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Locating a burglar

Detectors can detect movement in their room and adjacent rooms
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Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961 ﬂ)

Hypergraph (X,&). A separating set is a subset C C X such that each edge e € &
contains a distinct subset of C.

X ={vi,va,v3,va,v5}

€2 e1 oV (g’:{{Vl},{V]_,VQ,V3},{V3,V4},{V3,V4,V5}}
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Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961 )

Hypergraph (X,&). A separating set is a subset C C X such that each edge e € &
contains a distinct subset of C.

Equivalently: for any pair e, f of edges, there is a vertex in C contained in exactly one
of e, f.

X ={vi,va,v3,va,v5}

€2 e1 oV (g’:{{Vl},{Vl,Vz,V3},{V3,V4},{V3,V4,V5}}
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Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961 )

Hypergraph (X,&). A separating set is a subset C C X such that each edge e € &
contains a distinct subset of C.

Equivalently: for any pair e, f of edges, there is a vertex in C contained in exactly one
of e, f.

e, oV, X:{V17V27V37V47V5}

aCon ) & ={{vi},{vi,v2,v3},{va,va},{v3,va,v5}}
— €=l
e, \V‘ etNC=0
enNC=0
esNC=0
esn C = {vs}
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Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961 )

Hypergraph (X,&). A separating set is a subset C C X such that each edge e € &
contains a distinct subset of C.

Equivalently: for any pair e, f of edges, there is a vertex in C contained in exactly one
of e, f.

e, oV, X:{V17V27V37V47V5}

aCon ) & ={{vi},{vi,v2,v3},{va,va},{v3,va,v5}}
— C=lwwl
& \V‘ eenC=0
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Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961 )

Hypergraph (X,&). A separating set is a subset C C X such that each edge e € &
contains a distinct subset of C.

Equivalently: for any pair e, f of edges, there is a vertex in C contained in exactly one
of e, f.

e, oV, X:{V17V27V37V47V5}

aCon ) & ={{vi},{vi,v2,v3},{va,va},{v3,va,v5}}
— C= {V55V27V3}

eNC={w,v}

e3N C={vs}
eaNC={v3, w5}
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Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961 )

Hypergraph (X,&). A separating set is a subset C C X such that each edge e € &
contains a distinct subset of C.

Equivalently: for any pair e, f of edges, there is a vertex in C contained in exactly one
of e, f.

e, oV, X:{V17V27V37V47V5}

aCow ) &={{w},{vi,v2,v3},{v3,va},{v3,va,v5}}
— C:{VSaV17V3}
ey \V‘ eeNC={vi}
eaNC={v,vs}
esNC = {V3}
eaNC={v3, w5}
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Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961 E)

Hypergraph (X,&). A separating set is a subset C C X such that each edge e € &
contains a distinct subset of C.

Equivalently: for any pair e, f of edges, there is a vertex in C contained in exactly one
of e, f.

e, oV, X:{V17V27V37V47V5}

aCow ) &={{w},{vi,v2,v3},{v3,va},{v3,va,v5}}
— C= {V5aV17V3}

eNC={v,vs}
e3NC={vs}
64ﬂC={V3,V5}

Also known as Separating system, Distinguishing set, Test cover, Distinguishing
transversal, Discriminating code...
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Applications

@ network-monitoring, fault detection (burglar)

o medical diagnostics: testing samples for diseases (test cover)

@ biological identification (attributes of individuals)

@ learning theory: teaching dimension

@ machine learning: V-C dimension (Vapnik, Cervonenkis, 1971)

@ graph isomorphism: canonical representation of graphs (Babai, 1982)

o logic definability of graphs (Kim, Pikhurko, Spencer, Verbitsky, 2005)

Florent Foucaud Graph identification problems 7/37



General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&’), a separating set C has size at least logy(|£]).

Proof: Must assign to each edge, a distinct subset of C: |&| < 2/€I. O
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&’), a separating set C has size at least logy(|£]).

Proof: Must assign to each edge, a distinct subset of C: |&| < 2/€I. O

Theorem (Bondy's theorem, 1972 l)

A minimal separating set of hypergraph (X,&) has size at most |£|— 1.
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&’), a separating set C has size at least logy(|£]).

Proof: Must assign to each edge, a distinct subset of C: |&| < 2/€I. O

Theorem (Bondy's theorem, 1972 l)

A minimal separating set of hypergraph (X,&) has size at most |£|— 1.

Proof:
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&’), a separating set C has size at least logy(|£]).

Proof: Must assign to each edge, a distinct subset of C: |&| < 2/€I. O

Theorem (Bondy's theorem, 1972 ‘)

A minimal separating set of hypergraph (X,&) has size at most |£|— 1.

Proof:

Which are the “problematic” vertices?
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&’), a separating set C has size at least logy(|£]).

Proof: Must assign to each edge, a distinct subset of C: |&| < 2/€I. O

Theorem (Bondy's theorem, 1972 ‘)

A minimal separating set of hypergraph (X,&) has size at most |£|— 1.

Proof:

e Build graph G on vertex set V(G) =&
2

e hd
[ ]
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&’), a separating set C has size at least logy(|£]).

Proof: Must assign to each edge, a distinct subset of C: |&| < 2/€I. O

Theorem (Bondy's theorem, 1972 ‘)

A minimal separating set of hypergraph (X,&) has size at most |£|— 1.

Proof:
e Build graph G on vertex set V(G) =&
2
e; X Join ¢ to ¢; iff e = ;U {x} for some x € X,
label it “x”
X ®€s
€m
X e,
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&’), a separating set C has size at least logy(|£]).

Proof: Must assign to each edge, a distinct subset of C: |&| < 2/€I. O

Theorem (Bondy's theorem, 1972 ‘)

A minimal separating set of hypergraph (X,&) has size at most |£|— 1.

Proof:
e Build graph G on vertex set V(G) =&
2
e; X Join ¢; to ¢; iff f = ¢; U {x} for some x € X,
label it “x"
V4
y
€3
en z
X [

es y
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&’), a separating set C has size at least logy(|£]).

Proof: Must assign to each edge, a distinct subset of C: |&| < 2/€I. O

Theorem (Bondy's theorem, 1972 ‘)

A minimal separating set of hypergraph (X,&) has size at most |£|— 1.

Proof:
e Build graph G on vertex set V(G) = &.
2
e; X Join ¢; to ¢; iff f = ¢; U {x} for some x € X,
label it “x”
Yy If an edge labeled x appears multiple times,
e;  keep only one of them.
e z This destroys all cycles in G!
€4
°
€5
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&’), a separating set C has size at least logy(|£]).

Proof: Must assign to each edge, a distinct subset of C: |&| < 2/€I. O

Theorem (Bondy's theorem, 1972 ‘)

A minimal separating set of hypergraph (X,&) has size at most |£|— 1.

Proof:
e Build graph G on vertex set V(G) =&
2
e; X Join ¢; to ¢; iff f = ¢; U {x} for some x € X,
label it “x”
Yy If an edge labeled x appears multiple times,
e;  keep only one of them.
. oA
e z This destroys all cycles in G!
e, So, there are at most |&]| — 1 “problematic”
° vertices. — Find one “non-problematic vertex”
€5 and omit it. 0
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Some example problems

Special graph-based cases of separating sets in hypergraphs:
o identifying codes
o open neighbourhood locating-dominating sets
@ path/cycle identifying covers

@ separating path systems
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Some example problems

Special graph-based cases of separating sets in hypergraphs:
o identifying codes
o open neighbourhood locating-dominating sets
@ path/cycle identifying covers
@ separating path systems
A variation:
o locating-dominating sets
@ locating-total dominating sets

Geometric versions: e.g. seperating points using disks in Euclidean space
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Some example problems

Special graph-based cases of separating sets in hypergraphs:
o identifying codes
o open neighbourhood locating-dominating sets
@ path/cycle identifying covers
@ separating path systems
A variation:
o locating-dominating sets
@ locating-total dominating sets

Geometric versions: e.g. seperating points using disks in Euclidean space
Distance-based identification:

o resolving sets (metric dimension)
@ centroidal locating sets

@ tracking paths problem
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Open neighbourhood location-domination in
graphs
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Open neighbourhood locating-dominating sets

G: undirected graph  N(u): set of neighbours of v

Definition - OLD set (Seo, Slater, 2010 2 II)

Subset D of V(G) such that:
e D is a total dominating set: Yu € V(G), N(u)ND # 0, and

e D is a separating set: Yu # v of V(G), N(u)NnD # N(v)ND

Notation. OLD(G): OLD number of G,
minimum size of an OLD-set in G

{b} | ! {b.f} ! {d}
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Open neighbourhood locating-dominating sets

G: undirected graph  N(u): set of neighbours of v

Definition - OLD set (Seo, Slater, 2010 2 II)

Subset D of V(G) such that:
e D is a total dominating set: Yu € V(G), N(u)ND # 0, and

e D is a separating set: Yu # v of V(G), N(u)NnD # N(v)ND

Notation. OLD(G): OLD number of G,
minimum size of an OLD-set in G

Separating set of G = separating set of open neighbourhood hypergraph of G
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Open neighbourhood locating-dominating sets

G: undirected graph  N(u): set of neighbours of v

Definition - OLD set (Seo, Slater, 2010 2 II)

Subset D of V(G) such that:
e D is a total dominating set: Yu € V(G), N(u)ND # 0, and

e D is a separating set: Yu # v of V(G), N(u)NnD # N(v)ND

Notation. OLD(G): OLD number of G,
minimum size of an OLD-set in G

Separating set of G = separating set of open neighbourhood hypergraph of G
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Examples: paths

Definition - OLD set

Subset D of V/(G) such that:
e D is a total dominating set: Vu € V(G), N(u)ND # 0, and
o D is a separating set: Yu # v of V(G), N(u)ND # N(v)ND

Total domination number: 7:(Pn) ~ [ 5]

O—8—0O0—"0C—"08—0 O0—C—"0 00— 0O
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Examples: paths

Definition - OLD set

Subset D of V/(G) such that:
e D is a total dominating set: Vu € V(G), N(u)ND # 0, and
o D is a separating set: Yu # v of V(G), N(u)ND # N(v)ND

Total domination number: 7:(Pn) ~ [ 5]

O—8—0O0—"0C—"08—0 O0—C—"0 00— 0O

OLD-number: OLD(P,) ~ {%"]
06— 000000 0—0—0—0—0—0 O
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Locatable graphs

Remark

Not all graphs have an OLD set!

An isolated vertex cannot be totally dominated.
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Locatable graphs

Remark

Not all graphs have an OLD set!

An isolated vertex cannot be totally dominated.

Open twins = pair u, v such that N(u) = N(v).
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Locatable graphs

Remark
Not all graphs have an OLD set!
An isolated vertex cannot be totally dominated.
Open twins = pair u, v such that N(u) = N(v).
Proposition

A graph is locatable if and only if it has no isolated vertices and open twins.

Florent Foucaud Graph identification problems 13 /37



Lower bound on OLD(G)

I Definition - OLD set|

Subset D of V/(G) such that:
e D is a total dominating set: Yu € V(G), N(u)ND # 0, and
o D is a separating set: Vu # v of V(G), N(u)ND # N(v)ND

Proposition

G locatable graph on n vertices: [logy(n+1)] < OLD(G). (Tight.)
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Lower bound on OLD(G)

I Definition - OLD set|

Subset D of V/(G) such that:
e D is a total dominating set: Yu € V(G), N(u)ND # 0, and
o D is a separating set: Vu # v of V(G), N(u)ND # N(v)ND

Proposition

G locatable graph on n vertices: [logy(n+1)] < OLD(G). (Tight.)

Proof: For any OLD-set D, we must assign to each vertex, a distinct non-empty
subset of D: n < 200l 1,
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Lower bound on OLD(G)

I Definition - OLD set|

Subset D of V/(G) such that:
e D is a total dominating set: Yu € V(G), N(u)ND # 0, and
o D is a separating set: Vu # v of V(G), N(u)ND # N(v)ND

Proposition

G locatable graph on n vertices: [logy(n+1)] < OLD(G). (Tight.)

Proof: For any OLD-set D, we must assign to each vertex, a distinct non-empty
subset of D: n < 200l 1,

OLD(G) =logy(n+1)

OLD(G) = logy(n+1)
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Upper bound on OLD(G)?

Definition - Half-graph Hy (Erd&s, Hajnal, 1983 H)

Bipartite graph on vertex sets {vi,...,v,} and {wy,...,w,}, with an edge {v;,w;}
if and only if i <.

%1 %1 %) %1 %) V3 V4 Vs
w1 w1 w2 wi w2 w3 1z ws

Hi =P Hy =Py Hs
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Upper bound on OLD(G)?

Definition - Half-graph Hy (Erd&s, Hajnal, 1983 H)

Bipartite graph on vertex sets {vi,...,v,} and {wy,...,w,}, with an edge {v;,w;}
if and only if i <j.

vi

w1

Hi =P

Some vertices are forced to be in any OLD-set because of domination
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Upper bound on OLD(G)?

Definition - Half-graph Hy (Erd&s, Hajnal, 1983 H)

Bipartite graph on vertex sets {vi,...,v,} and {wy,...,w,}, with an edge {v;,w;}
if and only if i <j.

vi vi V2

w1 w1 w2

Hi =P Hy =Py

Some vertices are forced to be in any OLD-set because of domination
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Upper bound on OLD(G)?

Definition - Half-graph Hy (Erd&s, Hajnal, 1983 H)

Bipartite graph on vertex sets {vi,...,v,} and {wy,...,w,}, with an edge {v;,w;}
if and only if i <j.

vi vi V2

w1 w1 w2

Hi =P Hy =Py

Some vertices are forced to be in any OLD-set because of domination or location
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Upper bound on OLD(G)?

7

Definition - Half-graph Hy (Erd&s, Hajnal, 1983 H)

Bipartite graph on vertex sets {vi,...,vc} and {wy,...,w}, with an edge {v;,w;}
if and only if i <.

%1 %1 %) %1 %) V3 V4 Vs
w1 w1 w2 wi w2 w3 1z ws

Hi =P Hy =Py Hs

Some vertices are forced to be in any OLD-set because of domination or location
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Upper bound on OLD(G)?

Definition - Half-graph Hy (Erd&s, Hajnal, 1983 H)

Bipartite graph on vertex sets {vi,...,v,} and {wy,...,w,}, with an edge {v;,w;}
if and only if i <.

%1 %1 %) %1 %) V3 V4 Vs
w1 w1 w2 wi w2 w3 1z ws

Hi =P Hy =Py Hs

Some vertices are forced to be in any OLD-set because of domination or location

Proposition

For every half-graph Hy of order n =2k, OLD(H,) = n.
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Characterizing “bad graphs” for OLD-sets

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2020+ B & =)

Let G be a connected locatable graph of order n.
Then, OLD(G) = n if and only if G is a half-graph.
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Characterizing “bad graphs” for OLD-sets

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2020+ ﬂ ﬁ =)

Let G be a connected locatable graph of order n.
Then, OLD(G) = n if and only if G is a half-graph.

Proof:

Such a graph has only forced vertices.
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Characterizing “bad graphs” for OLD-sets

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2020+ ﬂ ﬁ =)

Let G be a connected locatable graph of order n.
Then, OLD(G) = n if and only if G is a half-graph.

Proof:
Such a graph has only forced vertices.

By Bondy's theorem, there is at least one vertex x that is not location-forced: so, its
neighbour y is of degree 1.
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Characterizing “bad graphs” for OLD-sets

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2020+ ﬂ ﬁ =)

Let G be a connected locatable graph of order n.
Then, OLD(G) = n if and only if G is a half-graph.

Proof:
Such a graph has only forced vertices.

By Bondy's theorem, there is at least one vertex x that is not location-forced: so, its
neighbour y is of degree 1.

G' = G—{x,y} is locatable, connected and has OLD(G’) = n—2.
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Characterizing “bad graphs” for OLD-sets

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2020+ ﬂ ﬁ =)

Let G be a connected locatable graph of order n.
Then, OLD(G) = n if and only if G is a half-graph.

Proof:
Such a graph has only forced vertices.

By Bondy's theorem, there is at least one vertex x that is not location-forced: so, its
neighbour y is of degree 1.

G' = G—{x,y} is locatable, connected and has OLD(G’) = n—2.

By induction, G’ is a half-graph. We can conclude that G is a half-graph too.
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Location-domination in graphs
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Location-domination

Definition - Locating-dominating set (Slater, 1980’s) n

D C V(G) locating-dominating set of G:
o for every ue V, N[v]N D # 0 (domination).
e Yu#v of V(G)\D, N(uynD # N(v)N D (location).

Notation. location-domination number LD(G),
smallest size of a locating-dominating set of G
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Location-domination

Definition - Locating-dominating set (Slater, 1980’s) m

D C V(G) locating-dominating set of G:
o for every ue V, N[v]N D # 0 (domination).
e Yu#v of V(G)\D, N(u)ynD # N(v)ND (location).

Notation. location-domination number LD(G),
smallest size of a locating-dominating set of G

Domination number: DOM(P,) = {%1

O—8—OC—"T0C—"8O0—"0C—"8O0—"0C—"08—0C—"0C—e—O

Location-domination number: LD(P,) = [32]

O——OC—"08O0—0C—08—O0—"108—O0—0C—"8—0O0—"8——0
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7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

e T O
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7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

T

Theorem (Location-domination bound, Slater, 1980’s m)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

Tight examples: E %
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7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

T

Theorem (Location-domination bound, Slater, 1980’s m)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

Tight examples: E %

Remark: tight examples contain many twin-vertices!!
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

7

Theorem (Location-domination bound, Slater, 1980’s ‘)

G graph of order n, no isolated vertices. Then LD(G) < n—1.
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

7

Theorem (Location-domination bound, Slater, 1980’s ‘)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 4 )

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

7

Theorem (Location-domination bound, Slater, 1980’s ﬂ)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 4 )

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

Remark:
e twins are easy to detect

e twins have a trivial behaviour w.r.t. location-domination
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

7

Theorem (Location-domination bound, Slater, 1980’s II)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 4 E)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

If true, tight: 1. domination-extremal graphs

’
oL
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

7

Theorem (Location-domination bound, Slater, 1980’s II)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 4 E)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

If true, tight: 2. a similar construction
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

7

Theorem (Location-domination bound, Slater, 1980’s ﬂ)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 4 ﬂ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

If true, tight: 3. a family with domination number 2
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

7

Theorem (Location-domination bound, Slater, 1980’s ﬂ)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 4 ﬂ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

If true, tight: 4. family with dom. number 2: complements of half-graphs

‘ Clique on {Xks1,-. X2k }
ANANNAN
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Upper bound: a conjecture - special graph classes

7

Conjecture (Garijo, Gonzélez & Marquez, 2014 2 E)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

7

Theorem (Garijo, Gonzélez & Méarquez, 2014 2 )

Conjecture true if G has independence number > n/2.
(in particular, if bipartite)

Proof: every vertex cover is a locating-dominating set
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Upper bound: a conjecture - special graph classes

’

Conjecture (Garijo, Gonzélez & Marquez, 2014 2 ﬂ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

o/(G): matching number of G

Theorem (Garijo, Gonzalez & Marquez, 2014 ) 4 ﬂ )

If G has no 4-cycles, then LD(G) < o/(G) < 5.

Proof:
e Consider special maximum matching M

e Select one vertex in each edge of M
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Upper bound: a conjecture - special graph classes

’

Conjecture (Garijo, Gonzélez & Marquez, 2014 2 ﬂ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

o/(G): matching number of G

Theorem (Garijo, Gonzalez & Marquez, 2014 ) 4 ﬂ )

If G has no 4-cycles, then LD(G) < o/(G) < 5.

Proof:
e Consider special maximum matching M

e Select one vertex in each edge of M
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Upper bound: a conjecture - special graph classes

’

Conjecture (Garijo, Gonzélez & Marquez, 2014 2 ﬂ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

7

g
Theorem (F., Henning, 2016 &71)

Conjecture true if G is cubic.

Proof: Involved argument using maximum matching and Tutte-Berge theorem.

odd components
inG-X
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Upper bound: a conjecture - special graph classes

Conjecture (Garijo, Gonzélez & Marquez, 2014 ¢ E)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

Theorem (F., Henning, 2016 &%)

Conjecture true if G is cubic.

Bound is tight:

Question

Do we have LD(G) = 3 for other cubic graphs?
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Upper bound: a conjecture - special graph classes

Conjecture (Garijo, Gonzélez & Marquez, 2014 ¢ E)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

7

Theorem (F., Henning, 2016 &%)

Conjecture true if G is cubic.

Question

Are there twin-free (cubic) graphs with LD(G) > /(G)?

(if not, conjecture is true)
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Upper bound: a conjecture - special graph classes

Conjecture (Garijo, Gonzélez & Marquez, 2014 2 E)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

g 3
Theorem (F., Henning, Léwenstein, Sasse, 2016 &7 . ﬁ)

Conjecture true if G is split graph or complement of bipartite graph.

Line graph of G: intersection graph of the edges of G.

4
Theorem (F., Henning, 2017 &7)

Conjecture true if G is a line graph.

Proof: By induction on the order, using edge-locating-dominating sets
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Upper bound: a conjecture - general bound

Conjecture (Garijo, Gonzélez & Marquez, 2014 ¢ E)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

7

g 3
Theorem (F., Henning, Léwenstein, Sasse, 2016 &1 . ﬁ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < %n.
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Upper bound: a conjecture - general bound

Conjecture (Garijo, Gonzélez & Marquez, 2014 2 E)

n LD(G) < 4.

G graph of order n, no isolated vertices, no twins. The

7

§ 3
Theorem (F., Henning, Léwenstein, Sasse, 2016 &1 . ﬁ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < %n.

Proof: e There exists a dominating set D such that each vertex has a private
neighbour. We have |D| < nj + ny.

Graph identification problems
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Upper bound: a conjecture - general bound

Conjecture (Garijo, Gonzélez & Marquez, 2014 2 ﬂ)

n LD(G) < 4.

G graph of order n, no isolated vertices, no twins. The

7

§ 3
Theorem (F., Henning, Léwenstein, Sasse, 2016 & I. ﬁ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < %n.

Proof: e There exists a dominating set D such that each vertex has a private
neighbour. We have |D| < nj + ny.

o there is a LD-set of size |D|+ ny;
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Florent Foucaud



Upper bound: a conjecture - general bound

Conjecture (Garijo, Gonzélez & Marquez, 2014 2 ﬂ)

n LD(G) < 4.

G graph of order n, no isolated vertices, no twins. The

7

§ 3
Theorem (F., Henning, Léwenstein, Sasse, 2016 & I. ﬁ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < %n.

Proof: e There exists a dominating set D such that each vertex has a private

neighbour. We have |D| < nj + ny.

o there is a LD-set of size |D|+ny; there is a LD-set of size n—ny — np
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Upper bound: a conjecture - general bound

7

Conjecture (Garijo, Gonzélez & Marquez, 2014 2 ﬂ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

7

§ 3
Theorem (F., Henning, Léwenstein, Sasse, 2016 & I. ﬁ)

2,

G graph of order n, no isolated vertices, no twins. Then LD(G) < 5n.

Proof: e There exists a dominating set D such that each vertex has a private
neighbour. We have |D| < nj + ny.

o there is a LD-set of size |D|+ny; there is a LD-set of size n—ny — np

e min{|D|+n1,n—ny —np} < %n

D

AN
‘A\ / \\ V/

Graph identification problems
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Lower bounds

Graph identification problems




Proposition

G identifiable graph on n vertices: [logy(n+1)] < OLD(G) < LD(G).
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Lower bounds

Proposition

G identifiable graph on n vertices: [logy(n+1)] < OLD(G) < LD(G).

Tight examples:

OLD(G) =logy(n+1)

OLD(G) = logy(n+1)
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Proposition

G identifiable graph on n vertices: [logy(n+1)] < OLD(G) < LD(G).

7

Theorem (Rall & Slater, 1980's £ i)

— 10
G planar graph, order n, LD(G) = k. Then n <7k —10 — LD(G) > 210,
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Proposition

G identifiable graph on n vertices: [logy(n+1)] < OLD(G) < LD(G).

7

Theorem (Rall & Slater, 1980's £ i)

— 10
G planar graph, order n, LD(G) = k. Then n <7k —10 — LD(G) > 210,

Tight examples: Figure 3.
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Interval graphs

Definition - Interval graph]

Intersection graph of intervals of the real line.

I3
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Lower bound for interval graphs

7

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 3 “ E )

G interval graph of order n, LD(G) = k.

Then n < X5 ie 1D(G) = Q(v/n).
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Lower bound for interval graphs

7

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 3 “ E )

G interval graph of order n, LD(G) = k.

Then n < X5 ie 1D(G) = Q(v/n).

o Identifying code D of size k.

@ Define zones using the right points of intervals in D.
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Lower bound for interval graphs

7

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 3 “ E )

G interval graph of order n, LD(G) = k.

Then n < X5 ie 1D(G) = Q(v/n).

1 2
— —
1-1 2-3
3
—
1-2 2-4
1-4 4
—
1-3 3-4

o Identifying code D of size k.
@ Define zones using the right points of intervals in D.

@ Each vertex intersects a consecutive set of intervals of D when ordered by left
points.
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Lower bound for interval graphs

7

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 3 “ E )

G interval graph of order n, LD(G) = k.

Then n < X5 ie 1D(G) = Q(v/n).

1 2
— —
1-1 2-3
3
—
1-2 2-4
1-4 4
—
1-3 3-4

o Identifying code D of size k.
@ Define zones using the right points of intervals in D.

@ Each vertex intersects a consecutive set of intervals of D when ordered by left
points.

S <Yk (k—i)= Mk
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Lower bound for interval graphs

7

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 3 “ E )

G interval graph of order n, LD(G) = k.

Then n < X5 ie 1D(G) = Q(v/n).

Tight:
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Vapnik-Cervonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X, &)
(initial motivation: machine learning, 1971)

A set S C X is shattered:
for every subset S’ C S, there is an edge e with eNS=5'.

V-C dimension of H: maximum size of a shattered set in H
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Vapnik-Cervonenkis dimension

na

Measure of intersection complexity of sets in a hypergraph (X, &)
(initial motivation: machine learning, 1971)

A set S C X is shattered:
for every subset S’ C S, there is an edge e with eNS=5'.

V-C dimension of H: maximum size of a shattered set in H

Typically bounded for geometric hypergraphs: @ [ o
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood
hypergraph

/NI (G
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood
hypergraph

Typically bounded for geometric intersection graphs:

— interval graphs (d = 2), Cs-free graphs (d = 2), line graphs (d = 4), permutation
graphs (d = 3), unit disk graphs (d = 3), planar graphs (d =4)...
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood
hypergraph

Typically bounded for geometric intersection graphs:

— interval graphs (d = 2), Cs-free graphs (d = 2), line graphs (d = 4), permutation
graphs (d = 3), unit disk graphs (d = 3), planar graphs (d =4)...

7

Theorem (Sauer-Shelah Lemma R ﬁ)

Let H be a hypergraph of V-C dimension at most d. Then, any set S of vertices
has at most |S|? distinct traces.
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood
hypergraph

Typically bounded for geometric intersection graphs:

— interval graphs (d = 2), Cs-free graphs (d = 2), line graphs (d = 4), permutation
graphs (d = 3), unit disk graphs (d = 3), planar graphs (d =4)...

7

Theorem (Sauer-Shelah Lemma R ﬁ)

Let H be a hypergraph of V-C dimension at most d. Then, any set S of vertices
has at most |S|? distinct traces.

Corollary

G graph of order n, LD(G) = k, V-C dimension < d. Then n= O(k9).
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Metric dimension

Graph identification problems



Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites 4 distance to them
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Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites 4 distance to them

l Question '

Does the “GPS" approach also work in undirected unweighted graphs?
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Metric dimension

Now, w € V(G) distinguishes {u, v} if dist(w,u) # dist(w,v)

7

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976) 2 E b

R C V(G) resolving set of G:
Yu# v in V(G), there exists w € R that distinguishes {u,v}.
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Metric dimension

Now, w € V(G) distinguishes {u, v} if dist(w,u) # dist(w,v)

7

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976) A E 4

R C V(G) resolving set of G:
Yu# v in V(G), there exists w € R that distinguishes {u,v}.
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Metric dimension

Now, w € V(G) distinguishes {u, v} if dist(w,u) # dist(w,v)

7

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976) A E 4

R C V(G) resolving set of G:
Yu# v in V(G), there exists w € R that distinguishes {u,v}.

MD(G): metric dimension of G, minimum size of a resolving set of G.
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Metric dimension

Now, w € V(G) distinguishes {u, v} if dist(w,u) # dist(w,v)

7

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976) A E 4

R C V(G) resolving set of G:
Yu# v in V(G), there exists w € R that distinguishes {u,v}.

MD(G): metric dimension of G, minimum size of a resolving set of G.
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e—O0—0OCO—0C—"0O——0C—C0C—-O0

Proposition

MD(G)=1 < G is a path
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e—O0—0OCO—0C—"0O——0C—C0C—-O0

Proposition

MD(G)=1 < G is a path
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e—O0—0OCO—0C—"0O——0C—C0C—-O0

Proposition

MD(G)=1 < G is a path

Proposition

For any square grid G, MD(G) = 2.

Graph identification problems



Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree >3 and 1.
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree >3 and 1.
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree >3 and 1.

Observation

R resolving set. If v has k legs, at least k —1 legs contain a vertex of R.

Simple leg rule: if v has k > 2 legs, select k —1 leg endpoints.
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree >3 and 1.

Observation

R resolving set. If v has k legs, at least k —1 legs contain a vertex of R.

Simple leg rule: if v has k > 2 legs, select k —1 leg endpoints.

Theorem (Slater, 1975 ﬂ)

For any tree, the simple leg rule produces an optimal resolving set.
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Bounds with diameter

Example of path: no bound n < f(MD(G)) possible.
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Bounds with diameter

Example of path: no bound n < f(MD(G)) possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002 E ' .ﬁ)

G of order n, diameter D, MD(G) = k. Then n < D¥ + k.

(diameter: maximum distance between two vertices)
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Bounds with diameter

Example of path: no bound n < f(MD(G)) possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002 E ' .ﬁ)

G of order n, diameter D, MD(G) = k. Then n < D¥ + k.

(diameter: maximum distance between two vertices)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 ﬁ “ 3 )

G interval graph of order n, MD(G k, diameter D. Then n= O(Dk?) i.e.

(\/g) (Tight.)
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Bounds with diameter

Example of path: no bound n < f(MD(G)) possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002 E ' .ﬁ)

G of order n, diameter D, MD(G) = k. Then n < D¥ + k.

(diameter: maximum distance between two vertices)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 ﬁ “ E )

G interval graph of order n, MD(G) = k, diameter D. Then n= O(Dk?) i.e.

k=Q(/B). (Tight))

— Proofs are similar as for identifying codes.
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Trees

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 ‘B‘ 4 mgv . E)

T a tree with diameter D and MD(T) = k, then

n§{ L(kD+4)(D+2)  if Deven, _ o(kD?)

$(kD—k+8)(D+1) if D odd.

Bounds are tight.

k=2,D=6 k=2 D=7

TN
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Planar graphs

Using the concept of distance-VC-dimension:

7

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 Q‘ L4 [lgl . 3))

G planar with diameter D and MD(G) = k, then n= O(k*D%).
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Planar graphs

Using the concept of distance-VC-dimension:

7

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 ‘B‘ L4 ﬂ‘gl l E)

G planar with diameter D and MD(G) = k, then n= O(k*D%).

Tight? Example with k =3 and n = ©(D3):
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Conclusion

Some open problems:
e Conjecture: LD(G) < n/2 in the absence of twins

o Find tight bounds for id. problems in interesting graph classes
(beyond e.g. planar graphs)

e Find tight bounds for Metric Dimension in planar graphs of diameter D
(and other classes)
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Conclusion

Some open problems:
e Conjecture: LD(G) < n/2 in the absence of twins

o Find tight bounds for id. problems in interesting graph classes
(beyond e.g. planar graphs)

e Find tight bounds for Metric Dimension in planar graphs of diameter D
(and other classes)

THANKS FOR YOUR ATTENTION
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