Identification problems on graphs
 selected topics

Florent Foucaud
Université de Bordeaux

CALDAM pre-conference school, February 2020

Locating a burglar

Separating sets in hypergraphs

Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961)

Hypergraph (X, \mathscr{E}). A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

$$
\begin{aligned}
& X=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} \\
& \mathscr{E}=\left\{\left\{v_{1}\right\},\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{4}, v_{5}\right\}\right\}
\end{aligned}
$$

Definition - Separating set (Rényi, 1961)
Hypergraph (X, \mathscr{E}). A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

Equivalently: for any pair e,f of edges, there is a vertex in C contained in exactly one of e, f.

$$
\begin{aligned}
& X=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} \\
& \mathscr{E}=\left\{\left\{v_{1}\right\},\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{4}, v_{5}\right\}\right\}
\end{aligned}
$$

Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961)

Hypergraph (X, \mathscr{E}). A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

Equivalently: for any pair e,f of edges, there is a vertex in C contained in exactly one of e, f.

$$
\begin{aligned}
& X=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} \\
& \mathscr{E}=\left\{\left\{v_{1}\right\},\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{4}, v_{5}\right\}\right\} \\
& C=\left\{v_{5}\right\} \\
& e_{1} \cap C=\emptyset \\
& e_{2} \cap C=\emptyset \\
& e_{3} \cap C=\emptyset \\
& e_{4} \cap C=\left\{v_{5}\right\}
\end{aligned}
$$

Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961)

Hypergraph (X, \mathscr{E}). A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

Equivalently: for any pair e,f of edges, there is a vertex in C contained in exactly one of e, f.

$$
\begin{aligned}
& X=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} \\
& \mathscr{E}=\left\{\left\{v_{1}\right\},\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{4}, v_{5}\right\}\right\} \\
& C=\left\{v_{5}, v_{2}\right\} \\
& e_{1} \cap C=\emptyset \\
& e_{2} \cap C=\left\{v_{2}\right\} \\
& e_{3} \cap C=\emptyset \\
& e_{4} \cap C=\left\{v_{5}\right\}
\end{aligned}
$$

Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961)

Hypergraph (X, \mathscr{E}). A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

Equivalently: for any pair e,f of edges, there is a vertex in C contained in exactly one of e, f.

$$
\begin{aligned}
& X=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} \\
& \mathscr{E}=\left\{\left\{v_{1}\right\},\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{4}, v_{5}\right\}\right\} \\
& C=\left\{v_{5}, v_{2}, v_{3}\right\} \\
& e_{1} \cap C=\emptyset \\
& e_{2} \cap C=\left\{v_{2}, v_{3}\right\} \\
& e_{3} \cap C=\left\{v_{3}\right\} \\
& e_{4} \cap C=\left\{v_{3}, v_{5}\right\}
\end{aligned}
$$

Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961)

Hypergraph (X, \mathscr{E}). A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

Equivalently: for any pair e,f of edges, there is a vertex in C contained in exactly one of e, f.

$$
\begin{aligned}
& X=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} \\
& \mathscr{E}=\left\{\left\{v_{1}\right\},\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{4}, v_{5}\right\}\right\} \\
& C=\left\{v_{5}, v_{1}, v_{3}\right\} \\
& e_{1} \cap C=\left\{v_{1}\right\} \\
& e_{2} \cap C=\left\{v_{1}, v_{3}\right\} \\
& e_{3} \cap C=\left\{v_{3}\right\} \\
& e_{4} \cap C=\left\{v_{3}, v_{5}\right\}
\end{aligned}
$$

Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961)

Hypergraph (X, \mathscr{E}). A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

Equivalently: for any pair e,f of edges, there is a vertex in C contained in exactly one of e, f.

$$
\begin{aligned}
& X=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} \\
& \mathscr{E}=\left\{\left\{v_{1}\right\},\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{4}, v_{5}\right\}\right\} \\
& C=\left\{v_{5}, v_{1}, v_{3}\right\} \\
& e_{1} \cap C=\left\{v_{1}\right\} \\
& e_{2} \cap C=\left\{v_{1}, v_{3}\right\} \\
& e_{3} \cap C=\left\{v_{3}\right\} \\
& e_{4} \cap C=\left\{v_{3}, v_{5}\right\}
\end{aligned}
$$

Also known as Separating system, Distinguishing set, Test cover, Distinguishing transversal, Discriminating code...

General bounds, Bondy's theorem

Proposition

For a hypergraph (X, \mathscr{E}), a separating set C has size at least $\log _{2}(|\mathscr{E}|)$.
Proof: Must assign to each edge, a distinct subset of $C:|\mathscr{E}| \leq 2^{|C|}$.

General bounds, Bondy's theorem

Proposition

For a hypergraph (X, \mathscr{E}), a separating set C has size at least $\log _{2}(|\mathscr{E}|)$.
Proof: Must assign to each edge, a distinct subset of $C:|\mathscr{E}| \leq 2^{|C|}$. Theorem (Bondy's theorem, 1972)

A minimal separating set of hypergraph (X, \mathscr{E}) has size at most $|\mathscr{E}|-1$.

General bounds, Bondy's theorem

Proposition

For a hypergraph (X, \mathscr{E}), a separating set C has size at least $\log _{2}(|\mathscr{E}|)$.
Proof: Must assign to each edge, a distinct subset of $C:|\mathscr{E}| \leq 2^{|C|}$.
Theorem (Bondy's theorem, 1972)
A minimal separating set of hypergraph (X, \mathscr{E}) has size at most $|\mathscr{E}|-1$.

Proof:

General bounds, Bondy's theorem

Proposition

For a hypergraph (X, \mathscr{E}), a separating set C has size at least $\log _{2}(|\mathscr{E}|)$.
Proof: Must assign to each edge, a distinct subset of $C:|\mathscr{E}| \leq 2^{|C|}$.
Theorem (Bondy's theorem, 1972)
A minimal separating set of hypergraph (X, \mathscr{E}) has size at most $|\mathscr{E}|-1$.

Which are the "problematic" vertices?

General bounds, Bondy's theorem

Proposition

For a hypergraph (X, \mathscr{E}), a separating set C has size at least $\log _{2}(|\mathscr{E}|)$.
Proof: Must assign to each edge, a distinct subset of $C:|\mathscr{E}| \leq 2^{|C|}$.
Theorem (Bondy's theorem, 1972)
A minimal separating set of hypergraph (X, \mathscr{E}) has size at most $|\mathscr{E}|-1$.

- e_{4}

General bounds, Bondy's theorem

Proposition

For a hypergraph (X, \mathscr{E}), a separating set C has size at least $\log _{2}(|\mathscr{E}|)$.
Proof: Must assign to each edge, a distinct subset of $C:|\mathscr{E}| \leq 2^{|C|}$.
Theorem (Bondy's theorem, 1972)
A minimal separating set of hypergraph (X, \mathscr{E}) has size at most $|\mathscr{E}|-1$.

Build graph G on vertex set $V(G)=\mathscr{E}$.
Join e_{i} to e_{j} iff $e_{i}=e_{j} \cup\{x\}$ for some $x \in X$, label it " x "

General bounds, Bondy's theorem

Proposition

For a hypergraph (X, \mathscr{E}), a separating set C has size at least $\log _{2}(|\mathscr{E}|)$.
Proof: Must assign to each edge, a distinct subset of $C:|\mathscr{E}| \leq 2^{|C|}$.
Theorem (Bondy's theorem, 1972)
A minimal separating set of hypergraph (X, \mathscr{E}) has size at most $|\mathscr{E}|-1$.

Build graph G on vertex set $V(G)=\mathscr{E}$.
Join e_{i} to e_{j} iff $e_{i}=e_{j} \cup\{x\}$ for some $x \in X$, label it " x "

General bounds, Bondy's theorem

Proposition

For a hypergraph (X, \mathscr{E}), a separating set C has size at least $\log _{2}(|\mathscr{E}|)$.
Proof: Must assign to each edge, a distinct subset of $C:|\mathscr{E}| \leq 2^{|C|}$.
Theorem (Bondy's theorem, 1972)
A minimal separating set of hypergraph (X, \mathscr{E}) has size at most $|\mathscr{E}|-1$.

Build graph G on vertex set $V(G)=\mathscr{E}$.
Join e_{i} to e_{j} iff $e_{i}=e_{j} \cup\{x\}$ for some $x \in X$, label it " x "

If an edge labeled x appears multiple times,
keep only one of them.
This destroys all cycles in G !

General bounds, Bondy's theorem

Proposition

For a hypergraph (X, \mathscr{E}), a separating set C has size at least $\log _{2}(|\mathscr{E}|)$.
Proof: Must assign to each edge, a distinct subset of $C:|\mathscr{E}| \leq 2^{|C|}$.
Theorem (Bondy's theorem, 1972)
A minimal separating set of hypergraph (X, \mathscr{E}) has size at most $|\mathscr{E}|-1$.

Build graph G on vertex set $V(G)=\mathscr{E}$.
Join e_{i} to e_{j} iff $e_{i}=e_{j} \cup\{x\}$ for some $x \in X$, label it " x "

If an edge labeled x appears multiple times,
keep only one of them.
This destroys all cycles in G !
So, there are at most $|\mathscr{E}|-1$ "problematic" vertices. \rightarrow Find one "non-problematic vertex" and omit it.

Some example problems

Special graph-based cases of separating sets in hypergraphs:

- identifying codes
- identifying open codes
- path/cycle identifying covers
- separating path systems

Some example problems

Special graph-based cases of separating sets in hypergraphs:

- identifying codes
- identifying open codes
- path/cycle identifying covers
- separating path systems

A variation:

- locating-dominating sets
- locating-total dominating sets

Special graph-based cases of separating sets in hypergraphs:

- identifying codes
- identifying open codes
- path/cycle identifying covers
- separating path systems

A variation:

- locating-dominating sets
- locating-total dominating sets

Geometric versions: e.g. seperating points using disks in Euclidean space

Special graph-based cases of separating sets in hypergraphs:

- identifying codes
- identifying open codes
- path/cycle identifying covers
- separating path systems

A variation:

- locating-dominating sets
- locating-total dominating sets

Geometric versions: e.g. seperating points using disks in Euclidean space
Distance-based identification:

- resolving sets (metric dimension)
- centroidal locating sets
- tracking paths problem

Identifying codes in graphs

Identifying codes

G : undirected graph
$N[u]$: set of vertices v s.t. $d(u, v) \leq 1$
Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$
$I D(G)$: identifying code number of G, minimum size of an identifying code in G

Identifying codes

G : undirected graph
$N[u]$: set of vertices v s.t. $d(u, v) \leq 1$

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$
$I D(G)$: identifying code number of G, minimum size of an identifying code in G
Separating set of $G=$ separating set of neighbourhood hypergraph of G

Identifying codes

G : undirected graph
$N[u]$: set of vertices v s.t. $d(u, v) \leq 1$

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$
$I D(G)$: identifying code number of G, minimum size of an identifying code in G
Separating set of $G=$ separating set of neighbourhood hypergraph of G

Identifying codes

G : undirected graph
$N[u]$: set of vertices v s.t. $d(u, v) \leq 1$

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$
$I D(G)$: identifying code number of G, minimum size of an identifying code in G
Separating set of $G=$ separating set of neighbourhood hypergraph of G

Examples: paths

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Examples: paths

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Identifying code number: $I D\left(P_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$

Identifiable graphs

Remark

Not all graphs have an identifying code!

Closed twins $=$ pair u, v such that $N[u]=N[v]$.

Identifiable graphs

Remark

Not all graphs have an identifying code!

Closed twins $=$ pair u, v such that $N[u]=N[v]$.

Proposition

A graph is identifiable if and only if it is closed twin-free (i.e. has no twins).

Bounds on $I D(G)$

n : number of vertices

Proposition

G identifiable graph on n vertices: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G)$.

Bounds on $I D(G)$

n : number of vertices

Proposition

G identifiable graph on n vertices: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G)$.

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)
G identifiable graph on n vertices with at least one edge:

$$
I D(G) \leq n-1
$$

Bounds on $I D(G)$

n : number of vertices

Proposition

G identifiable graph on n vertices: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G)$.

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)
G identifiable graph on n vertices with at least one edge:

$$
I D(G) \leq n-1
$$

$$
I D(G)=n \Leftrightarrow G \text { has no edges }
$$

Further examples

Definition - Identifying code
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$

Further examples

Definition-Identifying code
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$

Further examples

Definition - Identifying code
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$

Further examples

Definition - Identifying code
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$

Further examples

Definition - Identifying code
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$

Further examples

Definition - Identifying code
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$

Further examples

Definition - Identifying code
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$

Further examples

Definition - Identifying code
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$

Further examples

Definition - Identifying code
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$

Further examples

Definition - Identifying code
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$

Further examples

Definition - Identifying code
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$

Further examples

Definition - Identifying code
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$

Further examples

Definition - Identifying code
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$

A question

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)
G identifiable graph on n vertices with at least one edge:

$$
I D(G) \leq n-1
$$

Question

What are the graphs G with n vertices and $I D(G)=n-1$?

Forced vertices

u, v such that $N[v] \ominus N[u]=\{f\}$:
f belongs to any identifying code
$\rightarrow f$ forced by u, v.

Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$

$A_{3}=P_{6}^{2}$

$A_{4}=P_{8}^{3}$

Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$

$A_{3}=P_{6}^{2}$

$A_{4}=P_{8}^{3}$

Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$

$A_{2}=P_{4}$

$A_{3}=P_{6}^{2}$

$A_{4}=P_{8}^{3}$

Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$

$A_{2}=P_{4}$

$A_{3}=P_{6}^{2}$

$A_{4}=P_{8}^{3}$

Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$

$A_{2}=P_{4}$

$$
A_{3}=P_{6}^{2}
$$

$A_{4}=P_{8}^{3}$

Proposition

$$
I D\left(A_{k}\right)=n-1
$$

Constructions using joins

Two graphs A_{k} and $A_{k^{\prime}}$

Constructions using joins

Join: add all edges between them

Constructions using joins

Join the new graph to two non-adjacent vertices ($\overline{K_{2}}$)

Constructions using joins

Join the new graph to two non-adjacent vertices, again

Constructions using joins

Constructions using joins

Finally, add a universal vertex

Proposition

At each step, the constructed graph has $I D=n-1$

A characterization

(1) stars
(2) $A_{k}=P_{2 k}^{k-1}$
(3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_{2}}$
(4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)
G connected identifiable graph, n vertices:

$$
I D(G)=n-1 \Leftrightarrow G \in(1),(2), \text { (3) or (4) }
$$

Lower bounds

Proposition

G identifiable graph on n vertices: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G)$.

Proposition

G identifiable graph on n vertices: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G)$.

Tight example $(k=4)$:

Lower bounds

Proposition

G identifiable graph on n vertices: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G)$.

Theorem (Rall \& Slater, 1980's)
G planar graph, order $n, I D(G)=k$. Then $n \leq 7 k-10 \rightarrow I D(G) \geq \frac{n+10}{7}$.

Lower bounds

Proposition

G identifiable graph on n vertices: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G)$.

Theorem (Rall \& Slater, 1980's)
G planar graph, order $n, I D(G)=k$. Then $n \leq 7 k-10 \rightarrow I D(G) \geq \frac{n+10}{7}$.

Tight examples:

Interval graphs

Definition - Interval graph

Intersection graph of intervals of the real line.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)
G interval graph of order $n, I D(G)=k$.

$$
\text { Then } n \leq \frac{k(k+1)}{2} \text {, i.e. } I D(G)=\Omega(\sqrt{n}) \text {. }
$$

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)
G interval graph of order $n, I D(G)=k$.

$$
\text { Then } n \leq \frac{k(k+1)}{2} \text {, i.e. } I D(G)=\Omega(\sqrt{n}) \text {. }
$$

- Identifying code D of size k.
- Define zones using the right points of intervals in D.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

G interval graph of order $n, I D(G)=k$.

$$
\text { Then } n \leq \frac{k(k+1)}{2} \text {, i.e. } I D(G)=\Omega(\sqrt{n}) \text {. }
$$

- Identifying code D of size k.
- Define zones using the right points of intervals in D.
- Each vertex intersects a consecutive set of intervals of D when ordered by left points.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

G interval graph of order $n, I D(G)=k$.

$$
\text { Then } n \leq \frac{k(k+1)}{2} \text {, i.e. } I D(G)=\Omega(\sqrt{n}) \text {. }
$$

- Identifying code D of size k.
- Define zones using the right points of intervals in D.
- Each vertex intersects a consecutive set of intervals of D when ordered by left points.

$$
\rightarrow n \leq \sum_{i=1}^{k}(k-i)=\frac{k(k+1)}{2} .
$$

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)
G interval graph of order $n, I D(G)=k$.

$$
\text { Then } n \leq \frac{k(k+1)}{2} \text {, i.e. } I D(G)=\Omega(\sqrt{n}) \text {. }
$$

Tight:

Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X, \mathscr{E}) (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered:
for every subset $S^{\prime} \subseteq S$, there is an edge e with $e \cap S=S^{\prime}$.

V-C dimension of H : maximum size of a shattered set in H

Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X, \mathscr{E}) (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered:
for every subset $S^{\prime} \subseteq S$, there is an edge e with $e \cap S=S^{\prime}$.

V-C dimension of H : maximum size of a shattered set in H

Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X, \mathscr{E}) (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered:
for every subset $S^{\prime} \subseteq S$, there is an edge e with $e \cap S=S^{\prime}$.

V-C dimension of H : maximum size of a shattered set in H
Typically bounded for geometric hypergraphs:

Vapnik-Červonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its closed neighbourhood hypergraph

Vapnik-Červonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:
\rightarrow interval graphs $(d=2), C_{4}$-free graphs $(d=2)$, line graphs $(d=4)$, permutation graphs $(d=3)$, unit disk graphs $(d=3)$, planar graphs $(d=4) \ldots$

Vapnik-Červonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:
\rightarrow interval graphs $(d=2), C_{4}$-free graphs $(d=2)$, line graphs $(d=4)$, permutation graphs $(d=3)$, unit disk graphs $(d=3)$, planar graphs $(d=4) \ldots$

Theorem (Sauer-Shelah Lemma)

Let H be a hypergraph of V-C dimension at most d. Then, any set S of vertices has at most $|S|^{d}$ distinct traces.

Vapnik-Červonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:
\rightarrow interval graphs $(d=2), C_{4}$-free graphs $(d=2)$, line graphs $(d=4)$, permutation graphs $(d=3)$, unit disk graphs $(d=3)$, planar graphs $(d=4) \ldots$

Theorem (Sauer-Shelah Lemma)

Let H be a hypergraph of V-C dimension at most d. Then, any set S of vertices has at most $|S|^{d}$ distinct traces.

Corollary

G graph of order $n, I D(G)=k$, V-C dimension $\leq d$. Then $n=O\left(k^{d}\right)$.

Metric dimension

Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them

Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them

Question

Does the "GPS" approach also work in undirected unweighted graphs?

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

$M D(G)$: metric dimension of G, minimum size of a resolving set of G.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

$M D(G)$: metric dimension of G, minimum size of a resolving set of G.

Examples

$$
\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}
$$

Examples

$-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}$

Examples

\square
Proposition

$$
M D(G)=1 \Leftrightarrow G \text { is a path }
$$

Examples

Proposition
$M D(G)=1 \Leftrightarrow G$ is a path

Examples

Proposition

$$
M D(G)=1 \Leftrightarrow G \text { is a path }
$$

Proposition

For any square grid $G, M D(G)=2$.

Trees

Leg: path with all inner-vertices of degree 2 , endpoints of degree ≥ 3 and 1 .

Trees

Leg: path with all inner-vertices of degree 2 , endpoints of degree ≥ 3 and 1 .

Trees

Leg: path with all inner-vertices of degree 2 , endpoints of degree ≥ 3 and 1 .

Observation

R resolving set. If v has k legs, at least $k-1$ legs contain a vertex of R.

Simple leg rule: if v has $k \geq 2$ legs, select $k-1$ leg endpoints.

Trees

Leg: path with all inner-vertices of degree 2 , endpoints of degree ≥ 3 and 1 .

Observation

R resolving set. If v has k legs, at least $k-1$ legs contain a vertex of R.

Simple leg rule: if v has $k \geq 2$ legs, select $k-1$ leg endpoints.

Theorem (Slater 1975)

For any tree, the simple leg rule produces an optimal resolving set.

Bounds with diameter

Example of path: no bound $n \leq f(M D(G))$ possible.

Bounds with diameter

Example of path: no bound $n \leq f(M D(G))$ possible.
Theorem (Khuller, Raghavachari \& Rosenfeld, 2002)
G of order n, diameter $D, M D(G)=k$. Then $n \leq D^{k}+k$.
(diameter: maximum distance between two vertices)

Bounds with diameter

Example of path: no bound $n \leq f(M D(G))$ possible.
Theorem (Khuller, Raghavachari \& Rosenfeld, 2002)
G of order n, diameter $D, M D(G)=k$. Then $n \leq D^{k}+k$.
(diameter: maximum distance between two vertices)
Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)
G interval graph of order $n, M D(G)=k$, diameter D. Then $n=O\left(D k^{2}\right)$

$$
\text { i.e. } \left.k=\Omega\left(\sqrt{\frac{n}{D}}\right) \text {. (Tight. }\right)
$$

Bounds with diameter

Example of path: no bound $n \leq f(M D(G))$ possible.
Theorem (Khuller, Raghavachari \& Rosenfeld, 2002)
G of order n, diameter $D, M D(G)=k$. Then $n \leq D^{k}+k$.
(diameter: maximum distance between two vertices)
Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)
G interval graph of order $n, M D(G)=k$, diameter D. Then $n=O\left(D k^{2}\right)$

$$
\text { i.e. } \left.k=\Omega\left(\sqrt{\frac{n}{D}}\right) \text {. (Tight. }\right)
$$

\rightarrow Proofs are similar as for identifying codes.

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018)
T a tree with diameter D and $M D(T)=k$, then

$$
n \leq\left\{\begin{array}{cc}
\frac{1}{8}(k D+4)(D+2) & \text { if } D \text { even, } \\
\frac{1}{8}(k D-k+8)(D+1) & \text { if } D \text { odd. }
\end{array}=\Theta\left(k D^{2}\right)\right.
$$

Bounds are tight.

Planar graphs

Using the concept of distance-VC-dimension:

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018)
G planar with diameter D and $M D(G)=k$, then $n=O\left(k^{4} D^{4}\right)$.

Planar graphs

Using the concept of distance-VC-dimension:

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018)
G planar with diameter D and $M D(G)=k$, then $n=O\left(k^{4} D^{4}\right)$.

Tight? Example with $k=3$ and $n=\Theta\left(D^{3}\right)$:

THANKS FOR YOUR ATTENTION

