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Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them

How can we transpose the “GPS” approach for graphs?

Question
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Metric dimension

w ∈ V (G) distinguishes {u,v} if dist(w ,u) 6= dist(w ,v)

R ⊆ V (G) resolving set of G :

∀u 6= v in V (G), there exists w ∈ R that distinguishes {u,v}.

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)
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Metric dimension

w ∈ V (G) distinguishes {u,v} if dist(w ,u) 6= dist(w ,v)

R ⊆ V (G) resolving set of G :

∀u 6= v in V (G), there exists w ∈ R that distinguishes {u,v}.

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

w

MD(G): metric dimension of G , minimum size of a resolving set of G .
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Example

The resolving set {s1,s2} assigns unique coordinates to each vertex:

s1 s2

(0,3) (3,0)

(1,2)

(2,1)

(2,3) (2,2)

S = {s1,s2}

MD(G) = 2
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Examples

MD(G) = 1 ⇔ G is a path

Proposition

For any square grid G , MD(G) = 2.

Proposition

MD(Kn) = n−1 and MD(K1,n−1) = n−2.

Proposition
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree ≥ 3 and 1.

G
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree ≥ 3 and 1.

G v

R resolving set. If v has k legs, at least k−1 legs contain a vertex of R.

Observation

Simple leg rule: if v has k ≥ 2 legs, select k−1 leg endpoints.
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree ≥ 3 and 1.

G v

R resolving set. If v has k legs, at least k−1 legs contain a vertex of R.

Observation

Simple leg rule: if v has k ≥ 2 legs, select k−1 leg endpoints.

For any tree, the simple leg rule produces an optimal resolving set.

Theorem (Slater, 1975 )

See also:
• Harary-Melter, 1976
• Chartrand, Eroh, Johnson, Oellermann, 2000
• Khuller, Raghavachari & Rosenfeld, 2002

Florent Foucaud Bounds on the order of a graph of given metric dimension and diameter 7 / 17



Bounds using diameter: all graphs

G of order n, diameter D, MD(G) = k. Then n ≤Dk + k.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002 )

(diameter: maximum distance between two vertices)

G of order n, diameter D, MD(G) = k.

Then n ≤ (b 2D
3 c+1)k + k ∑

dD/3e
i=1 (2i−1)k−1. (Tight.)

Theorem (Hernando, Mora, Pelayo, Seara, Wood 2010 )
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Bounds using diameter: trees

T a tree with diameter D and MD(T ) = k, then

n ≤
{ 1

8 (kD +4)(D +2) if D even,
1
8 (kD−k +8)(D +1) if D odd.

= Θ(kD2)

Bounds are tight.

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 )

k = 2, D = 6 k = 2, D = 7
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Bounds using diameter: using tree decompositions

G of order n, diameter D, MD(G) = k with tree decomposition of width w and
length `. Then

n = O(kD2(2`+1)3w+1)

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 )

Applications :

chordal graphs : ` = 1 −→ n = O(kD22O(w)) = O(D222O(k) )

tree-width w −→ n = O(kD3w+3)
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Interval graphs

Intersection graph of intervals of the real line.

Definition - Interval graph

I1 I4

I2 I5

I3 1

2

3

4 5
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Bounds using diameter: interval graphs

G interval graph of order n, MD(G) = k, diameter D.
Then n = O(Dk2). (Tight.)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 )

Proof idea:

distance to interval s is determined by O(D) points :

s
r1 r2 r3 r4

r1,r2,.. : rightmost path

x
d(x ,s) = 2

Partition of R into kD +1 parts
Any interval is uniquely determined by beginning + end zone: n−k ≤ (kD +1)2
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Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X ,E )
(initial motivation: machine learning, 1971)

A set S ⊆ X is shattered: for every subset S ′ ⊆ S, there is an edge e with e∩S = S ′.

V-C dimension of H: maximum size of a shattered set in H

Typically bounded for geometric hypergraphs:
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Vapnik-Červonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its closed neighbourhood hypergraph

Distance V-C dimension of a graph (Bousquet-Thomassé, 2015):
V-C dimension of its ball hypergraph
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Vapnik-Červonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:

→ interval graphs (d = 2)
→ C4-free graphs (d = 2)
→ line graphs (d = 4)
→ permutation graphs (d = 3)
→ unit disk graphs (d = 3)
→ planar graphs (d = 4)

Distance V-C dimension of a graph (Bousquet-Thomassé, 2015):
V-C dimension of its ball hypergraph
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Vapnik-Červonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its closed neighbourhood hypergraph

Distance V-C dimension of a graph (Bousquet-Thomassé, 2015):
V-C dimension of its ball hypergraph

Bounded for:
• graphs of bounded rank-width
• interval graphs
• graphs with no Kt -minor

(Bousquet-Thomassé, 2015)
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Bounds using diameter: the V-C dimension

dual distance V-C dimension of G : V-C dimension of the dual of its ball hypergraph.

G of order n, diameter D, MD(G) = k with dual distance V-C dimension d∗:
n ≤ (Dk +1)d∗ +1.

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 )

If G is Kt -minor-free, then d∗ ≤ t−1.

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 )

(Proof based on the ideas of Bousquet and Thomassé, 2015.)

G planar with diameter D and MD(G) = k, then n = O(k4D4).

Corollary (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 )
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Bounds using diameter: planar graphs

Using distance-V-C dimension:

G planar with diameter D and MD(G) = k, then n = O(k4D4).

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 )

Tight? Example with k = 3 and n = Θ(D3):

· · ·
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Conclusion

Graph class Upper bound for n Worst example
All O(Dk ) Θ(Dk )

Trees O(D2k) Θ(D2)k
Chordal 22O(k) D2

Tree-width w kD3w+3

Interval O(Dk2) Θ(Dk2)
Unit interval O(Dk) Θ(Dk)
Permutation O(Dk2) Θ(Dk2)

Bipartite permutation O(Dk) Θ(Dk)
Cographs O(k) Θ(k)
Planar D4k4 Θ(D3k)

Outerplanar O(D2k) Θ(D2k)
Kt -minor-free Dt−1kt−1

Dual dist. V-C dim. d∗ kd∗Dd∗

THANKS FOR YOUR
ATTENTION!

Some questions:

Chordal: n ≤ 22O(k) D2. Better bound?

Tree-width w : n = O(kD3w+3). Better bound?

Planar: n = O(k4D4). Does n ≤ f (k)D3 hold?

K4-minor-free (aka series-parallel/t-width 2): n = O(k3D3) and n = O(kD9).
Does n = O(kD2) hold, like for outerplanar graphs?
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