Monitoring the edges of a graph using distances

Florent Foucaud (Université de Bordeaux, France) Ralf Klasing (Université de Bordeaux, France)

Mirka Miller (University of Newcastle, Australia) Joe Ryan (University of Newcastle, Australia)

CALDAM, IIT Hyderabad, February 2020

Monitoring

Motivation: Detect failures in a network

I

Monitoring

Motivation: Detect failures in a network

Motion: Detect failus in a merk

Monitoring

Motivation: Detect failures in a network

Motion: Detect failus in a merk

Monitoring

Motivation: Detect failures in a network

Place distance-detecting probes on the network: a probe p monitors the edges that lie on all shortest paths to some vertex x

Monitoring

Motivation: Detect failures in a network

Place distance-detecting probes on the network: a probe p monitors the edges that lie on all shortest paths to some vertex x

Question
How many probes are enough?

A probe at vertex x monitors the edges that lie on all shortest paths to some vertex y

Definition

A set S of vertices of a graph G is distance-edge-monitoring if every edge is monitored by a vertex in S.

A probe at vertex x monitors the edges that lie on all shortest paths to some vertex y

Definition

A set S of vertices of a graph G is distance-edge-monitoring if every edge is monitored by a vertex in S.
$\operatorname{dem}(G)$: smallest size of such a set.

A probe at vertex x monitors the edges that lie on all shortest paths to some vertex y

Definition

A set S of vertices of a graph G is distance-edge-monitoring if every edge is monitored by a vertex in S.
$\operatorname{dem}(G)$: smallest size of such a set.

A probe at vertex x monitors the edges that lie on all shortest paths to some vertex y

Definition

A set S of vertices of a graph G is distance-edge-monitoring if every edge is monitored by a vertex in S.
$\operatorname{dem}(G)$: smallest size of such a set.

A probe at vertex x monitors the edges that lie on all shortest paths to some vertex y

Definition

A set S of vertices of a graph G is distance-edge-monitoring if every edge is monitored by a vertex in S.
$\operatorname{dem}(G)$: smallest size of such a set.

A probe at vertex x monitors the edges that lie on all shortest paths to some vertex y

Definition

A set S of vertices of a graph G is distance-edge-monitoring if every edge is monitored by a vertex in S.
$\operatorname{dem}(G)$: smallest size of such a set.

A probe at vertex x monitors the edges that lie on all shortest paths to some vertex y

Definition

A set S of vertices of a graph G is distance-edge-monitoring if every edge is monitored by a vertex in S.
$\operatorname{dem}(G)$: smallest size of such a set.

Let S be a distance-edge-monitoring set, and $P(S, e)$ the set of pairs (x, y) s.t. e lies on all shortest paths from $x \in S$ to y.

Proposition
For two distinct edges e, e^{\prime}, we have $P(S, e) \neq P\left(S, e^{\prime}\right)$.

Which are the edges of G monitored by a probe? Do a BFS at given vertex:

Which are the edges of G monitored by a probe? Do a BFS at given vertex:

Which are the edges of G monitored by a probe? Do a BFS at given vertex:

Remarks:

- This set induces a forest. $\Rightarrow \operatorname{dem}(G)$ is at least the arboricity of G. (arboricity: smallest number of forests into which $E(G)$ can be partitioned)

Which are the edges of G monitored by a probe? Do a BFS at given vertex:

Remarks:

- This set induces a forest. $\Rightarrow \operatorname{dem}(G)$ is at least the arboricity of G. (arboricity: smallest number of forests into which $E(G)$ can be partitioned)
- All incident edges are monitored $\Rightarrow \operatorname{dem}(G)$ is at most the vertex cover number of G. (vertex cover of G : set of vertices covering every edge of G)

Which are the edges of G monitored by a probe? Do a BFS at given vertex:

Remarks:

- This set induces a forest. $\Rightarrow \operatorname{dem}(G)$ is at least the arboricity of G. (arboricity: smallest number of forests into which $E(G)$ can be partitioned)
- All incident edges are monitored $\Rightarrow \operatorname{dem}(G)$ is at most the vertex cover number of G. (vertex cover of G : set of vertices covering every edge of G)
- Every bridge of G is monitored by any vertex

For any tree $T, \operatorname{dem}(T)=1$.

$$
\text { For any tree } T, \operatorname{dem}(T)=1
$$

G has $\operatorname{dem}(G)=1$ if and only if G is a tree.

$$
\text { For any tree } T, \operatorname{dem}(T)=1
$$

Theorem

$$
G \text { has } \operatorname{dem}(G)=1 \text { if and only if } G \text { is a tree. }
$$

$$
\text { For any tree } T, \operatorname{dem}(T)=1
$$

Theorem

$$
G \text { has } \operatorname{dem}(G)=1 \text { if and only if } G \text { is a tree. }
$$

Theorem
G has $\operatorname{dem}(G)=1$ if and only if G is a tree.

Theorem
If G is uniyclic, then $\operatorname{dem}(G)=2$.

Theorem
G has $\operatorname{dem}(G)=1$ if and only if G is a tree.

Theorem
If G is uniyclic, then $\operatorname{dem}(G)=2$.

Theorem
G has $\operatorname{dem}(G)=1$ if and only if G is a tree.

Theorem
If G is uniyclic, then $\operatorname{dem}(G)=2$.

Connection to feedback edge sets

Feedback edge set of G : set S of edges such that every cycle of G has an edge in S $f e s(G)$: smallest size of a feedback edge set of G.

Connection to feedback edge sets

Feedback edge set of G : set S of edges such that every cycle of G has an edge in S $f e s(G)$: smallest size of a feedback edge set of G.

Tree $T: f e s(T)=0$; Unicyclic graph $G: f e s(G)=1$

Connection to feedback edge sets

Feedback edge set of G : set S of edges such that every cycle of G has an edge in S $f e s(G)$: smallest size of a feedback edge set of G.

Lemma (Folklore)

If $\operatorname{fes}(G)=k$, then G is obtained from a multigraph H of order at most $2 k-2$ and size $3 k-3$ by iteratively subdividing edges and adding degree 1 vertices.

Connection to feedback edge sets

Feedback edge set of G : set S of edges such that every cycle of G has an edge in S $f e s(G)$: smallest size of a feedback edge set of G.

Lemma (Folklore)

If $\operatorname{fes}(G)=k$, then G is obtained from a multigraph H of order at most $2 k-2$ and size $3 k-3$ by iteratively subdividing edges and adding degree 1 vertices.

Connection to feedback edge sets

Feedback edge set of G : set S of edges such that every cycle of G has an edge in S fes (G) : smallest size of a feedback edge set of G.

Lemma (Folklore)

If $\operatorname{fes}(G)=k$, then G is obtained from a multigraph H of order at most $2 k-2$ and size $3 k-3$ by iteratively subdividing edges and adding degree 1 vertices.

Connection to feedback edge sets

Feedback edge set of G : set S of edges such that every cycle of G has an edge in S fes (G) : smallest size of a feedback edge set of G.

Lemma (Folklore)

If $\operatorname{fes}(G)=k$, then G is obtained from a multigraph H of order at most $2 k-2$ and size $3 k-3$ by iteratively subdividing edges and adding degree 1 vertices.
(Tight for a ladder $P_{2} \square P_{k+1}$.)

Connection to feedback edge sets

Feedback edge set of G : set S of edges such that every cycle of G has an edge in S $f e s(G)$: smallest size of a feedback edge set of G.

Lemma (Folklore)

If $\operatorname{fes}(G)=k$, then G is obtained from a multigraph H of order at most $2 k-2$ and size $3 k-3$ by iteratively subdividing edges and adding degree 1 vertices.

Theorem

For any graph G, we have $\operatorname{dem}(G) \leq 5 f e s(G)-5$.

Connection to feedback edge sets

Feedback edge set of G : set S of edges such that every cycle of G has an edge in S fes (G) : smallest size of a feedback edge set of G.

Lemma (Folklore)
If $\operatorname{fes}(G)=k$, then G is obtained from a multigraph H of order at most $2 k-2$ and size $3 k-3$ by iteratively subdividing edges and adding degree 1 vertices.

Theorem
For any graph G, we have $\operatorname{dem}(G) \leq 2 f e s(G)-2$.

NP-hardness

DEM

Input: Graph G
Task: Find smallest distance-edge-monitoring set of G
Theorem

DEM is NP-complete.

Proof: reduction from VERTEX COVER:
Lemma
For any graph G of radius at least $4, \operatorname{dem}(G) \times K_{1}=v c(G)$.

Theorem
DEM is approximable within a factor of $\ln |E(G)|+1$ for any graph G.

Proof: reduction to SET COVER.
Sets are vertices of G, elements are edges of G.

Theorem

For every $\epsilon>0$, DEM is NOT approximable within a factor of $(1-\epsilon) \ln |E(G)|$ in polynomial time, unless $P=N P$ (even on subcubic bipartite graphs).
Moreover, the probem is W[2]-hard for parameter solution size.

Proof: reduction from SET COVER.

- Conjecture: $\operatorname{dem}(G) \leq f e s(G)+1$ (true for $f e s(G)=0,1,2$)
- Is DEM NP-hard for planar graphs? Interval graphs?
- Are there approximation/FPT algorithms for nice classes?
- Conjecture: $\operatorname{dem}(G) \leq f e s(G)+1$ (true for $f e s(G)=0,1,2$)
- Is DEM NP-hard for planar graphs? Interval graphs?
- Are there approximation/FPT algorithms for nice classes?

Thanks!

