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Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961)]

Hypergraph (X,&). A separating set is a subset C C X such that each edge
e € & contains a distinct subset of C.

X ={v1,v2,v3,v4,vs5}
& ={{wi}, {vi,v2,v3},{v3,va},{v3,v4,v5}}
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Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961)]

Hypergraph (X,&). A separating set is a subset C C X such that each edge
e € & contains a distinct subset of C.

Equivalently: for any pair e, f of edges, there is a vertex in C contained in
exactly one of e, f.

X ={v1,v2,v3,v4,vs5}
& ={{wvi}, {vi,v2,v3},{v3,va},{v3,v4,v5}}
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Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961)]

Hypergraph (X,&). A separating set is a subset C C X such that each edge
e € & contains a distinct subset of C.

Equivalently: for any pair e, f of edges, there is a vertex in C contained in
exactly one of e, f.

X ={v1,v2,v3,v4,v5}
& ={{v1},{vi,v2,v3},{vs,va},{v3,va,v5}}

C={vs}

etNC=0
enNC=20
esNC=0
eaNC={ws}
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Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961)]

Hypergraph (X,&). A separating set is a subset C C X such that each edge
e € & contains a distinct subset of C.

Equivalently: for any pair e, f of edges, there is a vertex in C contained in
exactly one of e, f.

X ={v1,v2,v3,v4,v5}
& ={{v1},{vi,v2,v3},{vs,va},{v3,va,v5}}

C={vs, 2}
etNC=0
ezﬂCZ{VQ}
esNC=0
eaNC={ws}
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Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961)]

Hypergraph (X,&). A separating set is a subset C C X such that each edge
e € & contains a distinct subset of C.

Equivalently: for any pair e, f of edges, there is a vertex in C contained in
exactly one of e, f.

X ={v1,v2,v3,v4,v5}
& ={{v1},{vi,v2,v3},{vs,va},{v3,va,v5}}

Cc= {V57 V2, V3}

etNC=0
ezﬂCZ{VQ,V3}
e30C:{V3}

eaNC={v3,v5}
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Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961)]

Hypergraph (X,&). A separating set is a subset C C X such that each edge
e € & contains a distinct subset of C.

Equivalently: for any pair e, f of edges, there is a vertex in C contained in
exactly one of e, f.

X ={vi,v,v3,v4,v5}

e s o & ={{vi},{vi,v2,v3},{v3,va},{v3,v4,v5}}
C:{V5,V1,V3}
<
CEE 0, ) anc=im
eNC={v,vs}

esNC= {V3}
eaNC={v3,v5}
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Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961)]

Hypergraph (X,&). A separating set is a subset C C X such that each edge
e € & contains a distinct subset of C.

Equivalently: for any pair e, f of edges, there is a vertex in C contained in
exactly one of e, f.

X ={vi,v,v3,v4,v5}

e s o & ={{vi},{vi,v2,v3},{v3,va},{v3,v4,v5}}
C:{V5,V1,V3}
<
CEE 0, ) anc=im
eNC={v,vs}

esNC= {V3}
eaNC={v3,v5}

Also known as Separating system, Distinguishing set, Test cover, Distinguishing
transversal, Discriminating code...
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&’), a separating set C has size at least logy(|&]).

Proof: Must assign to each edge, a distinct subset of C: |&| < 2/€I. O
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&’), a separating set C has size at least logy(|&]).

Proof: Must assign to each edge, a distinct subset of C: |&| < 2/€I. O

Theorem (Bondy's theorem, 1972)]

A minimal separating set of hypergraph (X,&) has size at most |£|— 1.
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&’), a separating set C has size at least logy(|&]).

Proof: Must assign to each edge, a distinct subset of C: |&| < 2/€I. O

Theorem (Bondy's theorem, 1972)]

A minimal separating set of hypergraph (X,&) has size at most |£|— 1.

Proof:
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&’), a separating set C has size at least logy(|&]).

Proof: Must assign to each edge, a distinct subset of C: |&| < 2/€I. O

Theorem (Bondy's theorem, 1972)]

A minimal separating set of hypergraph (X,&) has size at most |£|— 1.

Which are the “problematic” vertices?
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&’), a separating set C has size at least logy(|&]).

Proof: Must assign to each edge, a distinct subset of C: |&| < 2/€I. O

Theorem (Bondy's theorem, 1972)]

A minimal separating set of hypergraph (X,&) has size at most |£|— 1.

e, Build graph G on vertex set V(G) =&.

e; hd
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&’), a separating set C has size at least logy(|&]).

Proof: Must assign to each edge, a distinct subset of C: |&| < 2/€I. O

Theorem (Bondy's theorem, 1972)]

A minimal separating set of hypergraph (X,&) has size at most |£|— 1.

e, Build graph G on vertex set V(G) =&.

€ Join ¢; to ¢; iff ; = ¢; U {x} for some

won

x € X, label it “x

€5
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&’), a separating set C has size at least logy(|&]).

Proof: Must assign to each edge, a distinct subset of C: |&| < 2/€I. O

Theorem (Bondy's theorem, 1972)]

A minimal separating set of hypergraph (X,&) has size at most |£|— 1.

e Build graph G on vertex set V(G) =&
2

e, Join e; to ¢; iff e = ¢jU{x} for some
x € X, label it “x"
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&’), a separating set C has size at least logy(|&]).

Proof: Must assign to each edge, a distinct subset of C: |&| < 2/€I. O

Theorem (Bondy's theorem, 1972)]

A minimal separating set of hypergraph (X,&) has size at most |£|— 1.

Build graph G on vertex set V(G) =&

€
e X Join e; to ¢; iff e = ¢jU{x} for some
x € X, label it “x"
Yy If an edge labeled x appears multiple times,
e; keep only one of them.
This destroys all cycles in G!
e, 7 ys all cy
€4
°
€5
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&’), a separating set C has size at least logy(|&]).

Proof: Must assign to each edge, a distinct subset of C: |&| < 2/€I. O

Theorem (Bondy's theorem, 1972)]

A minimal separating set of hypergraph (X,&) has size at most |£|— 1.

Build graph G on vertex set V(G) =&

€
e X Join e; to ¢; iff e = ¢jU{x} for some
x € X, label it “x”
Yy If an edge labeled x appears multiple times,
e; keep only one of them.
This destroys all cycles in G!
en z
e So, there are at most |&]| — 1 “problematic”
° 4 vertices. — Find one “non-problematic
es vertex” and omit it. O
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Some example problems

Special graph-based cases of separating sets in hypergraphs:
o identifying codes
o identifying open codes
@ path/cycle identifying covers

@ separating path systems
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Some example problems

Special graph-based cases of separating sets in hypergraphs:
o identifying codes
o identifying open codes
@ path/cycle identifying covers
@ separating path systems
A variation:
@ locating-dominating sets

@ locating-total dominating sets
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Some example problems

Special graph-based cases of separating sets in hypergraphs:
o identifying codes
o identifying open codes
@ path/cycle identifying covers
@ separating path systems
A variation:
@ locating-dominating sets
@ locating-total dominating sets

Geometric versions: e.g. seperating points using disks in Euclidean space
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Some example problems

Special graph-based cases of separating sets in hypergraphs:
o identifying codes
o identifying open codes
@ path/cycle identifying covers
@ separating path systems
A variation:
@ locating-dominating sets
@ locating-total dominating sets

Geometric versions: e.g. seperating points using disks in Euclidean space
Distance-based identification:

o resolving sets (metric dimension)
@ centroidal locating sets

@ tracking paths problem
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Identifying codes

G: undirected graph
N[u]: set of vertices v s.t. d(u,v) <1

_[Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)]

Subset C of V(G) such that:
e C is a dominating set: Yu € V(G), N[u]nC # 0, and

o C is a separating set: Vu # v of V(G), N[ulnC# N[v]nC

ID(G): identifying code number of G,
minimum size of an identifying code in G

{a,b} | gy g
©

Florent Foucaud Identification problems on graphs 8/1



Identifying codes

G: undirected graph
N[u]: set of vertices v s.t. d(u,v) <1

_[Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)]

Subset C of V(G) such that:
e C is a dominating set: Yu € V(G), N[u]nC # 0, and

o C is a separating set: Vu # v of V(G), N[ulnC# N[v]nC

ID(G): identifying code number of G,
minimum size of an identifying code in G

Separating set of G = separating set of neighbourhood hypergraph of G
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Identifying codes

G: undirected graph
N[u]: set of vertices v s.t. d(u,v) <1

_[Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)]

Subset C of V(G) such that:
e C is a dominating set: Yu € V(G), N[u]nC # 0, and

o C is a separating set: Vu # v of V(G), N[ulnC# N[v]nC

ID(G): identifying code number of G,
minimum size of an identifying code in G

Separating set of G = separating set of neighbourhood hypergraph of G
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Identifying codes

G: undirected graph
N[u]: set of vertices v s.t. d(u,v) <1

_[Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)]

Subset C of V(G) such that:
e C is a dominating set: Yu € V(G), N[u]nC # 0, and

o C is a separating set: Vu # v of V(G), N[ulnC# N[v]nC

ID(G): identifying code number of G,
minimum size of an identifying code in G

Separating set of G = separating set of neighbourhood hypergraph of G

~—
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Examples: paths

_[Definition - Identifying code]

Subset C of V(G) such that:
e C is a dominating set: Vu € V(G), N[ulnC # 0, and
o C is a separating set: Vu# v of V(G), N[ulnC # N[v]nC

Domination number: DOM(P,,) = %1

O—8—OC—"T70C—"8O0C—0C—"08—O0C—"0C—"8—O0—0C—=8——0
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Examples: paths

_[Definition - Identifying code]

Subset C of V(G) such that:
e C is a dominating set: Vu € V(G), N[ulnC # 0, and
o C is a separating set: Vu# v of V(G), N[ulnC # N[v]nC

Domination number: DOM(P,,) = %1

O—8—OC—"T70C—"8O0C—0C—"08—O0C—"0C—"8—O0—0C—=8——0

Identifying code number: ID(P,) =[]

e—O0O—168—OC—"8 O0C—0O0O—0—O0O—0—0O—0—0O—0
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Identifiable graphs

Remark

Not all graphs have an identifying code!

Closed twins = pair u, v such that N[u] = N[v].
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Identifiable graphs

Remark

Not all graphs have an identifying code!

Closed twins = pair u, v such that N[u] = N[v].

Proposition

A graph is identifiable if and only if it is closed twin-free (i.e. has no twins).
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Bounds on ID(G)

n: number of vertices

Proposition

G identifiable graph on n vertices: [logy(n+1)] < ID(G).
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Bounds on ID(G)

n: number of vertices

Proposition

G identifiable graph on n vertices: [logy(n+1)] < ID(G).

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007))

G identifiable graph on n vertices with at least one edge:

ID(G)< n—1
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Bounds on ID(G)

n: number of vertices

Proposition

G identifiable graph on n vertices: [logy(n+1)] < ID(G).

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007))

G identifiable graph on n vertices with at least one edge:

ID(G)< n—1

ID(G) = n< G has no edges °
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Further examples

Definition - Identifying code]

Subset C of V(G) such that:
o Cis a dominating set: Yu € V(G), N[u[nC # 0, and
o C is a separating set: Vu # v of V(G), N[u]nC # N[v]nC

Theorem

G identifiable, n vertices, some edges: [logy(n+1)] <ID(G)<n—1
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Further examples

Definition - Identifying code]

Subset C of V(G) such that:
o C is a dominating set: Vu € V(G), N[u]nC # 0, and
o Cis a separating set: Yu # v of V(G), N[ulnC # N[v]nC

Theorem

G identifiable, n vertices, some edges: [logo(n+1)] <ID(G)<n-—1

ID(G) = logy(n+1)
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Further examples

Definition - Identifying code]

Subset C of V/(G) such that:
o C is a dominating set: Yu € V(G), N[ulnC # 0, and
o C is a separating set: Vu # v of V(G), N[ulnC# N[v]nC

Theorem

G identifiable, n vertices, some edges: [logy(n+1)] <ID(G)<n—1

ID(G) = logy(n+1)
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Further examples
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Further examples

Definition - Identifying code]

Subset C of V/(G) such that:
o C is a dominating set: Yu € V(G), N[ulnC # 0, and
o C is a separating set: Vu # v of V(G), N[ulnC# N[v]nC

Theorem

G identifiable, n vertices, some edges: [logy(n+1)] <ID(G)<n—1

ID(G) = logy(n+1)

forced vertex
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Further examples

Definition - Identifying code]

Subset C of V/(G) such that:
o C is a dominating set: Yu € V(G), N[ulnC # 0, and
o C is a separating set: Vu # v of V(G), N[ulnC# N[v]nC

Theorem

G identifiable, n vertices, some edges: [logy(n+1)] <ID(G)<n—1

ID(G) = logy(n+1)

Florent Foucaud Identification problems on graphs 12 /1



Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)]

G identifiable graph on n vertices with at least one edge:

ID(G)<n—1

Question

What are the graphs G with n vertices and ID(G) =n—17
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Forced vertices

u,v such that N[v]e N[u] = {f}: v u
f belongs to any identifying code

— f forced by u,v.
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Graphs with many forced vertices

Special path powers: A, = Pé‘k_l

AN

Ay =Py

Ay = P2 Ay =P}
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Graphs with many forced vertices

Special path powers: A, = Pé‘k_l

AN

Ay =P,
2 4 A3:P62 A4:P§
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Graphs with many forced vertices

Special path powers: A, = Pé‘k_l

AN

Ay =P,
2 4 A3:P62 A4:P§
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Graphs with many forced vertices

Special path powers: A, = Pé‘k_l

. <
S N
N N
N N
N .
.. N
.
Sl
Ay =Py
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Graphs with many forced vertices

Special path powers: A, = Pé‘k_l

AN

Ay =P,
2 4 A3:P62 A4:P§

Proposition

ID(A) =n—1
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Constructions using joins

Two graphs Ay and Ay
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Constructions using joins

Al

Ve

Join: add all edges between them

Identification problems on graphs
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Constructions using joins

0

A

A

)

=~

"

Join the new graph to two non-adjacent vertices (K>)
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Constructions using joins

Join the new graph to two non-adjacent vertices, again




Constructions using joins

Finally, add a universal vertex




Constructions using joins

Finally, add a universal vertex

Proposition

At each step, the constructed graph has ID=n—1




A characterization

(1) stars
_ pk-1
(2) Ak =Py
(3) joins between 0 or more members of (2) and 0 or more copies of Ky
(

4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovse, Naserasr, Parreau, Valicov, 2011)]

G connected identifiable graph, n vertices:

ID(G)=n—14 Ge (1), (2), (3) or (4)
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Lower bounds
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Proposition

G identifiable graph on n vertices: [logs(n+1)] < ID(G).
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Proposition

G identifiable graph on n vertices: [logs(n+1)] < ID(G).

Tight example (k = 4):
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Proposition

G identifiable graph on n vertices: [logs(n+1)] < ID(G).

Theorem (Rall & Slater, 1980’5)]

10
G planar graph, order n, ID(G) = k. Then n < 7k—10 — ID(G) > 10,
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Lower bounds

Proposition

G identifiable graph on n vertices: [logs(n+1)] < ID(G).

Theorem (Rall & Slater, 1980’5)]

10
G planar graph, order n, ID(G) = k. Then n < 7k—10 — ID(G) > 10,

Tight examples: Figure 3.
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Interval graphs

Definition - Interval graph]

Intersection graph of intervals of the real line.

h s 2 4 5
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)]

G interval graph of order n, ID(G) =
Then n < X550 ie ID(G) = Q(v/n).
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)]

G interval graph of order n, ID(G) =
Then n < X550 ie ID(G) = Q(v/n).

o Identifying code D of size k.

o Define zones using the right points of intervals in D.
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)]

G interval graph of order n, ID(G) = k.

Then n < X550 ie ID(G) = Q(v/n).

1 2
— —
1-1 2-3
3
—
1-2 2-4
1-4 4
—
1-3 3-4

o Identifying code D of size k.
o Define zones using the right points of intervals in D.

@ Each vertex intersects a consecutive set of intervals of D when ordered by
left points.
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)]

G interval graph of order n, ID(G) = k.

Then n < X550 ie ID(G) = Q(v/n).

1 2
— —
1-1 2-3
3
—
1-2 2-4
1-4 4
—
1-3 3-4

o Identifying code D of size k.
o Define zones using the right points of intervals in D.

@ Each vertex intersects a consecutive set of intervals of D when ordered by
left points.

< T (k- i) = Mg,
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)]

G interval graph of order n, ID(G) =
Then n < X550 ie ID(G) = Q(v/n).

Tight:
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Vapnik-Cervonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X,&)
(initial motivation: machine learning, 1971)

A set S C X is shattered:
for every subset S’ C S, there is an edge e with eNS= 5.

V-C dimension of H: maximum size of a shattered set in H

N
-
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Vapnik-Cervonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X,&)
(initial motivation: machine learning, 1971)

A set S C X is shattered:
for every subset S’ C S, there is an edge e with eNS= 5.

V-C dimension of H: maximum size of a shattered set in H

Typically bounded for geometric hypergraphs:

N
-
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its closed neighbourhood
hypergraph

/N LG
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its closed neighbourhood
hypergraph

Typically bounded for geometric intersection graphs:

— interval graphs (d = 2), Cs-free graphs (d = 2), line graphs (d = 4),
permutation graphs (d = 3), unit disk graphs (d = 3), planar graphs (d = 4)...
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its closed neighbourhood
hypergraph
Typically bounded for geometric intersection graphs:

— interval graphs (d = 2), Cs-free graphs (d = 2), line graphs (d = 4),
permutation graphs (d = 3), unit disk graphs (d = 3), planar graphs (d = 4)...

Theorem (Sauer-Shelah Lemma)]

Let H be a hypergraph of V-C dimension at most d. Then, any set S of
vertices has at most |S|? distinct traces.
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its closed neighbourhood
hypergraph
Typically bounded for geometric intersection graphs:

— interval graphs (d = 2), Cs-free graphs (d = 2), line graphs (d = 4),
permutation graphs (d = 3), unit disk graphs (d = 3), planar graphs (d = 4)...

Theorem (Sauer-Shelah Lemma)]

Let H be a hypergraph of V-C dimension at most d. Then, any set S of
vertices has at most |S|? distinct traces.

Corollary

G graph of order n, ID(G) = k, V-C dimension < d. Then n= O(k9).
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Metric dimension
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Determination of Position in 3D euclidean space

GPS/GLONASS /Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites 4 distance to them
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Determination of Position in 3D euclidean space

GPS/GLONASS /Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites 4 distance to them

Question

Does the “GPS" approach also work in undirected unweighted graphs?
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Metric dimension

Now, w € V(G) distinguishes {u, v} if dist(w,u) # dist(w,v)

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)]

R C V(G) resolving set of G:
Yu# v in V(G), there exists w € R that distinguishes {u,v}.
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Metric dimension

Now, w € V(G) distinguishes {u, v} if dist(w,u) # dist(w,v)

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)]

R C V(G) resolving set of G:
Yu# v in V(G), there exists w € R that distinguishes {u,v}.

MD(G): metric dimension of G, minimum size of a resolving set of G.
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Metric dimension

Now, w € V(G) distinguishes {u, v} if dist(w,u) # dist(w,v)

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)]

R C V(G) resolving set of G:
Yu# v in V(G), there exists w € R that distinguishes {u,v}.

MD(G): metric dimension of G, minimum size of a resolving set of G.
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Examples
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e—O0—0OCO—0C—"0O——0C—C0C—-O0

Proposition

MD(G)=1 < G is a path
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e—O0—0OCO—0C—"0O——0C—C0C—-O0

Proposition

MD(G)=1 < G is a path




e—O0—0OCO—0C—"0O——0C—C0C—-O0

Proposition

MD(G)=1 < G is a path

Proposition

For any square grid G, MD(G) =2.




Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree > 3 and 1.
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree > 3 and 1.
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree > 3 and 1.

Observation

R resolving set. If v has k legs, at least k —1 legs contain a vertex of R.

Simple leg rule: if v has k > 2 legs, select k —1 leg endpoints.
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree > 3 and 1.

Observation

R resolving set. If v has k legs, at least k —1 legs contain a vertex of R.

Simple leg rule: if v has k > 2 legs, select k —1 leg endpoints.

Theorem (Slater 1975)]

For any tree, the simple leg rule produces an optimal resolving set.
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Bounds with diameter

Example of path: no bound n < f(MD(G)) possible.
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Bounds with diameter

Example of path: no bound n < f(MD(G)) possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)]

G of order n, diameter D, MD(G) = k. Then n < D¥ + k.

(diameter: maximum distance between two vertices)
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Bounds with diameter

Example of path: no bound n < f(MD(G)) possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)]

G of order n, diameter D, MD(G) = k. Then n < D¥ + k.

(diameter: maximum distance between two vertices)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)]

G interval graph of order n, MD(G) = k, diameter D. Then n= O(Dk?)
ie. k=Q(y/B)- (Tight.)
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Bounds with diameter

Example of path: no bound n < f(MD(G)) possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)]

G of order n, diameter D, MD(G) = k. Then n < D¥ + k.

(diameter: maximum distance between two vertices)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)]

G interval graph of order n, MD(G) = k, diameter D. Then n= O(Dk?)
ie. k=Q(y/B)- (Tight.)

— Proofs are similar as for identifying codes.
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Trees

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018)]

T a tree with diameter D and MD(T) = k, then

1 .
s(kD+4)(D+2)  if Deven, >
< s =
"—{ L(kD—k+8)(D+1) if D odd. O(kD7)
Bounds are tight.
k=2 D=6 k=2,D=7

NN
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Planar graphs

Using the concept of distance-VC-dimension:

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018)]

G planar with diameter D and MD(G) = k, then n= O(k*D%).
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Planar graphs

Using the concept of distance-VC-dimension:

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018)]

G planar with diameter D and MD(G) = k, then n= O(k*D%).

Tight? Example with k =3 and n=©(D3):
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THANKS FOR YOUR ATTENTION
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