Bounds on the order of a graph of given metric dimension and diameter

studies for standard graph classes

Florent Foucaud

LIMOS Clermont Auvergne

CanaDAM 2021 Miniymposium: The Metric Dimension of a Graph and its Variants - Part I (CM15)

based on joint works with:

George Mertzios, Reza Naserasr, Aline Parreau, Petru Valicov Laurent Beaudou, Peter Dankelmann, Mike Henning, Arnaud Mary, Aline Parreau

Florent Foucaud

GPS/GLONASS/Galileo/Beidou/IRNSS:

need to know the exact position of 4 satellites $+ \mbox{ distance to them}$

GPS/GLONASS/Galileo/Beidou/IRNSS:

need to know the exact position of 4 satellites + distance to them

Question

How can we transpose the "GPS" approach for graphs?

 $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976) 🗟 🚾 🙎

 $R \subseteq V(G)$ resolving set of G:

 $\forall u \neq v \text{ in } V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

 $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

 $\forall u \neq v \text{ in } V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

 $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

MD(G): metric dimension of G, minimum size of a resolving set of G.

The resolving set $\{s_1, s_2\}$ assigns unique coordinates to each vertex:

Examples

Examples

Examples

(Observation)

R resolving set. If v has k legs, at least k-1 legs contain a vertex of R.

Simple leg rule: if v has $k \ge 2$ legs, select k - 1 leg endpoints.

Observation

R resolving set. If v has k legs, at least k-1 legs contain a vertex of R.

Simple leg rule: if v has $k \ge 2$ legs, select k - 1 leg endpoints.

Theorem (Slater, 1975 📓)

For any tree, the simple leg rule produces an optimal resolving set.

See also:

- Harary-Melter, 1976 🏧 🙎
- Chartrand, Eroh, Johnson, Oellermann, 2000 🖳 🌆 🔳 🌆
- Khuller, Raghavachari & Rosenfeld, 2002 📖 闍 🚵

Theorem (Khuller, Raghavachari & Rosenfeld, 2002 📓 層 🔊)

G of order n, diameter D, MD(G) = k. Then $n \le D^k + k$.

(diameter: maximum distance between two vertices)

Theorem (Khuller, Raghavachari & Rosenfeld, 2002 💹 層 🍙)

G of order n, diameter D, MD(G) = k. Then $n \le D^k + k$.

(diameter: maximum distance between two vertices)

Theorem (Hernando, Mora, Pelayo, Seara, Wood 2010 G of order *n*, diameter *D*, MD(G) = k. Then $n \le (\lfloor \frac{2D}{3} \rfloor + 1)^k + k \sum_{i=1}^{\lceil D/3 \rceil} (2i-1)^{k-1}$. (Tight.)

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 🚱 🤽 🚵 💽 👧)

G of order *n*, diameter *D*, MD(G) = k with tree decomposition of width *w* and length ℓ . Then

 $n = O(kD^2(2\ell+1)^{3w+1})$

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 🚳 🧘 🖓 👧

G of order n, diameter D, MD(G) = k with tree decomposition of width w and length ℓ . Then

 $n = O(kD^2(2\ell+1)^{3w+1})$

Applications :

- chordal graphs : $\ell = 1 \longrightarrow n = O(kD^22^{O(w)}) = O(D^22^{2^{O(k)}})$
- tree-width $w \longrightarrow n = O(kD^{3w+3})$

Definition - Interval graph

Intersection graph of intervals of the real line.

G interval graph of order n, MD(G) = k, diameter D. Then $n = O(Dk^2)$. (Tight.)

Proof idea:

• distance to interval s is determined by O(D) points :

r₁,r₂,.. : rightmost path

G interval graph of order n, MD(G) = k, diameter D. Then $n = O(Dk^2)$. (Tight.)

Proof idea:

• distance to interval s is determined by O(D) points :

 r_1, r_2, \dots : rightmost path

d(x,s)=2

G interval graph of order n,
$$MD(G) = k$$
, diameter D.
Then $n = O(Dk^2)$. (Tight.)

Proof idea:

• distance to interval s is determined by O(D) points :

r₁,r₂,.. : rightmost path

d(x,s)=2

- Partition of \mathbb{R} into kD+1 parts
- Any interval is uniquely determined by beginning + end zone: $n-k \le (kD+1)^2$

Measure of intersection complexity of sets in a hypergraph (X, \mathscr{E}) (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered: for every subset $S' \subseteq S$, there is an edge e with $e \cap S = S'$.

V-C dimension of H: maximum size of a shattered set in H

Measure of intersection complexity of sets in a hypergraph (X, \mathscr{E}) (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered: for every subset $S' \subseteq S$, there is an edge e with $e \cap S = S'$.

V-C dimension of H: maximum size of a shattered set in H

Measure of intersection complexity of sets in a hypergraph (X, \mathscr{E}) (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered: for every subset $S' \subseteq S$, there is an edge *e* with $e \cap S = S'$.

V-C dimension of H: maximum size of a shattered set in H

Typically bounded for geometric hypergraphs:

V-C dimension of a graph:

V-C dimension of its closed neighbourhood hypergraph

V-C dimension of a graph: V-C dimension of its closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:

- \rightarrow interval graphs (d = 2)
- \rightarrow C₄-free graphs (d = 2)
- \rightarrow line graphs (d = 4)
- \rightarrow permutation graphs (d = 3)
- \rightarrow unit disk graphs (d = 3)
- \rightarrow planar graphs (d = 4)

V-C dimension of a graph: V-C dimension of its closed neighbourhood hypergraph

Distance V-C dimension of a graph (Bousquet-Thomassé, 2015):

V-C dimension of its ball hypergraph

V-C dimension of a graph: V-C dimension of its closed neighbourhood hypergraph

Distance V-C dimension of a graph (Bousquet-Thomassé, 2015):

V-C dimension of its ball hypergraph

Bounded for:

- graphs of bounded rank-width
- interval graphs
- graphs with no K_t -minor

(Bousquet-Thomassé, 2015)

dual distance V-C dimension of G: V-C dimension of the dual of its ball hypergraph.

dual distance V-C dimension of G: V-C dimension of the dual of its ball hypergraph.

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 🛞 🤽 🏄 🙍 👧

G of order *n*, diameter *D*, MD(G) = k with dual distance V-C dimension d^* : $n \le (Dk+1)^{d^*} + 1$.

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 🚳 👗 🖓 👰

If G is K_t -minor-free, then $d^* \leq t - 1$.

(Proof based on the ideas of Bousquet and Thomassé, 2015.)

dual distance V-C dimension of G: V-C dimension of the dual of its ball hypergraph.

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 🚳 🤱 🖓 👧

G of order *n*, diameter *D*, MD(G) = k with dual distance V-C dimension d^* : $n \le (Dk+1)^{d^*} + 1$.

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 🚳 🤽 🚵 👧

If G is K_t -minor-free, then $d^* \leq t - 1$.

(Proof based on the ideas of Bousquet and Thomassé, 2015.)

Corollary (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 (2018) *G* planar with diameter *D* and MD(G) = k, then $n = O(k^4D^4)$. Using distance-V-C dimension:

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 🚳 홃 📓 🐼 👧

G planar with diameter *D* and MD(G) = k, then $n = O(k^4D^4)$.

Using distance-V-C dimension:

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 🚳 🤽 🖓 👧

G planar with diameter D and MD(G) = k, then $n = O(k^4D^4)$.

Tight? Example with k = 3 and $n = \Theta(D^3)$:

Conclusion

Graph class	Upper bound for <i>n</i>	Worst example
All	$O(D^k)$	$\Theta(D^k)$
Trees	$O(D^2k)$	$\Theta(D^2)k$
Chordal	$2^{2^{O(k)}}D^2$	
Tree-width <i>w</i>	kD ^{3w+3}	
Interval	$O(Dk^2)$	$\Theta(Dk^2)$
Unit interval	O(Dk)	$\Theta(Dk)$
Permutation	$O(Dk^2)$	$\Theta(Dk^2)$
Bipartite permutation	O(Dk)	$\Theta(Dk)$
Cographs	O(k)	$\Theta(k)$
Planar	D^4k^4	$\Theta(D^3k)$
Outerplanar	$O(D^2k)$	$\Theta(D^2k)$
K _t -minor-free	$D^{t-1}k^{t-1}$	
Dual dist. V-C dim. d^*	k ^{d*} D ^{d*}	

Conclusion

Graph class	Upper bound for <i>n</i>	Worst example
All	$O(D^k)$	$\Theta(D^k)$
Trees	$O(D^2k)$	$\Theta(D^2)k$
Chordal	$2^{2^{O(k)}}D^2$	
Tree-width <i>w</i>	kD ^{3w+3}	
Interval	$O(Dk^2)$	$\Theta(Dk^2)$
Unit interval	O(Dk)	$\Theta(Dk)$
Permutation	$O(Dk^2)$	$\Theta(Dk^2)$
Bipartite permutation	O(Dk)	$\Theta(Dk)$
Cographs	O(k)	$\Theta(k)$
Planar	D^4k^4	$\Theta(D^3k)$
Outerplanar	$O(D^2k)$	$\Theta(D^2k)$
K _t -minor-free	$D^{t-1}k^{t-1}$	
Dual dist. V-C dim. d^*	k ^{d*} D ^{d*}	

Some questions:

- Chordal: $n \leq 2^{2^{O(k)}} D^2$. Better bound?
- Tree-width w: $n = O(kD^{3w+3})$. Better bound?
- Planar: $n = O(k^4 D^4)$. Does $n \le f(k)D^3$ hold?
- K_4 -minor-free (aka series-parallel/t-width 2): $n = O(k^3D^3)$ and $n = O(kD^9)$. Does $n = O(kD^2)$ hold, like for outerplanar graphs?

Conclusion

Graph class	Upper bound for <i>n</i>	Worst example
All	$O(D^k)$	$\Theta(D^k)$
Trees	$O(D^2k)$	$\Theta(D^2)k$
Chordal	$2^{2^{O(k)}}D^2$	
Tree-width <i>w</i>	kD ^{3w+3}	
Interval	$O(Dk^2)$	$\Theta(Dk^2)$
Unit interval	O(Dk)	$\Theta(Dk)$
Permutation	$O(Dk^2)$	$\Theta(Dk^2)$
Bipartite permutation	O(Dk)	$\Theta(Dk)$
Cographs	O(k)	$\Theta(k)$
Planar	D^4k^4	$\Theta(D^3k)$
Outerplanar	$O(D^2k)$	$\Theta(D^2k)$
K _t -minor-free	$D^{t-1}k^{t-1}$	
Dual dist. V-C dim. d^*	k ^{d*} D ^{d*}	

THANKS FOR YOUR ATTENTION!

Some questions:

- Chordal: $n \leq 2^{2^{O(k)}} D^2$. Better bound?
- Tree-width w: $n = O(kD^{3w+3})$. Better bound?
- Planar: $n = O(k^4 D^4)$. Does $n \le f(k)D^3$ hold?
- K_4 -minor-free (aka series-parallel/t-width 2): $n = O(k^3D^3)$ and $n = O(kD^9)$. Does $n = O(kD^2)$ hold, like for outerplanar graphs?