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Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them
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Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them

Question

How can we transpose the “GPS" approach for graphs?
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Metric dimension

w € V(G) distinguishes {u, v} if dist(w,u) # dist(w,v)

7

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976) 2 E b

R C V(G) resolving set of G:
Yu# v in V(G), there exists w € R that distinguishes {u,v}.
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Metric dimension

w € V(G) distinguishes {u, v} if dist(w,u) # dist(w,v)

7

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976) A E 4

R C V(G) resolving set of G:
Yu# v in V(G), there exists w € R that distinguishes {u,v}.

MD(G): metric dimension of G, minimum size of a resolving set of G.

Florent Foucaud Bounds on the order of a graph of given metric dimension and diameter 4 /17



Example

The resolving set {s1,sp} assigns unique coordinates to each vertex:

(0,3) (2,1) (3,0)
1,2
1 ( ) 2 S= {51,52}
(2,3) (2,2) MD(G) =2
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Examples

e—O—CO—0O—C—C0C——0O—-0

Proposition

MD(G)=1 < G is a path
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e—O—CO—0O—C—C0C——0O—-0

Proposition

MD(G)=1 < G is a path

Proposition

For any square grid G, MD(G) = 2.
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e—O—CO—0O—C—C0C——0O—-0

Proposition

MD(G)=1 < G is a path

Proposition

For any square grid G, MD(G) = 2.

Proposition

MD(K,)=n—1 and MD(Ky 1) = n—2.
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree >3 and 1.
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree >3 and 1.

Observation

R resolving set. If v has k legs, at least kK —1 legs contain a vertex of R.

Simple leg rule: if v has k > 2 legs, select k —1 leg endpoints.
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree >3 and 1.

Observation

R resolving set. If v has k legs, at least kK —1 legs contain a vertex of R.

Simple leg rule: if v has k > 2 legs, select k —1 leg endpoints.

7

Theorem (Slater, 1975 ﬂ)

For any tree, the simple leg rule produces an optimal resolving set.

See also:
« Harary-Melter, 1076 8 &

e Chartrand, Eroh, Johnson, Oellermann, 2000 . F ll
@
e Khuller, Raghavachari & Rosenfeld, 2002 E ' ]
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Bounds using diameter: all graphs

Theorem (Khuller, Raghavachari & Rosenfeld, 2002 E ' .ﬁ)

G of order n, diameter D, MD(G) = k. Then n < D¥ + k.

(diameter: maximum distance between two vertices)
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Bounds using diameter: all graphs

Theorem (Khuller, Raghavachari & Rosenfeld, 2002 E ' .ﬁ)

G of order n, diameter D, MD(G) = k. Then n < D¥ + k.

(diameter: maximum distance between two vertices)

Theorem (Hernando, Mora, Pelayo, Seara, Wood 2010 - ﬁ ! . !)

G of order n, diameter D, MD(G) = k

Then n < (|22 +1)%+kx/23l(2i — 1)1 (Tight.)
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Bounds using diameter: trees

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 ‘B‘ 4 mgv . E)

T a tree with diameter D and MD(T) = k, then

n§{ L(kD+4)(D+2)  if Deven, _ o(kD?)

$(kD—k+8)(D+1) if D odd.

Bounds are tight.

k=2,D=6 k=2 D=7

TN
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Bounds using diameter: using tree decompositions

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 Q‘ L4 ﬂgr . E)

G of order n, diameter D, MD(G) = k with tree decomposition of width w and
length ¢. Then

n= O(kD?(2¢+1)3w+1)
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Bounds using diameter: using tree decompositions

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 ‘B‘ L4 mgv . E)

G of order n, diameter D, MD(G) = k with tree decomposition of width w and
length ¢. Then

n= O(kD?(2¢+1)3w+1)

Applications :
o chordal graphs : £ =1 —» n= O(kD?20(")) = O(D222°")

o tree-width w — n= O(kD3"*3)
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Interval graphs

Definition - Interval graph]

Intersection graph of intervals of the real line.

I3

Florent Foucaud Bounds on the order of a graph of given metric dimension and diameter 11 /17



Bounds using diameter: interval graphs

7

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 ﬁ “ }) .)

G interval graph of order n, MD(G) = k, diameter D.
Then n= O(Dk?). (Tight.)
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Bounds using diameter: interval graphs

7

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 m “ 3 )

G interval graph of order n, MD(G) = k, diameter D.
Then n= O(Dk?). (Tight.)

Proof idea:

o distance to interval s is determined by O(D) points :

S

n

2

I3 r,r,.. : rightmost path
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Bounds using diameter: interval graphs

7

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 m “ 3 )

G interval graph of order n, MD(G) = k, diameter D.
Then n= O(Dk?). (Tight.)

Proof idea:

o distance to interval s is determined by O(D) points :

S

n

2

I3 r,r,.. : rightmost path

d(x,s) =2
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Bounds using diameter: interval graphs

7

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 W “ Q )

G interval graph of order n, MD(G) = k, diameter D.
Then n= O(Dk?). (Tight.)

Proof idea:

e distance to interval s is determined by O(D) points :

S

n

2

I3 r,r,.. : rightmost path

d(x,s) =2

o Partition of R into kD +1 parts
o Any interval is uniquely determined by beginning + end zone: n—k < (kD +1)?
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Vapnik-Cervonenkis dimension

GFF
%,

A set S C X is shattered: for every subset S’ C S, there is an edge e with eNnS= 5.

Measure of intersection complexity of sets in a hypergraph (X,&)
(initial motivation: machine learning, 1971)

V-C dimension of H: maximum size of a shattered set in H
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Vapnik-Cervonenkis dimension

A&,

<,
Measure of intersection complexity of sets in a hypergraph (X,&)
(initial motivation: machine learning, 1971)

A set S C X is shattered: for every subset S’ C S, there is an edge e with eNnS= 5.

V-C dimension of H: maximum size of a shattered set in H

Typically bounded for geometric hypergraphs: @ o o
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its closed neighbourhood hypergraph
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its closed neighbourhood hypergraph

9

e

A\

Typically bounded for geometric intersection graphs:

— interval graphs (d = 2)

— Cy-free graphs (d = 2)

— line graphs (d = 4)

— permutation graphs (d = 3)
— unit disk graphs (d = 3)

— planar graphs (d = 4)
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its closed neighbourhood hypergraph

A |5
Distance V-C dimension of a graph (Bousquet-Thomassé, 2015):

V-C dimension of its ball hypergraph
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its closed neighbourhood hypergraph

9

e

A\

# 2
tal-2
Distance V-C dimension of a graph (Bousquet-Thomassé, 2015):
V-C dimension of its ball hypergraph

Bounded for:

e graphs of bounded rank-width
e interval graphs

e graphs with no Ki-minor

(Bousquet-Thomassé, 2015)
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Bounds using diameter: the V-C dimension

dual distance V-C dimension of G: V-C dimension of the dual of its ball hypergraph.

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 Q‘ 4 mgr . E)

G of order n, diameter D, MD(G) = k with dual distance V-C dimension d*:
n<(Dk+1)4 +1.
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Bounds using diameter: the V-C dimension

dual distance V-C dimension of G: V-C dimension of the dual of its ball hypergraph.

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 ‘B‘ 4 mgr . E)

G of order n, diameter D, MD(G) = k with dual distance V-C dimension d*:
n<(Dk+1)4 +1.

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 ‘B‘ L4 ll‘gY . E)

If G is K¢-minor-free, then d* <t —1.

(Proof based on the ideas of Bousquet and Thomassé, 2015.)
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Bounds using diameter: the V-C dimension

dual distance V-C dimension of G: V-C dimension of the dual of its ball hypergraph.

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 ‘B‘ 4 mgr . E)

G of order n, diameter D, MD(G) = k with dual distance V-C dimension d*:
n<(Dk+1)4 +1.

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 ‘B‘ L4 ll‘gY . E)

If G is K¢-minor-free, then d* <t —1.

(Proof based on the ideas of Bousquet and Thomassé, 2015.)

7

Corollary (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 ﬂ‘ L4 ﬂgl . E)

G planar with diameter D and MD(G) = k, then n= O(k*D*).
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Bounds using diameter: planar graphs

Using distance-V-C dimension:

7

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 Q‘ L4 [lgl . 3))

G planar with diameter D and MD(G) = k, then n= O(k*D%).

Florent Foucaud Bounds on the order of a graph of given metric dimension and diameter



Bounds using diameter: planar graphs

Using distance-V-C dimension:

7

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 ‘B‘ L4 ﬂ‘gl l E)

G planar with diameter D and MD(G) = k, then n= O(k*D%).

Tight? Example with k =3 and n = ©(D3):
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Conclusion

Graph class Upper bound for n | Worst example
All O(D¥) o(DF)
Trees O(D?k) o(D?)k
Chordal 2" p2
Tree-width w kD3WF3
Interval O(Dk?) O(Dk?)
Unit interval O(Dk) O(Dk)
Permutation O(Dk?) ©(Dk?)
Bipartite permutation O(Dk) O(Dk)
Cographs O(k) O(k)
Planar D*K* o(D3k)
Outerplanar O(D?k) O(D%k)
Kg-minor-free DTt
Dual dist. V-C dim. d* k9 DY
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Some questions:

o Chordal: n< 2290 2. Better bound?

o Tree-width w: n= O(kD3¥+3). Better bound?

Planar: n= O(k*D*). Does n < f(k)D3 hold?

o Ky-minor-free (aka series-parallel/t-width 2): n= O(k3D3) and n= O(kD?).
Does n= O(kD?) hold, like for outerplanar graphs?
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Outerplanar O(D?k) O(D%k)
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Dual dist. V-C dim. d* k7 DT

Some questions:

o Chordal: n< 2290 2. Better bound?

o Tree-width w: n= O(kD3¥+3). Better bound?

Planar: n= O(k*D*). Does n < f(k)D3 hold?

Satellite photos
are the
Earth’s selfies.

7

/

THANKS FOR YOUR
ATTENTION!

o Ky-minor-free (aka series-parallel/t-width 2): n= O(k3D3) and n= O(kD?).

Does n= O(kD?) hold, like for outerplanar graphs?

Florent Foucaud
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