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Monitoring

Motivation: Detect failures in a network

Place distance-detecting probes on the network: a probe p monitors the edges that lie
on all shortest paths to some vertex x

How many probes are enough?

Question
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De�nition, example

A probe at vertex x monitors the edges that lie on all shortest paths to some vertex y

A set S of vertices of a graph G is distance-edge-monitoring if every edge is moni-
tored by a vertex in S .

dem(G): smallest size of such a set.

De�nition

Florent Foucaud Distance-edge-monitoring sets in graphs 3 / 11



De�nition, example

A probe at vertex x monitors the edges that lie on all shortest paths to some vertex y

A set S of vertices of a graph G is distance-edge-monitoring if every edge is moni-
tored by a vertex in S .

dem(G): smallest size of such a set.

De�nition

Florent Foucaud Distance-edge-monitoring sets in graphs 3 / 11



De�nition, example

A probe at vertex x monitors the edges that lie on all shortest paths to some vertex y

A set S of vertices of a graph G is distance-edge-monitoring if every edge is moni-
tored by a vertex in S .

dem(G): smallest size of such a set.

De�nition

Florent Foucaud Distance-edge-monitoring sets in graphs 3 / 11



De�nition, example

A probe at vertex x monitors the edges that lie on all shortest paths to some vertex y

A set S of vertices of a graph G is distance-edge-monitoring if every edge is moni-
tored by a vertex in S .

dem(G): smallest size of such a set.

De�nition

Florent Foucaud Distance-edge-monitoring sets in graphs 3 / 11



De�nition, example

A probe at vertex x monitors the edges that lie on all shortest paths to some vertex y

A set S of vertices of a graph G is distance-edge-monitoring if every edge is moni-
tored by a vertex in S .

dem(G): smallest size of such a set.

De�nition

Florent Foucaud Distance-edge-monitoring sets in graphs 3 / 11



De�nition, example

A probe at vertex x monitors the edges that lie on all shortest paths to some vertex y

A set S of vertices of a graph G is distance-edge-monitoring if every edge is moni-
tored by a vertex in S .

dem(G): smallest size of such a set.

De�nition

Florent Foucaud Distance-edge-monitoring sets in graphs 3 / 11



De�nition, example

A probe at vertex x monitors the edges that lie on all shortest paths to some vertex y

A set S of vertices of a graph G is distance-edge-monitoring if every edge is moni-
tored by a vertex in S .

dem(G): smallest size of such a set.

De�nition

Let S be a distance-edge-monitoring set, and P(S , e) the set of pairs (x , y) s.t. e lies
on all shortest paths from x ∈ S to y .

For two distinct edges e, e′, we have P(S , e) 6= P(S , e′).

Proposition

e e'
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Structure of edges monitored by a speci�c vertex

Which are the edges of G monitored by a probe? Do a BFS at given vertex:

Remarks:

• This set induces a forest. ⇒ dem(G) is at least the arboricity of G .
(arboricity: smallest number of forests into which E(G) can be partitioned)

• All incident edges are monitored ⇒ dem(G) is at most the vertex cover number of G .
(vertex cover of G : set of vertices covering every edge of G)

• Every bridge of G is monitored by any vertex
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Trees

For any tree T , dem(T ) = 1.

Proposition

G has dem(G) = 1 if and only if G is a tree.

Theorem
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Unicyclic graphs

G has dem(G) = 1 if and only if G is a tree.

Theorem

If G is uniyclic, then dem(G) = 2.

Theorem
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Connection to feedback edge sets

Feedback edge set of G : set S of edges such that every cycle of G has an edge in S

fes(G): smallest size of a feedback edge set of G .

If fes(G) = k, then G is obtained from a multigraph H of order at most 2k−2 and
size 3k − 3 by iteratively subdividing edges and adding degree 1 vertices.

Lemma (Folklore)
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Connection to feedback edge sets

Feedback edge set of G : set S of edges such that every cycle of G has an edge in S

fes(G): smallest size of a feedback edge set of G .

If fes(G) = k, then G is obtained from a multigraph H of order at most 2k−2 and
size 3k − 3 by iteratively subdividing edges and adding degree 1 vertices.

Lemma (Folklore)

(Tight for a ladder P2�Pk+1.)
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Connection to feedback edge sets

Feedback edge set of G : set S of edges such that every cycle of G has an edge in S

fes(G): smallest size of a feedback edge set of G .

If fes(G) = k, then G is obtained from a multigraph H of order at most 2k−2 and
size 3k − 3 by iteratively subdividing edges and adding degree 1 vertices.

Lemma (Folklore)

For any graph G , we have dem(G) ≤ 5fes(G)− 5.

Theorem
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Connection to feedback edge sets

Feedback edge set of G : set S of edges such that every cycle of G has an edge in S

fes(G): smallest size of a feedback edge set of G .

If fes(G) = k, then G is obtained from a multigraph H of order at most 2k−2 and
size 3k − 3 by iteratively subdividing edges and adding degree 1 vertices.

Lemma (Folklore)

For any graph G , we have dem(G) ≤ 2fes(G)− 2.

Theorem
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NP-hardness

DEM

Input: Graph G

Task: Find smallest distance-edge-monitoring set of G

DEM is NP-complete.

Theorem

Proof: reduction from VERTEX COVER:

For any graph G of radius at least 4, dem(G)× K1 = vc(G).

Lemma

G

Florent Foucaud Distance-edge-monitoring sets in graphs 8 / 11



Approximability

DEM is approximable within a factor of ln |E(G)|+ 1 for any graph G .

Theorem

Proof: reduction to SET COVER.

Sets are vertices of G , elements are edges of G .
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Non-approximability

For every ε > 0, DEM is NOT approximable within a factor of (1− ε) ln |E(G)| in
polynomial time, unless P = NP (even on subcubic bipartite graphs).
Moreover, the probem is W[2]-hard for parameter solution size.

Theorem

Proof: reduction from SET COVER.
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Open questions

• Conjecture: dem(G) ≤ fes(G) + 1 (true for fes(G) = 0, 1, 2)

• Is DEM NP-hard for planar graphs? Interval graphs?

• Are there approximation/FPT algorithms for nice classes?

Thanks!
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