly(n)$, for any computable function f .

Definition - Fixed-parameter-tractable problem

An **algorithmic problem** with input I and **parameter** k is **FPT** parameterized by k if it can be solved in time $f(k) \cdot |I|^{O(1)}$, where f is a computable function.

BROADCAST DOM

Input: A (directed) graph G , an integer k .

Question: Does G have a dominating broadcast of cost at most k ?

Theorem (F., Gras, Perez, Sikora, 2020)

BROADCAST DOM is NP-hard and $W[2]$ -hard: likely no algorithm of the form $f(k)poly(n)$, for any computable function f .

Definition - Fixed-parameter-tractable problem

An **algorithmic problem** with input I and **parameter** k is **FPT** parameterized by k if it can be solved in time $f(k) \cdot |I|^{O(1)}$, where f is a computable function.

Theorem (F., Gras, Perez, Sikora, 2020)

FPT $k^{O(k)}n$ -time algorithm for BROADCAST DOM for directed acyclic graphs.

Proof: *Lemma: There always exists an optimal broadcast where each broadcasting vertex is covered only by itself.*

→ iterative branching, starting from the sources: a previously uncovered vertex is either covered by itself, or by one of its broadcasting predecessors.

MULTIPACKING

Input: A (directed) graph G , an integer k .

Question: Does G have a multipacking of size at least k ?

(Note: OPEN for undirected graphs.)

MULTIPACKING

Input: A (directed) graph G , an integer k .

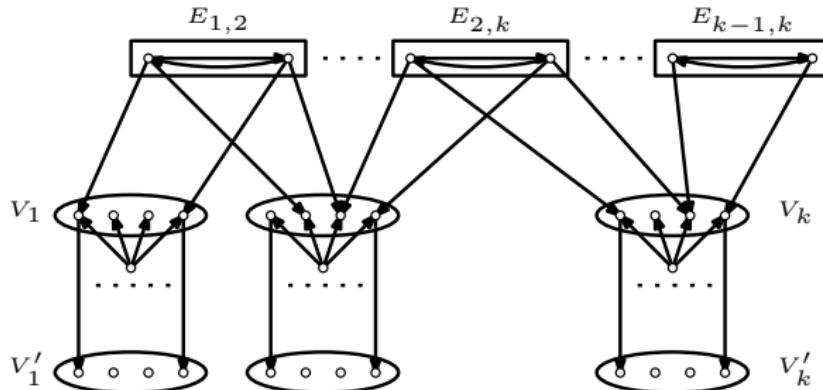
Question: Does G have a multipacking of size at least k ?

(Note: OPEN for undirected graphs.)

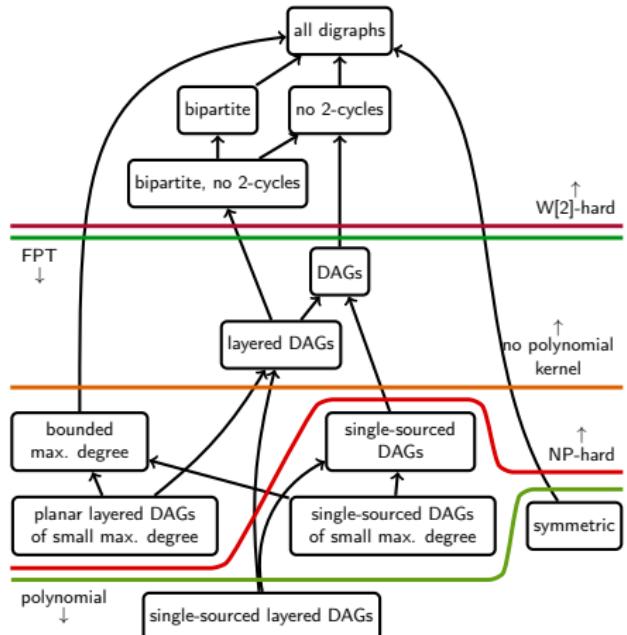
Theorem (F., Gras, Perez, Sikora, 2020)

MULTIPACKING is NP-hard and $W[1]$ -hard: likely no algorithm of the form $f(k)poly(n)$, for any computable function f .

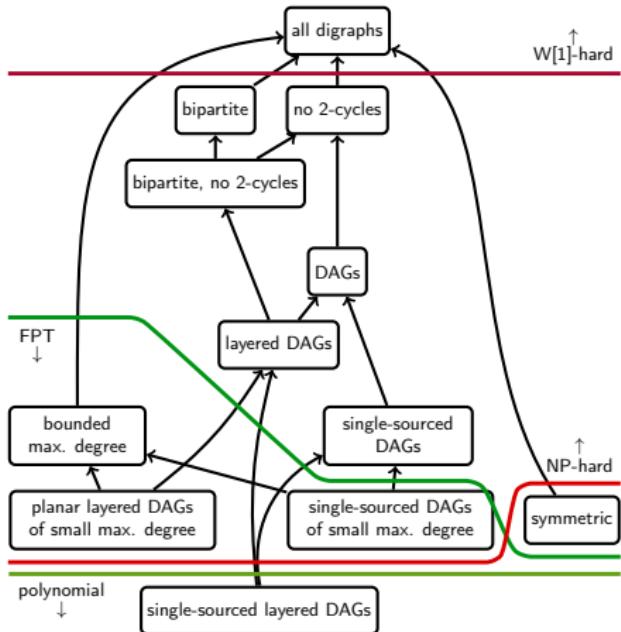
Proof: Reduction from INDEPENDENT SET.



Algorithmic complexity landscapes



BROADCAST DOM



MULTIPACKING

Takeaway: Problems tend to become more difficult on digraphs (even DAGs)

Takeaway: Problems tend to become more difficult on digraphs (even DAGs)

Open problems:

Bounds:

- Conjecture: $\gamma_b(G) \leq 2mp(G)$ for any **undirected** graph G
- Better bounds for the multipacking number of the **hypercube** H_d ?
- What is a tight bound for **connected undirected chordal graphs**? $\gamma_b(G) \leq \frac{10}{9}mp(G)$?

Algorithmic complexity:

- Is **MULTIPACKING** NP-hard on **undirected** graphs?
- Is **MULTIPACKING** FPT (parameterized by solution size) for DAGs?
- Complexity of both problems on **oriented trees**?

Takeaway: Problems tend to become more difficult on digraphs (even DAGs)

Open problems:

Bounds:

- Conjecture: $\gamma_b(G) \leq 2mp(G)$ for any **undirected** graph G
- Better bounds for the multipacking number of the **hypercube** H_d ?
- What is a tight bound for **connected undirected chordal graphs**? $\gamma_b(G) \leq \frac{10}{9}mp(G)$?

Algorithmic complexity:

- Is **MULTIPACKING** NP-hard on **undirected** graphs?
- Is **MULTIPACKING** FPT (parameterized by solution size) for DAGs?
- Complexity of both problems on **oriented trees**?

Thanks!