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Separating sets in hypergraphs

Hypergraph (X ,E ). A separating set is a subset C ⊆ X such that each edge
e ∈ E contains a distinct subset of C .

Definition - Separating set (Rényi, 1961)

Equivalently: for any pair e, f of edges, there is a vertex in C contained in
exactly one of e, f .

v1

v2

v3 v4

v5

e1
e2

e4
e3

X = {v1,v2,v3,v4,v5}
E = {{v1},{v1,v2,v3},{v3,v4},{v3,v4,v5}}

Also known as Separating system, Distinguishing set, Test cover, Distinguishing
transversal, Discriminating code...
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General bounds, Bondy’s theorem

For a hypergraph (X ,E ), a separating set C has size at least log2(|E |).

Proposition

Proof: Must assign to each edge, a distinct subset of C : |E | ≤ 2|C |.

A minimal separating set of hypergraph (X ,E ) has size at most |E |−1.

Theorem (Bondy’s theorem, 1972)

Build graph G on vertex set V (G) = E .

Join ei to ej iff ei = ej ∪{x} for some
x ∈ X , label it “x”

If an edge labeled x appears multiple times,
keep only one of them.

This destroys all cycles in G!

So, there are at most |E |−1 “problematic”
vertices. → Find one “non-problematic
vertex” and omit it.

Florent Foucaud Identification problems on graphs 5 / 1



General bounds, Bondy’s theorem

For a hypergraph (X ,E ), a separating set C has size at least log2(|E |).

Proposition

Proof: Must assign to each edge, a distinct subset of C : |E | ≤ 2|C |.

A minimal separating set of hypergraph (X ,E ) has size at most |E |−1.

Theorem (Bondy’s theorem, 1972)

Build graph G on vertex set V (G) = E .

Join ei to ej iff ei = ej ∪{x} for some
x ∈ X , label it “x”

If an edge labeled x appears multiple times,
keep only one of them.

This destroys all cycles in G!

So, there are at most |E |−1 “problematic”
vertices. → Find one “non-problematic
vertex” and omit it.

Florent Foucaud Identification problems on graphs 5 / 1



General bounds, Bondy’s theorem

For a hypergraph (X ,E ), a separating set C has size at least log2(|E |).

Proposition

Proof: Must assign to each edge, a distinct subset of C : |E | ≤ 2|C |.

A minimal separating set of hypergraph (X ,E ) has size at most |E |−1.

Theorem (Bondy’s theorem, 1972)

Proof:

Build graph G on vertex set V (G) = E .

Join ei to ej iff ei = ej ∪{x} for some
x ∈ X , label it “x”

If an edge labeled x appears multiple times,
keep only one of them.

This destroys all cycles in G!

So, there are at most |E |−1 “problematic”
vertices. → Find one “non-problematic
vertex” and omit it.

Florent Foucaud Identification problems on graphs 5 / 1



General bounds, Bondy’s theorem

For a hypergraph (X ,E ), a separating set C has size at least log2(|E |).

Proposition

Proof: Must assign to each edge, a distinct subset of C : |E | ≤ 2|C |.

A minimal separating set of hypergraph (X ,E ) has size at most |E |−1.

Theorem (Bondy’s theorem, 1972)

v1

v2

v3 v4

v5

e1
e2

e4
e3

Which are the “problematic” vertices?

Build graph G on vertex set V (G) = E .

Join ei to ej iff ei = ej ∪{x} for some
x ∈ X , label it “x”

If an edge labeled x appears multiple times,
keep only one of them.

This destroys all cycles in G!

So, there are at most |E |−1 “problematic”
vertices. → Find one “non-problematic
vertex” and omit it.

Florent Foucaud Identification problems on graphs 5 / 1



General bounds, Bondy’s theorem

For a hypergraph (X ,E ), a separating set C has size at least log2(|E |).

Proposition

Proof: Must assign to each edge, a distinct subset of C : |E | ≤ 2|C |.

A minimal separating set of hypergraph (X ,E ) has size at most |E |−1.

Theorem (Bondy’s theorem, 1972)

e1

e2

e5

e3

em
e4

Build graph G on vertex set V (G) = E .

Join ei to ej iff ei = ej ∪{x} for some
x ∈ X , label it “x”

If an edge labeled x appears multiple times,
keep only one of them.

This destroys all cycles in G!

So, there are at most |E |−1 “problematic”
vertices. → Find one “non-problematic
vertex” and omit it.

Florent Foucaud Identification problems on graphs 5 / 1



General bounds, Bondy’s theorem

For a hypergraph (X ,E ), a separating set C has size at least log2(|E |).

Proposition

Proof: Must assign to each edge, a distinct subset of C : |E | ≤ 2|C |.

A minimal separating set of hypergraph (X ,E ) has size at most |E |−1.

Theorem (Bondy’s theorem, 1972)

x

x

xe1

e2

e5

e3

em
e4

Build graph G on vertex set V (G) = E .

Join ei to ej iff ei = ej ∪{x} for some
x ∈ X , label it “x”

If an edge labeled x appears multiple times,
keep only one of them.

This destroys all cycles in G!

So, there are at most |E |−1 “problematic”
vertices. → Find one “non-problematic
vertex” and omit it.

Florent Foucaud Identification problems on graphs 5 / 1



General bounds, Bondy’s theorem

For a hypergraph (X ,E ), a separating set C has size at least log2(|E |).

Proposition

Proof: Must assign to each edge, a distinct subset of C : |E | ≤ 2|C |.

A minimal separating set of hypergraph (X ,E ) has size at most |E |−1.

Theorem (Bondy’s theorem, 1972)

e1

e2

e5

e3

em

x

x e4

z

x

y

y

z

Build graph G on vertex set V (G) = E .

Join ei to ej iff ei = ej ∪{x} for some
x ∈ X , label it “x”

If an edge labeled x appears multiple times,
keep only one of them.

This destroys all cycles in G!

So, there are at most |E |−1 “problematic”
vertices. → Find one “non-problematic
vertex” and omit it.

Florent Foucaud Identification problems on graphs 5 / 1



General bounds, Bondy’s theorem

For a hypergraph (X ,E ), a separating set C has size at least log2(|E |).

Proposition

Proof: Must assign to each edge, a distinct subset of C : |E | ≤ 2|C |.

A minimal separating set of hypergraph (X ,E ) has size at most |E |−1.

Theorem (Bondy’s theorem, 1972)

e1

e2

e5

e3

em

x

e4

y

z

Build graph G on vertex set V (G) = E .

Join ei to ej iff ei = ej ∪{x} for some
x ∈ X , label it “x”

If an edge labeled x appears multiple times,
keep only one of them.

This destroys all cycles in G!

So, there are at most |E |−1 “problematic”
vertices. → Find one “non-problematic
vertex” and omit it.

Florent Foucaud Identification problems on graphs 5 / 1



General bounds, Bondy’s theorem

For a hypergraph (X ,E ), a separating set C has size at least log2(|E |).

Proposition

Proof: Must assign to each edge, a distinct subset of C : |E | ≤ 2|C |.

A minimal separating set of hypergraph (X ,E ) has size at most |E |−1.

Theorem (Bondy’s theorem, 1972)

e1

e2

e5

e3

em

x

e4

y

z

Build graph G on vertex set V (G) = E .

Join ei to ej iff ei = ej ∪{x} for some
x ∈ X , label it “x”

If an edge labeled x appears multiple times,
keep only one of them.

This destroys all cycles in G!

So, there are at most |E |−1 “problematic”
vertices. → Find one “non-problematic
vertex” and omit it.

Florent Foucaud Identification problems on graphs 5 / 1



Some example problems

Special graph-based cases of separating sets in hypergraphs:

identifying codes
identifying open codes
path/cycle identifying covers
separating path systems

A variation:
locating-dominating sets
locating-total dominating sets

Geometric versions: e.g. seperating points using disks in Euclidean space

Distance-based identification:

resolving sets (metric dimension)
centroidal locating sets
tracking paths problem
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Identifying codes in graphs
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Identifying codes

G : undirected graph
N[u]: set of vertices v s.t. d(u,v)≤ 1

Subset C of V (G) such that:
C is a dominating set: ∀u ∈ V (G), N[u]∩C 6= /0, and
C is a separating set: ∀u 6= v of V (G), N[u]∩C 6= N[v ]∩C

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

ID(G): identifying code number of G ,
minimum size of an identifying code in G
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Examples: paths

Subset C of V (G) such that:
C is a dominating set: ∀u ∈ V (G), N[u]∩C 6= /0, and
C is a separating set: ∀u 6= v of V (G), N[u]∩C 6= N[v ]∩C

Definition - Identifying code

Domination number: DOM(Pn) =
⌈ n
3
⌉

Identifying code number: ID(Pn) =
⌈ n+1

2
⌉

Florent Foucaud Identification problems on graphs 9 / 1



Examples: paths

Subset C of V (G) such that:
C is a dominating set: ∀u ∈ V (G), N[u]∩C 6= /0, and
C is a separating set: ∀u 6= v of V (G), N[u]∩C 6= N[v ]∩C

Definition - Identifying code

Domination number: DOM(Pn) =
⌈ n
3
⌉

Identifying code number: ID(Pn) =
⌈ n+1

2
⌉

Florent Foucaud Identification problems on graphs 9 / 1



Identifiable graphs

Not all graphs have an identifying code!

Remark

Closed twins = pair u, v such that N[u] = N[v ].

u v

A graph is identifiable if and only if it is closed twin-free (i.e. has no twins).

Proposition
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Bounds on ID(G)

n: number of vertices

G identifiable graph on n vertices: dlog2(n +1)e ≤ ID(G).

Proposition

G identifiable graph on n vertices with at least one edge:

ID(G)≤ n−1

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

ID(G) = n⇔ G has no edges
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Further examples

Subset C of V (G) such that:
C is a dominating set: ∀u ∈ V (G), N[u]∩C 6= /0, and
C is a separating set: ∀u 6= v of V (G), N[u]∩C 6= N[v ]∩C

Definition - Identifying code

G identifiable, n vertices, some edges: dlog2(n +1)e ≤ ID(G)≤ n−1

Theorem

forced vertexforced vertex
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G identifiable, n vertices, some edges: dlog2(n +1)e ≤ ID(G)≤ n−1

Theorem

ID(G) = log2(n +1)

forced vertexforced vertex
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A question

G identifiable graph on n vertices with at least one edge:

ID(G)≤ n−1

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

What are the graphs G with n vertices and ID(G) = n−1 ?

Question
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Forced vertices

u,v such that N[v ]	N[u] = {f }:

f belongs to any identifying code

→ f forced by u,v .

f
v u
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Graphs with many forced vertices

Special path powers: Ak = Pk−1
2k

A2 = P4
A3 = P2

6 A4 = P3
8

ID(Ak ) = n−1

Proposition
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Constructions using joins

Ak Ak'

Two graphs Ak and Ak ′

At each step, the constructed graph has ID = n−1

Proposition
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Constructions using joins

Ak Ak'

Join: add all edges between them

At each step, the constructed graph has ID = n−1

Proposition
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Constructions using joins

Ak Ak'

Join the new graph to two non-adjacent vertices (K2)

At each step, the constructed graph has ID = n−1

Proposition
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Constructions using joins

Ak Ak'

Join the new graph to two non-adjacent vertices, again

At each step, the constructed graph has ID = n−1

Proposition
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Constructions using joins

Ak Ak'

Finally, add a universal vertex

At each step, the constructed graph has ID = n−1

Proposition
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Constructions using joins

Ak Ak'

Finally, add a universal vertex

At each step, the constructed graph has ID = n−1

Proposition

Florent Foucaud Identification problems on graphs 16 / 1



A characterization

(1) stars
(2) Ak = Pk−1

2k
(3) joins between 0 or more members of (2) and 0 or more copies of K2

(4) (2) or (3) with a universal vertex

G connected identifiable graph, n vertices:

ID(G) = n−1 ⇔ G ∈ (1), (2), (3) or (4)

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)
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Lower bounds

Florent Foucaud Identification problems on graphs 18 / 1



Lower bounds

G identifiable graph on n vertices: dlog2(n +1)e ≤ ID(G).

Proposition
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Lower bounds

G identifiable graph on n vertices: dlog2(n +1)e ≤ ID(G).

Proposition

Tight example (k = 4):
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Lower bounds

G identifiable graph on n vertices: dlog2(n +1)e ≤ ID(G).

Proposition

G planar graph, order n, ID(G) = k. Then n ≤ 7k−10 → ID(G)≥ n+10
7 .

Theorem (Rall & Slater, 1980’s)
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Lower bounds

G identifiable graph on n vertices: dlog2(n +1)e ≤ ID(G).

Proposition

G planar graph, order n, ID(G) = k. Then n ≤ 7k−10 → ID(G)≥ n+10
7 .

Theorem (Rall & Slater, 1980’s)

Tight examples:

Florent Foucaud Identification problems on graphs 19 / 1



Interval graphs

Intersection graph of intervals of the real line.

Definition - Interval graph

I1 I4

I2 I5

I3 1

2

3

4 5
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Lower bound for interval graphs

G interval graph of order n, ID(G) = k.

Then n ≤ k(k+1)
2 , i.e. ID(G) = Ω(

√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)
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Lower bound for interval graphs

G interval graph of order n, ID(G) = k.

Then n ≤ k(k+1)
2 , i.e. ID(G) = Ω(

√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

1 2

3

4

1−1 2−3

1−2 2−4

1−4

1−3 3−4

Identifying code D of size k.

Define zones using the right points of intervals in D.

Each vertex intersects a consecutive set of intervals of D when ordered by
left points.

→ n ≤ ∑
k
i=1(k− i) = k(k+1)

2 .
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Lower bound for interval graphs

G interval graph of order n, ID(G) = k.

Then n ≤ k(k+1)
2 , i.e. ID(G) = Ω(

√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

Tight:
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Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X ,E )
(initial motivation: machine learning, 1971)

A set S ⊆ X is shattered:
for every subset S ′ ⊆ S, there is an edge e with e∩S = S ′.

V-C dimension of H: maximum size of a shattered set in H

Typically bounded for geometric hypergraphs:
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Vapnik-Červonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its closed neighbourhood
hypergraph

Typically bounded for geometric intersection graphs:

→ interval graphs (d = 2), C4-free graphs (d = 2), line graphs (d = 4),
permutation graphs (d = 3), unit disk graphs (d = 3), planar graphs (d = 4)...

Let H be a hypergraph of V-C dimension at most d . Then, any set S of
vertices has at most |S|d distinct traces.

Theorem (Sauer-Shelah Lemma)

G graph of order n, ID(G) = k, V-C dimension ≤ d . Then n = O(kd ).

Corollary
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Metric dimension
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Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them

Does the “GPS” approach also work in undirected unweighted graphs?

Question
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Metric dimension

Now, w ∈ V (G) distinguishes {u,v} if dist(w ,u) 6= dist(w ,v)

R ⊆ V (G) resolving set of G :

∀u 6= v in V (G), there exists w ∈ R that distinguishes {u,v}.

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)
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Metric dimension

Now, w ∈ V (G) distinguishes {u,v} if dist(w ,u) 6= dist(w ,v)

R ⊆ V (G) resolving set of G :

∀u 6= v in V (G), there exists w ∈ R that distinguishes {u,v}.

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

w

MD(G): metric dimension of G , minimum size of a resolving set of G .
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Metric dimension

Now, w ∈ V (G) distinguishes {u,v} if dist(w ,u) 6= dist(w ,v)

R ⊆ V (G) resolving set of G :

∀u 6= v in V (G), there exists w ∈ R that distinguishes {u,v}.

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

w

MD(G): metric dimension of G , minimum size of a resolving set of G .

• Any identifying code is a resolving set, hence MD(G)≤ ID(G).

• An identifying code can be seen as a “distance-1-resolving set”.

Remark
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Examples

MD(G) = 1 ⇔ G is a path

Proposition

For any square grid G , MD(G) = 2.

Proposition
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree ≥ 3 and 1.

G
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree ≥ 3 and 1.

G v

R resolving set. If v has k legs, at least k−1 legs contain a vertex of R.

Observation

Simple leg rule: if v has k ≥ 2 legs, select k−1 leg endpoints.
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree ≥ 3 and 1.

G v

R resolving set. If v has k legs, at least k−1 legs contain a vertex of R.

Observation

Simple leg rule: if v has k ≥ 2 legs, select k−1 leg endpoints.

For any tree, the simple leg rule produces an optimal resolving set.

Theorem (Slater 1975)
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Bounds with diameter

Example of path: no bound n ≤ f (MD(G)) possible.

G of order n, diameter D, MD(G) = k. Then n ≤Dk + k.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)

(diameter: maximum distance between two vertices)

G interval graph of order n, MD(G) = k, diameter D. Then n = O(Dk2)
i.e. k = Ω

(√ n
D
)
. (Tight.)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

→ Proofs are similar as for identifying codes.
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Trees

T a tree with diameter D and MD(T ) = k, then

n ≤
{ 1

8 (kD +4)(D +2) if D even,
1
8 (kD−k +8)(D +1) if D odd.

= Θ(kD2)

Bounds are tight.

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018)

k = 2, D = 6 k = 2, D = 7
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Planar graphs

Using the concept of distance-VC-dimension:

G planar with diameter D and MD(G) = k, then n = O(k4D4).

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018)

Tight? Example with k = 3 and n = Θ(D3):

· · ·
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