Identification problems in graphs selected topics

Florent Foucaud

December 2024

Locating a burglar in a building

Locating a burglar in a building

Domination in graphs

V(G): set of vertices of G

- $D \subseteq V(G)$ dominating set of G:
 - every vertex not in D has a neighbour in D

V(G): set of vertices of G

N[v]: closed neighbourhood of vertex v (v together with its neighbours)

V(G): set of vertices of G

N[v]: closed neighbourhood of vertex v (v together with its neighbours)

Motivation: covering problems in telecommunication networks

V(G): set of vertices of G

N[v]: closed neighbourhood of vertex v (v together with its neighbours)

Motivation: covering problems in telecommunication networks

Notation: domination number DOM(G): smallest size of a dominating set of G

Theorem (Domination bound, Ore, 1960's 🐴)

G graph of order n, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.

Proof: Consider an *inclusionwise minimal* dominating set D of G.

 \rightarrow its complement set $V(G) \setminus D$ is also a dominating set!

Thus, either D or $V(G) \setminus D$ has size at most $\frac{n}{2}$.

Location-domination in graphs

Location-domination

Definition - Locating-dominating set (Slater, 1980's)

 $D \subseteq V(G)$ locating-dominating set of G:

- for every vertex $v \in V(G)$, $N[v] \cap D \neq \emptyset$ (domination).
- $\forall u \neq v$ of $V(G) \setminus D$, $N(u) \cap D \neq N(v) \cap D$ (location).

Notation. location-domination number LD(G),

smallest size of a locating-dominating set of ${\it G}$

Theorem (Domination bound, Ore, 1960's 🛋)

G graph of order n, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.

Upper bounds

Theorem (Domination bound, Ore, 1960's **Å**)

G graph of order *n*, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's 🚵)

G graph of order *n*, no isolated vertices. Then $LD(G) \le n-1$.

Upper bounds

Upper bounds

Remark: tight examples contain many twin-vertices!!

(Twins: vertices with the same sets of neighbours)

Theorem (Domination bound, Ore, 1960's 🏜)

G graph of order *n*, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's 🔂)

G graph of order *n*, no isolated vertices. Then $LD(G) \le n-1$.

Remark:

- twins are easy to detect
- twins have a trivial behaviour w.r.t. location-domination

Upper bound: a conjecture - special graph classes Conjecture (Garijo, González & Márquez, 2014 \bigcirc \bigcirc \bigcirc G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$. Theorem (Garijo, González & Márquez, 2014 \bigcirc \bigcirc \bigcirc Conjecture true if *G* has independence number $\geq n/2$. (e.g. bipartite)

Proof: every vertex cover of a twin-free graph is a locating-dominating set

Proof:

- Consider special maximum matching M
- Select one vertex in each edge of M

Proof:

- Consider special maximum matching M
- Select one vertex in each edge of M

Conjecture (Garijo, González & Márquez, 2014 🙎 🛃 🏹)

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Conjecture verified for other graph classes:

- split graphs
- cobipartite graphs
- line graphs
- block graphs
- subcubic graphs
- ...

Proof: • There exists a dominating set *D* such that each vertex of *D* has a private neighbour in $V(G) \setminus D$. (classic lemma by Bollobas-Cockayne, 1979)

Proof: • There exists a dominating set *D* such that each vertex of *D* has a private neighbour in $V(G) \setminus D$. (classic lemma by Bollobas-Cockayne, 1979)

proof of Lemma: consider a smallest dominating set D that maximizes the number of edges inside D. For every $d \in D$, there must be a vertex f(d) only dominated by d (otherwise $D \setminus \{d\}$ is a dominating set). If $f(d) \neq d$, it is a private neighbour of d. If f(d) = d, d has no neighbour in D. But since there is no isolated vertex in G, d has a neighbour c in $V(G) \setminus D$, that has 2 neighbours in D. Then, $D \setminus \{d\} \cup \{c\}$ contains more edges than D, a contradiction: so, $f(d) \neq d$.

• there is a LD-set of size $n - n_1 - n_2$

- there is a LD-set of size $n n_1 n_2$
- there is a LD-set of size $|D| + n_1$ because D is maximal

- there is a LD-set of size $n n_1 n_2$
- there is a LD-set of size $|D| + n_1$ because D is maximal

•
$$\min\{|D|+n_1, n-n_1-n_2\} \le \frac{2}{3}n$$

Theorem (Bousquet, Chuet, Falgas-Ravry, Jacques, Morelle, 2024)

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \le \frac{5}{8}n = 0.625n$.

Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961 🗟)

Hypergraph (X, \mathscr{E}) . A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

$$X = \{v_1, v_2, v_3, v_4, v_5\}$$

$$\mathscr{E} = \{\{v_1\}, \{v_1, v_2, v_3\}, \{v_3, v_4\}, \{v_3, v_4, v_5\}\}$$

Definition - Separating set (Rényi, 1961 🗟)

Hypergraph (X, \mathscr{E}) . A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

Equivalently:

$$X = \{v_1, v_2, v_3, v_4, v_5\}$$

$$\mathscr{E} = \{\{v_1\}, \{v_1, v_2, v_3\}, \{v_3, v_4\}, \{v_3, v_4, v_5\}\}$$

Definition - Separating set (Rényi, 1961

Hypergraph (X, \mathscr{E}) . A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

Equivalently:

Definition - Separating set (Rényi, 1961

Hypergraph (X, \mathscr{E}) . A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

Equivalently:

Definition - Separating set (Rényi, 1961 🚳)

Hypergraph (X, \mathscr{E}) . A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

Equivalently:

Definition - Separating set (Rényi, 1961 🚳)

Hypergraph (X, \mathscr{E}) . A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

Equivalently:

Definition - Separating set (Rényi, 1961 🚳)

Hypergraph (X, \mathscr{E}) . A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

Equivalently:

for any pair e, f of edges, there is a vertex in C contained in **exactly** one of e, f.

Also known as Separating system, Distinguishing set, Test cover, Distinguishing transversal, Discriminating code...

Florent Foucaud

Identification problems in graphs

- network-monitoring, fault detection (burglar)
- medical diagnostics: testing samples for diseases (test cover)
- biological identification (attributes of individuals)
- learning theory: teaching dimension
- machine learning: V-C dimension (Vapnik, Červonenkis, 1971)
- graph isomorphism: canonical representation of graphs (Babai, 1982)
- logic definability of graphs (Kim, Pikhurko, Spencer, Verbitsky, 2005)

Proposition

For a hypergraph (X, \mathscr{E}) , a separating set C has size at least $\log_2(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|C|}$.

Proposition

For a hypergraph (X, \mathscr{E}) , a separating set C has size at least $\log_2(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|C|}$.

Theorem (Bondy's theorem, 1972)

A minimal separating set of hypergraph (X, \mathscr{E}) has size at most $|\mathscr{E}| - 1$.

Proposition

For a hypergraph (X, \mathscr{E}) , a separating set C has size at least $\log_2(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|C|}$.

Proof:

Proposition

For a hypergraph (X, \mathscr{E}) , a separating set C has size at least $\log_2(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|C|}$.

Which are the "problematic" vertices?

Proposition

For a hypergraph (X, \mathscr{E}) , a separating set C has size at least $\log_2(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|C|}$.

Proposition

For a hypergraph (X, \mathscr{E}) , a separating set C has size at least $\log_2(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|C|}$.

Theorem (Bondy's theorem, 1972 S)

A minimal separating set of hypergraph (X, \mathscr{E}) has size at most $|\mathscr{E}| - 1$.

Proof:

Build graph G on vertex set $V(G) = \mathscr{E}$. Join e_i to e_j iff $e_i = e_j \cup \{x\}$ for some $x \in X$, label it "x"

Proposition

For a hypergraph (X, \mathscr{E}) , a separating set C has size at least $\log_2(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|C|}$.

Theorem (Bondy's theorem, 1972 S)

A minimal separating set of hypergraph (X, \mathscr{E}) has size at most $|\mathscr{E}| - 1$.

Proof:

Build graph G on vertex set $V(G) = \mathscr{E}$. Join e_i to e_j iff $e_i = e_j \cup \{x\}$ for some $x \in X$, label it "x"

Proposition

For a hypergraph (X, \mathscr{E}) , a separating set C has size at least $\log_2(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|C|}$.

Theorem (Bondy's theorem, 1972 🌄)

A minimal separating set of hypergraph (X, \mathscr{E}) has size at most $|\mathscr{E}| - 1$.

Proof:

Build graph G on vertex set $V(G) = \mathscr{E}$. Join e_i to e_j iff $e_i = e_j \cup \{x\}$ for some $x \in X$, label it "x"

If an edge labeled x appears multiple times, keep only one of them.

This destroys all cycles in $G! \rightarrow \text{forest}$

Proposition

For a hypergraph (X, \mathscr{E}) , a separating set C has size at least $\log_2(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|C|}$.

Theorem (Bondy's theorem, 1972

A minimal separating set of hypergraph (X, \mathscr{E}) has size at most $|\mathscr{E}| - 1$.

Proof:

Build graph G on vertex set $V(G) = \mathscr{E}$. Join e_i to e_j iff $e_i = e_j \cup \{x\}$ for some $x \in X$, label it "x"

If an edge labeled x appears multiple times, keep only one of them.

This destroys all cycles in $G! \rightarrow \text{forest}$

So, at most $|\mathscr{E}| - 1$ "problematic" vertices. \rightarrow Find "non-problematic vertex", omit it.

- identifying codes
- open identifying codes
- path/cycle identifying covers, separating path systems

- identifying codes
- open identifying codes
- path/cycle identifying covers, separating path systems

A variation:

- Iocating-dominating sets
- locating-total dominating sets

- identifying codes
- open identifying codes
- path/cycle identifying covers, separating path systems

A variation:

- Iocating-dominating sets
- locating-total dominating sets

Geometric versions: e.g. seperating points using disks in Euclidean space

- identifying codes
- open identifying codes
- path/cycle identifying covers, separating path systems

A variation:

- Iocating-dominating sets
- locating-total dominating sets

Geometric versions: e.g. seperating points using disks in Euclidean space

Distance-based identification:

- resolving sets (metric dimension)
- strongly resolving sets
- centroidal locating sets
- tracking paths problem

- identifying codes
- open identifying codes
- path/cycle identifying covers, separating path systems

A variation:

- Iocating-dominating sets
- locating-total dominating sets

Geometric versions: e.g. seperating points using disks in Euclidean space

Distance-based identification:

- resolving sets (metric dimension)
- strongly resolving sets
- centroidal locating sets
- tracking paths problem

Coloring-based identification

- Adjacent vertex-distinguishing edge-coloring
- locally identifying coloring
- Iocating coloring
- neighbor-locating coloring

Open identifying codes in graphs

(a.k.a. open locating-dominating sets)

G: undirected graph N(u): set of neighbours of v

Definition - open identifying code (Seo, Slater, 2010 🙎 🚵)

Subset *D* of V(G) such that:

- D is a total dominating set: $\forall u \in V(G)$, $N(u) \cap D \neq \emptyset$, and
- *D* is a separating code: $\forall u \neq v$ of V(G), $N(u) \cap D \neq N(v) \cap D$

Notation. OID(G): open identifying code number of G, minimum size of an open identifying code in G

G: undirected graph N(u): set of neighbours of v

Definition - open identifying code (Seo, Slater, 2010 🙎 🚵)

Subset *D* of V(G) such that:

- D is a total dominating set: $\forall u \in V(G)$, $N(u) \cap D \neq \emptyset$, and
- *D* is a separating code: $\forall u \neq v$ of V(G), $N(u) \cap D \neq N(v) \cap D$

Notation. OID(G): open identifying code number of G, minimum size of an open identifying code in G

Separating code of G = separating set of open neighbourhood hypergraph of G

G: undirected graph N(u): set of neighbours of v

Definition - open identifying code (Seo, Slater, 2010 🙎 🚵)

Subset *D* of V(G) such that:

- D is a total dominating set: $\forall u \in V(G), N(u) \cap D \neq \emptyset$, and
- *D* is a separating code: $\forall u \neq v$ of V(G), $N(u) \cap D \neq N(v) \cap D$

Notation. OID(G): open identifying code number of G, minimum size of an open identifying code in G

Separating code of G = separating set of open neighbourhood hypergraph of G

G: undirected graph N(u): set of neighbours of v

Definition - open identifying code (Seo, Slater, 2010 🙎 🚵)

Subset *D* of V(G) such that:

- D is a total dominating set: $\forall u \in V(G), N(u) \cap D \neq \emptyset$, and
- *D* is a separating code: $\forall u \neq v$ of V(G), $N(u) \cap D \neq N(v) \cap D$

Notation. OID(G): open identifying code number of G, minimum size of an open identifying code in G

Separating code of G = separating set of open neighbourhood hypergraph of G

An isolated vertex cannot be totally dominated.

An isolated vertex cannot be totally dominated.

Open twins = pair u, v such that N(u) = N(v).

Lower bound on OID(G)

Definition - open identifying code

Subset D of V(G) such that:

- D is a total dominating set: $\forall u \in V(G), N(u) \cap D \neq \emptyset$, and
- *D* is a separating code: $\forall u \neq v$ of V(G), $N(u) \cap D \neq N(v) \cap D$

Proposition

G locatable graph on *n* vertices: $\lceil \log_2(n+1) \rceil \le OID(G)$. (Tight.)

Lower bound on OID(G)

Proof: For any open identifying code *D*, we must assign to each vertex, a distinct non-empty subset of *D*: $n \le 2^{|D|} - 1$.

Lower bound on OID(G)

Proof: For any open identifying code *D*, we must assign to each vertex, a distinct non-empty subset of *D*: $n \le 2^{|D|} - 1$.

Bipartite graph on vertex sets $\{v_1, \ldots, v_k\}$ and $\{w_1, \ldots, w_k\}$, with an edge $\{v_i, w_j\}$ if and only if $i \leq j$.

Some vertices forced in any open identifying code because of domination

Bipartite graph on vertex sets $\{v_1, \ldots, v_k\}$ and $\{w_1, \ldots, w_k\}$, with an edge $\{v_i, w_j\}$ if and only if $i \leq j$.

 $H_1 = P_2 \qquad \qquad H_2 = P_4$

Some vertices forced in any open identifying code because of domination

Bipartite graph on vertex sets $\{v_1, \ldots, v_k\}$ and $\{w_1, \ldots, w_k\}$, with an edge $\{v_i, w_j\}$ if and only if $i \leq j$.

Some vertices forced in any open identifying code because of domination or location

Definition - Half-graph H_k (Erdős, Hajnal, 1983 🕅 🌑) Bipartite graph on vertex sets $\{v_1, \ldots, v_k\}$ and $\{w_1, \ldots, w_k\}$, with an edge $\{v_i, w_i\}$ if and only if i < j. $H_2 = P_4$ $H_1 = P_2$ H_5

Some vertices forced in any open identifying code because of domination or location

Bipartite graph on vertex sets $\{v_1, \ldots, v_k\}$ and $\{w_1, \ldots, w_k\}$, with an edge $\{v_i, w_j\}$ if and only if $i \leq j$.

Some vertices forced in any open identifying code because of domination or location

PropositionFor every half-graph H_k of order n = 2k, $OID(H_k) = n$.

Proof:

• Such a graph has only *forced* vertices: location-forced or domination-forced.

Proof:

• Such a graph has only *forced* vertices: location-forced or domination-forced.

• By Bondy's theorem, there is at least one vertex x that is not location-forced: it is domination-forced. \rightarrow Its neighbour y is of degree 1.

Then, OID(G) = n if and only if G is a half-graph.

Proof:

- Such a graph has only *forced* vertices: location-forced or domination-forced.
- By Bondy's theorem, there is at least one vertex x that is not location-forced: it is domination-forced. \rightarrow Its neighbour y is of degree 1.
- $G' = G \{x, y\}$ is locatable, connected.

Let G be a connected locatable graph of order n. Then, OID(G) = n if and only if G is a half-graph.

Proof:

- Such a graph has only *forced* vertices: location-forced or domination-forced.
- By Bondy's theorem, there is at least one vertex x that is not location-forced: it is domination-forced. \rightarrow Its neighbour y is of degree 1.
- $G' = G \{x, y\}$ is locatable, connected.
- We have OID(G') = n 2: By contradiction, if OID(G') < n 2, we could add two vertices to a solution and obtain OID(G) < n, a contradiction.

Let G be a connected locatable graph of order n. Then, OID(G) = n if and only if G is a half-graph.

Proof:

- Such a graph has only forced vertices: location-forced or domination-forced.
- By Bondy's theorem, there is at least one vertex x that is not location-forced: it is domination-forced. \rightarrow Its neighbour y is of degree 1.
- $G' = G \{x, y\}$ is locatable, connected.
- We have OID(G') = n 2: By contradiction, if OID(G') < n 2, we could add two vertices to a solution and obtain OID(G) < n, a contradiction.

• By induction, G' is a half-graph. We can conclude that G is a half-graph too, after some case analysis.

Lower bounds (neighbourhood complexity)

Proposition

G graph, n vertices, LD(G) = k. Then, $n \leq 2^k + k - 1$.

Proposition

G graph, *n* vertices, LD(G) = k. Then, $n \leq 2^k + k - 1$. $\rightarrow LD(G) \geq \lceil \log_2(n+1) - 1 \rceil$

Proposition

G graph, *n* vertices, LD(G) = k. Then, $n \leq 2^k + k - 1$. $\rightarrow LD(G) \geq \lceil \log_2(n+1) - 1 \rceil$

Tight example (k = 4):

Proposition

G graph, *n* vertices, LD(G) = k. Then, $n \le 2^k + k - 1$. $\rightarrow LD(G) \ge \lceil \log_2(n+1) - 1 \rceil$

Theorem (Slater, 1980's 🚵)

G tree of order *n*, LD(G) = k. Then $n \leq 3k - 1 \rightarrow LD(G) \geq \frac{n+1}{3}$.

Proof: Recall: a tree of order *n* has n-1 edges. Consider a LD-set *S* of size *k*.

Proposition

G graph, *n* vertices, LD(G) = k. Then, $n \le 2^k + k - 1$. $\rightarrow LD(G) \ge \lceil \log_2(n+1) - 1 \rceil$

Theorem (Slater, 1980's 🚵)

G tree of order *n*, LD(G) = k. Then $n \leq 3k - 1 \rightarrow LD(G) \geq \frac{n+1}{3}$.

Proof: Recall: a tree of order *n* has n-1 edges. Consider a LD-set *S* of size *k*.

There are $c_1 \leq k$ vertices with exactly one neighbour in *S*.

The $c_2 = n - k - c_1$ others need to have (at least) 2 neighbours in S.

Proposition

G graph, *n* vertices, LD(G) = k. Then, $n \le 2^k + k - 1$. $\rightarrow LD(G) \ge \lceil \log_2(n+1) - 1 \rceil$

Theorem (Slater, 1980's 🚵)

G tree of order *n*, LD(G) = k. Then $n \leq 3k - 1 \rightarrow LD(G) \geq \frac{n+1}{3}$.

Proof: Recall: a tree of order *n* has n-1 edges. Consider a LD-set *S* of size *k*. There are $c_1 \le k$ vertices with exactly one neighbour in *S*. The $c_2 = n-k-c_1$ others need to have (at least) 2 neighbours in *S*. In total we need $c_1 + 2(n-k-c_1) = 2n-2k-c_1 \ge 2n-3k$ edges in the tree. So: $2n-3k \le n-1$ and so, $n \ge 3k-1$.

Proposition

G graph, *n* vertices, LD(G) = k. Then, $n \le 2^k + k - 1$. $\rightarrow LD(G) \ge \lceil \log_2(n+1) - 1 \rceil$

Theorem (Slater, 1980's 🚵)

G tree of order *n*, LD(G) = k. Then $n \leq 3k - 1 \rightarrow LD(G) \geq \frac{n+1}{3}$.

Theorem (Rall & Slater, 1980's 😰 🚵)

G planar graph, order *n*, LD(G) = k. Then $n \leq 7k - 10 \rightarrow LD(G) \geq \frac{n+10}{7}$.

Tight examples:

Neighbourhood complexity of a graph G:

maximum number $|\{N(v) \cap X\}|$ of neighbourhoods inside any set X of k vertices, as a function of k

Neighbourhood complexity of a graph G:

maximum number $|\{N(v) \cap X\}|$ of neighbourhoods inside any set X of k vertices, as a function of k

- General graphs : exponential neighbourhood complexity 2^k
- Trees/planar graphs : linear neighbourhood complexity O(k)

Definition - Interval graph

Intersection graph of intervals of the real line.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 🗰 🎥 👧 🖏

Then
$$n \leq \frac{k(k+1)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 跡 🎼 🗑

Then
$$n \leq \frac{k(k+1)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.

- Identifying code *D* of size *k*.
- Define zones using the right points of intervals in *D*.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 🗰 🎥 👧 🕷

Then
$$n \leq rac{k(k+1)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.

- Identifying code D of size k.
- Define zones using the right points of intervals in *D*.
- Each vertex intersects a consecutive set of intervals of *D* when ordered by left points.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 🗰 🎥 👧 🕷

Then
$$n \leq rac{k(k+1)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.

- Identifying code *D* of size *k*.
- Define zones using the right points of intervals in *D*.
- Each vertex intersects a consecutive set of intervals of *D* when ordered by left points.

$$\rightarrow n \leq \sum_{i=1}^k (k-i) = \frac{k(k+1)}{2}.$$

Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 🗰 🎥 👧 🖏

G interval graph of order n, LD(G) = k.

Then
$$n \leq rac{k(k+1)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.

Tight:

	 	_
—	 —	

Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X, \mathscr{E}) (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered:

for every subset $S' \subseteq S$, there is an edge e with $e \cap S = S'$.

V-C dimension of H: maximum size of a shattered set in H
Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X, \mathscr{E}) (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered:

for every subset $S' \subseteq S$, there is an edge e with $e \cap S = S'$.

V-C dimension of H: maximum size of a shattered set in H

Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X, \mathscr{E}) (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered:

for every subset $S' \subseteq S$, there is an edge e with $e \cap S = S'$.

V-C dimension of H: maximum size of a shattered set in H

Typically bounded for geometric hypergraphs:

Florent Foucaud

Identification problems in graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:

 \rightarrow interval graphs (d = 2), C₄-free graphs (d = 2), line graphs (d = 4), permutation graphs (d = 3), unit disk graphs (d = 3), planar graphs (d = 4)...

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:

 \rightarrow interval graphs (d = 2), C₄-free graphs (d = 2), line graphs (d = 4), permutation graphs (d = 3), unit disk graphs (d = 3), planar graphs (d = 4)...

Theorem (Sauer-Shelah Lemma, 1972 P 🏙

Let H be a hypergraph of V-C dimension at most d. Then, any set S of vertices has at most $|S|^d$ distinct traces.

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:

 \rightarrow interval graphs (d = 2), C₄-free graphs (d = 2), line graphs (d = 4), permutation graphs (d = 3), unit disk graphs (d = 3), planar graphs (d = 4)...

Theorem (Sauer-Shelah Lemma, 1972 P 🏙

Let H be a hypergraph of V-C dimension at most d. Then, any set S of vertices has at most $|S|^d$ distinct traces.

Corollary

G graph of order n, LD(G) = k, V-C dimension $\leq d$. Then $n = O(k^d)$.

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:

 \rightarrow interval graphs (d = 2), C₄-free graphs (d = 2), line graphs (d = 4), permutation graphs (d = 3), unit disk graphs (d = 3), planar graphs (d = 4)...

Theorem (Sauer-Shelah Lemma, 1972 🎤 🏙

Let *H* be a hypergraph of V-C dimension at most *d*. Then, any set *S* of vertices has at most $|S|^d$ distinct traces.

Corollary

G graph of order n, LD(G) = k, V-C dimension $\leq d$. Then $n = O(k^d)$.

 $O(k^2)$: interval, permutation, line...

O(k): cographs, unit interval, bipartite permutation, block...

Recently introduced structural measure: twin-width.

Theorem (Bonnet, F., Lehtilä, Parreau, 2024 🌌 🎎 🕥)

Let G be a graph of twin-width at most d and order n, and LD(G) = k. Then, $n \leq (d+2)2^{d+1}k$.

GPS/GLONASS/Galileo/Beidou/IRNSS:

need to know the exact position of 4 satellites $+ \mbox{ distance to them}$

GPS/GLONASS/Galileo/Beidou/IRNSS:

need to know the exact position of 4 satellites $+ \mbox{ distance to them}$

Question

Does the "GPS" approach also work in undirected unweighted graphs?

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976) 🛍 💹 當

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976) 🕍 🔽 🌋

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976) 🕍 🔽 🌋

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976) 🕍 🔽 🌋

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976) 🕍 🔽 🌋

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976) 🕍 🔽 🌋

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976) 🕍 🔽 🌋

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Every vertex receives a unique distance-vector w.r.t. to the solution vertices.

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Every vertex receives a unique distance-vector w.r.t. to the solution vertices.

MD(G): metric dimension of G, minimum size of a resolving set of G.

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976) 🛍 💹 🌋

 $R \subseteq V(G)$ resolving set of G:

 $\forall u \neq v \text{ in } V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Every vertex receives a unique distance-vector w.r.t. to the solution vertices.

MD(G): metric dimension of G, minimum size of a resolving set of G.

Remark

- Any locating-dominating set is a resolving set, hence $MD(G) \leq LD(G)$.
- A locating-dominating set can be seen as a "distance-1-resolving set".

-0

Examples

റ

Examples

Observation

R resolving set. If v has k legs, at least k-1 legs contain a vertex of *R*.

Simple leg rule: if v has $k \ge 2$ legs, select k - 1 leg endpoints.

Observation

R resolving set. If v has k legs, at least k-1 legs contain a vertex of R.

Simple leg rule: if v has $k \ge 2$ legs, select k - 1 leg endpoints.

Theorem (Slater, 1975

For any tree, the simple leg rule produces an optimal resolving set.

Observation

R resolving set. If v has k legs, at least k-1 legs contain a vertex of R.

Simple leg rule: if v has $k \ge 2$ legs, select k - 1 leg endpoints.

Theorem (Slater, 1975 🚵)

For any tree, the simple leg rule produces an optimal resolving set.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002 📖 🔮 🚵)

G of order n, diameter D, MD(G) = k. Then $n \le D^k + k$.

(diameter *D*: maximum distance between two vertices)

Proof: Every vertex not in the solution R is assigned to a unique vector of length k, with values in $\{1, \ldots, D\}$: D^k possibilities, plus the k ones in R.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002 📖 🔮 🚵)

G of order n, diameter D, MD(G) = k. Then $n \le D^k + k$.

(diameter *D*: maximum distance between two vertices)

Proof: Every vertex not in the solution R is assigned to a unique vector of length k, with values in $\{1, \ldots, D\}$: D^k possibilities, plus the k ones in R.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 **Theorem** (F., Mertzios, 2017 **Theorem** (F., Mertzios

Theorem (Khuller, Raghavachari & Rosenfeld, 2002 📖 🔮 🚵)

G of order n, diameter D, MD(G) = k. Then $n \le D^k + k$.

(diameter *D*: maximum distance between two vertices)

Proof: Every vertex not in the solution R is assigned to a unique vector of length k, with values in $\{1, \ldots, D\}$: D^k possibilities, plus the k ones in R.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 **W Solution** G interval graph of order n, MD(G) = k, diameter D. Then $n = O(Dk^2)$ i.e. $k = \Omega(\sqrt{\frac{n}{D}})$. (Tight.)

 \rightarrow Proof is similar as that for locating-dominating sets.

Planar graphs

Using the concept of distance-VC-dimension:

Planar graphs

Using the concept of distance-VC-dimension:

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 🚳 🤱 🏄 👧 👧

G planar with diameter D and MD(G) = k, then $n = O(k^4D^4)$.

Using the concept of profiles and *r*-neighbourhood complexity:

Theorem (Joret, Rambaud, 2024 🚨 🙎)

G planar with diameter D and MD(G) = k, then $n = O(kD^4)$.

Planar graphs

Using the concept of distance-VC-dimension:

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 🚳 🎩 🚵 👧 👧

G planar with diameter D and MD(G) = k, then $n = O(k^4D^4)$.

Using the concept of profiles and *r*-neighbourhood complexity:

Theorem (Joret, Rambaud, 2024 🖪 🙎)

G planar with diameter D and MD(G) = k, then $n = O(kD^4)$.

Tight? Planar example with k = 3 and $n = \Theta(D^3)$:

Planar graphs

Using the concept of distance-VC-dimension:

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 🚳 🤽 🖓 👧

G planar with diameter D and MD(G) = k, then $n = O(k^4D^4)$.

Using the concept of profiles and *r*-neighbourhood complexity:

Theorem (Joret, Rambaud, 2024 🔀 🙎)

G planar with diameter D and MD(G) = k, then $n = O(kD^4)$.

Tight? Planar example with treewidth 2 and $n = \Theta(kD^3)$:

- Active field of research
- Both practical and theoretical applications
- Many open problems

- Active field of research
- Both practical and theoretical applications
- Many open problems

THANKS FOR YOUR ATTENTION!

