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Locating a burglar in a building

Detectors can detect movement in their room and adjacent rooms

Building: undirected graph (rooms: vertices, doors: edges)
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Domination in graphs
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Domination

V (G): set of vertices of G

N[v ]: closed neighbourhood of vertex v (v together with its neighbours)

D ⊆ V (G) dominating set of G :

every vertex not in D has a neighbour in D

equivalently: for every v ∈ V (G), N[v ]∩D ̸= /0.

Definition - Dominating set (Ore, 1960’s)

Motivation: covering problems in telecommunication networks
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Notation: domination number DOM(G): smallest size of a dominating set of G
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A classic upper bound

G graph of order n, no isolated vertices. Then DOM(G) ≤ n
2 .

Theorem (Domination bound, Ore, 1960’s )

Tight examples:

Proof: Consider an inclusionwise minimal dominating set D of G .

→ its complement set V (G)\D is also a dominating set!

Thus, either D or V (G)\D has size at most n
2 .
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Location-domination in graphs

Florent Foucaud Identification problems in graphs 8 / 41



Location-domination

D ⊆ V (G) locating-dominating set of G :

for every vertex v ∈ V (G), N[v ]∩D ̸= /0 (domination).
∀u ̸= v of V (G)\D, N(u)∩D ̸= N(v)∩D (location).

Definition - Locating-dominating set (Slater, 1980’s)

Notation. location-domination number LD(G),
smallest size of a locating-dominating set of G

{a}

{a,f}

{e,f}

{f}
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Upper bounds

G graph of order n, no isolated vertices. Then DOM(G) ≤ n
2 .

Theorem (Domination bound, Ore, 1960’s )
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Upper bounds

G graph of order n, no isolated vertices. Then DOM(G) ≤ n
2 .

Theorem (Domination bound, Ore, 1960’s )

G graph of order n, no isolated vertices. Then LD(G) ≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s )

Florent Foucaud Identification problems in graphs 10 / 41



Upper bounds

G graph of order n, no isolated vertices. Then DOM(G) ≤ n
2 .

Theorem (Domination bound, Ore, 1960’s )

G graph of order n, no isolated vertices. Then LD(G) ≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s )

Tight examples:

Florent Foucaud Identification problems in graphs 10 / 41



Upper bounds

G graph of order n, no isolated vertices. Then DOM(G) ≤ n
2 .

Theorem (Domination bound, Ore, 1960’s )

G graph of order n, no isolated vertices. Then LD(G) ≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s )

Tight examples:

Remark: tight examples contain many twin-vertices!!

(Twins: vertices with the same sets of neighbours)
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Upper bound: a conjecture

G graph of order n, no isolated vertices. Then DOM(G) ≤ n
2 .

Theorem (Domination bound, Ore, 1960’s )

G graph of order n, no isolated vertices. Then LD(G) ≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s )
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2 .

Conjecture (Garijo, González & Márquez, 2014 )
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Upper bound: a conjecture

G graph of order n, no isolated vertices. Then DOM(G) ≤ n
2 .

Theorem (Domination bound, Ore, 1960’s )

G graph of order n, no isolated vertices. Then LD(G) ≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s )

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

Remark:

• twins are easy to detect

• twins have a trivial behaviour w.r.t. location-domination
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Upper bound: a conjecture

G graph of order n, no isolated vertices. Then DOM(G) ≤ n
2 .

Theorem (Domination bound, Ore, 1960’s )

G graph of order n, no isolated vertices. Then LD(G) ≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s )

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

If true, tight: 1. domination-extremal graphs
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Upper bound: a conjecture

G graph of order n, no isolated vertices. Then DOM(G) ≤ n
2 .

Theorem (Domination bound, Ore, 1960’s )

G graph of order n, no isolated vertices. Then LD(G) ≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s )

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

If true, tight: 2. a similar construction
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Upper bound: a conjecture

G graph of order n, no isolated vertices. Then DOM(G) ≤ n
2 .

Theorem (Domination bound, Ore, 1960’s )

G graph of order n, no isolated vertices. Then LD(G) ≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s )

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

If true, tight: 3. a family with domination number 2
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Upper bound: a conjecture

G graph of order n, no isolated vertices. Then DOM(G) ≤ n
2 .

Theorem (Domination bound, Ore, 1960’s )

G graph of order n, no isolated vertices. Then LD(G) ≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s )

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

If true, tight: 4. family with dom. number 2: complements of half-graphs

Clique on {xk+1, ...,x2k}

Clique on {x1, ...,xk}

xk+1 xk+2 xk+3 ...
x2k−1 x2k

x1 x2 x3
...

xk−1 xk
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Upper bound: a conjecture - special graph classes

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

Conjecture true if G has independence number ≥ n/2. (e.g. bipartite)

Theorem (Garijo, González & Márquez, 2014 )
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Upper bound: a conjecture - special graph classes

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

Conjecture true if G has independence number ≥ n/2. (e.g. bipartite)

Theorem (Garijo, González & Márquez, 2014 )

Proof: every vertex cover of a twin-free graph is a locating-dominating set
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Upper bound: a conjecture - special graph classes

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

α ′(G): matching number of G

If G has no 4-cycles, then LD(G) ≤ α ′(G) ≤ n
2 .

Theorem (Garijo, González & Márquez, 2014 )

Proof:

• Consider special maximum matching M

• Select one vertex in each edge of M
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Upper bound: a conjecture - special graph classes

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

Conjecture verified for other graph classes:
split graphs
cobipartite graphs
line graphs
block graphs
subcubic graphs
...
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Upper bound: a conjecture - general bound

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ 2
3 n.

Theorem (F., Henning, Löwenstein, Sasse, 2016 )

Florent Foucaud Identification problems in graphs 13 / 41



Upper bound: a conjecture - general bound

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ 2
3 n.

Theorem (F., Henning, Löwenstein, Sasse, 2016 )

Proof: • There exists a dominating set D such that each vertex of D has a private
neighbour in V (G)\D. (classic lemma by Bollobas-Cockayne, 1979)
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Upper bound: a conjecture - general bound

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ 2
3 n.

Theorem (F., Henning, Löwenstein, Sasse, 2016 )

Proof: • There exists a dominating set D such that each vertex of D has a private
neighbour in V (G)\D. (classic lemma by Bollobas-Cockayne, 1979)

proof of Lemma: consider a smallest dominating set D that maximizes the number of
edges inside D. For every d ∈ D, there must be a vertex f (d) only dominated by d
(otherwise D \{d} is a dominating set). If f (d) ̸= d , it is a private neighbour of d . If
f (d) = d , d has no neighbour in D. But since there is no isolated vertex in G , d has a
neighbour c in V (G)\D, that has 2 neighbours in D. Then, D \{d}∪{c} contains
more edges than D, a contradiction: so, f (d) ̸= d .
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Upper bound: a conjecture - general bound

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ 2
3 n.

Theorem (F., Henning, Löwenstein, Sasse, 2016 )

Proof: • There exists a dominating set D such that each vertex of D has a private
neighbour in V (G)\D. (classic lemma by Bollobas-Cockayne, 1979)
Thus |D| ≤ n1 +n2. Take such D that is inclusionwise maximal.
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Upper bound: a conjecture - general bound

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ 2
3 n.

Theorem (F., Henning, Löwenstein, Sasse, 2016 )

Proof: • There exists a dominating set D such that each vertex of D has a private
neighbour in V (G)\D. (classic lemma by Bollobas-Cockayne, 1979)
Thus |D| ≤ n1 +n2. Take such D that is inclusionwise maximal.

• there is a LD-set of size n−n1 −n2
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Upper bound: a conjecture - general bound

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
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Conjecture (Garijo, González & Márquez, 2014 )

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ 2
3 n.

Theorem (F., Henning, Löwenstein, Sasse, 2016 )

Proof: • There exists a dominating set D such that each vertex of D has a private
neighbour in V (G)\D. (classic lemma by Bollobas-Cockayne, 1979)
Thus |D| ≤ n1 +n2. Take such D that is inclusionwise maximal.

• there is a LD-set of size n−n1 −n2

• there is a LD-set of size |D|+n1 because D is maximal

Florent Foucaud Identification problems in graphs 13 / 41



Upper bound: a conjecture - general bound

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ 2
3 n.

Theorem (F., Henning, Löwenstein, Sasse, 2016 )

Proof: • There exists a dominating set D such that each vertex of D has a private
neighbour in V (G)\D. (classic lemma by Bollobas-Cockayne, 1979)
Thus |D| ≤ n1 +n2. Take such D that is inclusionwise maximal.

• there is a LD-set of size n−n1 −n2

• there is a LD-set of size |D|+n1 because D is maximal

• min{|D|+n1,n−n1 −n2} ≤ 2
3 n
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Upper bound: a conjecture - general bound

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ 2
3 n.

Theorem (F., Henning, Löwenstein, Sasse, 2016 )

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ 5
8 n = 0.625n.

Theorem (Bousquet, Chuet, Falgas-Ravry, Jacques, Morelle, 2024)

Florent Foucaud Identification problems in graphs 13 / 41



Separating sets in hypergraphs
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Separating sets in hypergraphs

Hypergraph (X ,E ). A separating set is a subset C ⊆ X such that each edge e ∈ E
contains a distinct subset of C .

Definition - Separating set (Rényi, 1961 )

Equivalently:
for any pair e, f of edges, there is a vertex in C contained in exactly one of e, f .

v1

v2

v3 v4

v5

e1
e2

e4
e3

X = {v1,v2,v3,v4,v5}
E = {{v1},{v1,v2,v3},{v3,v4},{v3,v4,v5}}

Also known as Separating system, Distinguishing set, Test cover, Distinguishing
transversal, Discriminating code...
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Separating sets in hypergraphs

Hypergraph (X ,E ). A separating set is a subset C ⊆ X such that each edge e ∈ E
contains a distinct subset of C .

Definition - Separating set (Rényi, 1961 )

Equivalently:
for any pair e, f of edges, there is a vertex in C contained in exactly one of e, f .

v1

v2

v3 v4

v5

e1
e2

e4
e3

X = {v1,v2,v3,v4,v5}
E = {{v1},{v1,v2,v3},{v3,v4},{v3,v4,v5}}

C = {v5}

e1 ∩C = /0
e2 ∩C = /0
e3 ∩C = /0
e4 ∩C = {v5}

Also known as Separating system, Distinguishing set, Test cover, Distinguishing
transversal, Discriminating code...
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Separating sets in hypergraphs

Hypergraph (X ,E ). A separating set is a subset C ⊆ X such that each edge e ∈ E
contains a distinct subset of C .

Definition - Separating set (Rényi, 1961 )

Equivalently:
for any pair e, f of edges, there is a vertex in C contained in exactly one of e, f .

v1

v2

v3 v4

v5

e1
e2

e4
e3

X = {v1,v2,v3,v4,v5}
E = {{v1},{v1,v2,v3},{v3,v4},{v3,v4,v5}}

C = {v5,v2}

e1 ∩C = /0
e2 ∩C = {v2}
e3 ∩C = /0
e4 ∩C = {v5}

Also known as Separating system, Distinguishing set, Test cover, Distinguishing
transversal, Discriminating code...
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v1

v2

v3 v4

v5

e1
e2

e4
e3

X = {v1,v2,v3,v4,v5}
E = {{v1},{v1,v2,v3},{v3,v4},{v3,v4,v5}}

C = {v5,v2,v3}
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Separating sets in hypergraphs

Hypergraph (X ,E ). A separating set is a subset C ⊆ X such that each edge e ∈ E
contains a distinct subset of C .

Definition - Separating set (Rényi, 1961 )

Equivalently:
for any pair e, f of edges, there is a vertex in C contained in exactly one of e, f .

v1

v2

v3 v4

v5

e1
e2

e4
e3

X = {v1,v2,v3,v4,v5}
E = {{v1},{v1,v2,v3},{v3,v4},{v3,v4,v5}}

C = {v5,v1,v3}

e1 ∩C = {v1}
e2 ∩C = {v1,v3}
e3 ∩C = {v3}
e4 ∩C = {v3,v5}

Also known as Separating system, Distinguishing set, Test cover, Distinguishing
transversal, Discriminating code...
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Separating sets in hypergraphs

Hypergraph (X ,E ). A separating set is a subset C ⊆ X such that each edge e ∈ E
contains a distinct subset of C .

Definition - Separating set (Rényi, 1961 )

Equivalently:
for any pair e, f of edges, there is a vertex in C contained in exactly one of e, f .

v1

v2

v3 v4
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e1
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e4
e3

X = {v1,v2,v3,v4,v5}
E = {{v1},{v1,v2,v3},{v3,v4},{v3,v4,v5}}

C = {v5,v1,v3}

e1 ∩C = {v1}
e2 ∩C = {v1,v3}
e3 ∩C = {v3}
e4 ∩C = {v3,v5}

Also known as Separating system, Distinguishing set, Test cover, Distinguishing
transversal, Discriminating code...
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Applications

network-monitoring, fault detection (burglar)

medical diagnostics: testing samples for diseases (test cover)

biological identification (attributes of individuals)

learning theory: teaching dimension

machine learning: V-C dimension (Vapnik, Červonenkis, 1971)

graph isomorphism: canonical representation of graphs (Babai, 1982)

logic definability of graphs (Kim, Pikhurko, Spencer, Verbitsky, 2005)
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General bounds, Bondy’s theorem

For a hypergraph (X ,E ), a separating set C has size at least log2(|E |).

Proposition

Proof: Must assign to each edge, a distinct subset of C : |E | ≤ 2|C |.

A minimal separating set of hypergraph (X ,E ) has size at most |E |−1.

Theorem (Bondy’s theorem, 1972 )

Build graph G on vertex set V (G) = E .

Join ei to ej iff ei = ej ∪{x} for some x ∈ X ,
label it “x”

If an edge labeled x appears multiple times,
keep only one of them.

This destroys all cycles in G! → forest

So, at most |E |−1 “problematic” vertices.
→ Find “non-problematic vertex”, omit it.
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Some examples of identification problems
Special cases of separating sets in hypergraphs (graph-based):

identifying codes
open identifying codes
path/cycle identifying covers, separating path systems

A variation:
locating-dominating sets
locating-total dominating sets

Geometric versions: e.g. seperating points using disks in Euclidean space

Distance-based identification:
resolving sets (metric dimension)
strongly resolving sets
centroidal locating sets
tracking paths problem

Coloring-based identification
Adjacent vertex-distinguishing edge-coloring
locally identifying coloring
locating coloring
neighbor-locating coloring
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Open identifying codes in graphs
(a.k.a. open locating-dominating sets)
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Open identifying codes

G : undirected graph N(u): set of neighbours of v

Subset D of V (G) such that:
D is a total dominating set: ∀u ∈ V (G), N(u)∩D ̸= /0, and
D is a separating code: ∀u ̸= v of V (G), N(u)∩D ̸= N(v)∩D

Definition - open identifying code (Seo, Slater, 2010 )

Notation. OID(G): open identifying code number of G ,
minimum size of an open identifying code in G

{b}

{a,b}

{a,d,f}

{b,f}

{b,d}

{d}

{f}
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Locatable graphs

Not all graphs have an open identifying code!

Remark

An isolated vertex cannot be totally dominated.

Open twins = pair u, v such that N(u) = N(v).

u v

A graph is locatable if and only if it has no isolated vertices and open twins.

Proposition
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Lower bound on OID(G)

Subset D of V (G) such that:
D is a total dominating set: ∀u ∈ V (G), N(u)∩D ̸= /0, and
D is a separating code: ∀u ̸= v of V (G), N(u)∩D ̸= N(v)∩D

Definition - open identifying code

G locatable graph on n vertices: ⌈log2(n +1)⌉ ≤ OID(G). (Tight.)

Proposition

Proof: For any open identifying code D, we must assign to each vertex, a distinct
non-empty subset of D: n ≤ 2|D|−1.

OID(G) = log2(n +1)
OID(G) = log2(n +1)
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Upper bound on OID(G)?

Bipartite graph on vertex sets {v1, . . . ,vk} and {w1, . . . ,wk}, with an edge {vi ,wj}
if and only if i ≤ j.

Definition - Half-graph Hk (Erdős, Hajnal, 1983 )

w1

v1

H1 = P2

w1

v1

w2

v2

H2 = P4

w1

v1

w2

v2 v3

w3

v4

w4

v5

w5

H5

Some vertices forced in any open identifying code because of domination or location

For every half-graph Hk of order n = 2k, OID(Hk) = n.

Proposition
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Characterizing “bad graphs” for open identifying codes

Let G be a connected locatable graph of order n.
Then, OID(G) = n if and only if G is a half-graph.

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 )

Proof:

• Such a graph has only forced vertices: location-forced or domination-forced.

• By Bondy’s theorem, there is at least one vertex x that is not location-forced: it is
domination-forced. → Its neighbour y is of degree 1.

• G ′ = G −{x ,y} is locatable, connected.

• We have OID(G ′) = n−2: By contradiction, if OID(G ′) < n−2, we could add two
vertices to a solution and obtain OID(G) < n, a contradiction.

• By induction, G ′ is a half-graph. We can conclude that G is a half-graph too, after
some case analysis.
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Lower bounds
(neighbourhood complexity)
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Lower bounds

G graph, n vertices, LD(G) = k. Then, n ≤ 2k +k −1.

Proposition
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Lower bounds

G graph, n vertices, LD(G) = k. Then, n ≤ 2k +k−1. → LD(G)≥⌈log2(n+1)−1⌉
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Lower bounds

G graph, n vertices, LD(G) = k. Then, n ≤ 2k +k−1. → LD(G)≥⌈log2(n+1)−1⌉

Proposition

Tight example (k = 4):
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Lower bounds

G graph, n vertices, LD(G) = k. Then, n ≤ 2k +k−1. → LD(G)≥⌈log2(n+1)−1⌉

Proposition

G tree of order n, LD(G) = k. Then n ≤ 3k −1 → LD(G) ≥ n+1
3 .

Theorem (Slater, 1980’s )
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Proposition

G tree of order n, LD(G) = k. Then n ≤ 3k −1 → LD(G) ≥ n+1
3 .

Theorem (Slater, 1980’s )

Proof: Recall: a tree of order n has n−1 edges. Consider a LD-set S of size k.
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Proof: Recall: a tree of order n has n−1 edges. Consider a LD-set S of size k.

There are c1 ≤ k vertices with exactly one neighbour in S.

The c2 = n−k − c1 others need to have (at least) 2 neighbours in S.

In total we need c1 +2(n−k − c1) = 2n−2k − c1 ≥ 2n−3k edges in the tree. So:

2n−3k ≤ n−1 and so, n ≥ 3k −1.
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Lower bounds

G graph, n vertices, LD(G) = k. Then, n ≤ 2k +k−1. → LD(G)≥⌈log2(n+1)−1⌉

Proposition

G tree of order n, LD(G) = k. Then n ≤ 3k −1 → LD(G) ≥ n+1
3 .

Theorem (Slater, 1980’s )

G planar graph, order n, LD(G) = k. Then n ≤ 7k −10 → LD(G) ≥ n+10
7 .

Theorem (Rall & Slater, 1980’s )

Tight examples:
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Neighbourhood complexity

Neighbourhood complexity of a graph G :

maximum number |{N(v)∩X}| of neighbourhoods inside any set X of k vertices, as a
function of k

X

|{N(v)∩X}| = 9

General graphs : exponential neighbourhood complexity 2k

Trees/planar graphs : linear neighbourhood complexity O(k)
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Interval graphs

Intersection graph of intervals of the real line.

Definition - Interval graph

I1 I4

I2 I5

I3 1

2

3

4 5
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Lower bound for interval graphs

G interval graph of order n, LD(G) = k.

Then n ≤ k(k+1)
2 , i.e. LD(G) = Ω(

√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 )
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1 2

3

4

1−1 2−3

1−2 2−4

1−4

1−3 3−4

Identifying code D of size k.

Define zones using the right points of intervals in D.

Each vertex intersects a consecutive set of intervals of D when ordered by left
points.

→ n ≤ ∑
k
i=1(k − i) = k(k+1)

2 .
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Lower bound for interval graphs

G interval graph of order n, LD(G) = k.

Then n ≤ k(k+1)
2 , i.e. LD(G) = Ω(

√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 )

Tight:
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Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X ,E )
(initial motivation: machine learning, 1971)

A set S ⊆ X is shattered:
for every subset S ′ ⊆ S, there is an edge e with e∩S = S ′.

V-C dimension of H: maximum size of a shattered set in H

Typically bounded for geometric hypergraphs:
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Vapnik-Červonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood
hypergraph

Typically bounded for geometric intersection graphs:

→ interval graphs (d = 2), C4-free graphs (d = 2), line graphs (d = 4), permutation
graphs (d = 3), unit disk graphs (d = 3), planar graphs (d = 4)...

Let H be a hypergraph of V-C dimension at most d . Then, any set S of vertices
has at most |S|d distinct traces.

Theorem (Sauer-Shelah Lemma, 1972 )

G graph of order n, LD(G) = k, V-C dimension ≤ d . Then n = O(kd ).

Corollary

O(k2): interval, permutation, line...

O(k): cographs, unit interval, bipartite permutation, block...
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Sparse/structured graphs

Graph classes of bounded expansion: all shallow minors of its members have bounded
average degree → e.g. planar graphs, minor-closed classes, bounded degree...

Let C be a graph class of bounded expansion. Let G in C , order n, and LD(G) = k.
Then, n ≤ f (C )k.

Theorem (Reidl, Sánchez-Villaamil, Stavropoulos, 2019 )

Recently introduced structural measure: twin-width.

Let G be a graph of twin-width at most d and order n, and LD(G) = k.
Then, n ≤ (d +2)2d+1k.

Theorem (Bonnet, F., Lehtilä, Parreau, 2024 )
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All Graphs

Bipartite Co-BipartiteSplit

Bounded V-C-dimension

IntervalPermutationLine Bounded Degeneracy

Nowhere Dense

Locally Bounded Expansion

Locally Excluded Minor

Bounded Local Tree-Width

Bounded Expansion Bounded Twin-Width

Bounded Clique-WidthExcluded Topological Minor

Excluded Minor Bounded Degree

Bounded Genus Bounded Tree-Width

Planar Trees

Cographs

exponential

polynomial

quasi-linear

linear

Florent Foucaud Identification problems in graphs 33 / 41



Metric dimension
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Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them

Does the “GPS” approach also work in undirected unweighted graphs?

Question

Florent Foucaud Identification problems in graphs 35 / 41



Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them

Does the “GPS” approach also work in undirected unweighted graphs?

Question

Florent Foucaud Identification problems in graphs 35 / 41



Metric dimension

Now, w ∈ V (G) distinguishes {u,v} if dist(w ,u) ̸= dist(w ,v)

R ⊆ V (G) resolving set of G :

∀u ̸= v in V (G), there exists w ∈ R that distinguishes {u,v}.

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)
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Metric dimension
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R ⊆ V (G) resolving set of G :

∀u ̸= v in V (G), there exists w ∈ R that distinguishes {u,v}.

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

r1 r2

(0,3) (3,0)

(1,2)

(2,1)

(2,3) (2,2)

R = {r1, r2}

MD(G) = 2

Every vertex receives a unique distance-vector w.r.t. to the solution vertices.
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Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

r1 r2

(0,3) (3,0)

(1,2)

(2,1)

(2,3) (2,2)

R = {r1, r2}

MD(G) = 2

Every vertex receives a unique distance-vector w.r.t. to the solution vertices.

MD(G): metric dimension of G , minimum size of a resolving set of G .

• Any locating-dominating set is a resolving set, hence MD(G) ≤ LD(G).

• A locating-dominating set can be seen as a “distance-1-resolving set”.

Remark
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Examples

MD(G) = 1 ⇔ G is a path

Proposition

For any square grid G , MD(G) = 2.

Proposition
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree ≥ 3 and 1.

G
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree ≥ 3 and 1.

G v

R resolving set. If v has k legs, at least k −1 legs contain a vertex of R.

Observation

Simple leg rule: if v has k ≥ 2 legs, select k −1 leg endpoints.
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Simple leg rule: if v has k ≥ 2 legs, select k −1 leg endpoints.

For any tree, the simple leg rule produces an optimal resolving set.
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Bounds with diameter

Example of path: no bound n ≤ f (MD(G)) possible.

G of order n, diameter D, MD(G) = k. Then n ≤ Dk +k.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002 )

(diameter D: maximum distance between two vertices)

Proof: Every vertex not in the solution R is assigned to a unique vector of length k,
with values in {1, . . . ,D}: Dk possibilities, plus the k ones in R.

G interval graph of order n, MD(G) = k, diameter D. Then n = O(Dk2) i.e.
k = Ω

(√ n
D
)
. (Tight.)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 )

→ Proof is similar as that for locating-dominating sets.
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Trees

T a tree with diameter D and MD(T ) = k, then

n ≤
{ 1

8 (kD +4)(D +2) if D even,
1
8 (kD−k +8)(D +1) if D odd.

= Θ(kD2)

Bounds are tight.

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 )

k = 2, D = 6 k = 2, D = 7

Florent Foucaud Identification problems in graphs 40 / 41



Planar graphs

Using the concept of distance-VC-dimension:

G planar with diameter D and MD(G) = k, then n = O(k4D4).

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 )

Using the concept of profiles and r -neighbourhood complexity:

G planar with diameter D and MD(G) = k, then n = O(kD4).

Theorem (Joret, Rambaud, 2024 )

Tight? Planar example with treewidth 2 and n = Θ(kD3):
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Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 )

Using the concept of profiles and r -neighbourhood complexity:

G planar with diameter D and MD(G) = k, then n = O(kD4).

Theorem (Joret, Rambaud, 2024 )

Tight? Planar example with k = 3 and n = Θ(D3):

· · ·

Tight? Planar example with treewidth 2 and n = Θ(kD3):
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Conclusion: identification problems

Active field of research
Both practical and theoretical applications
Many open problems

THANKS FOR YOUR ATTENTION!
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