Identification problems on graphs

selected topics

Florent Foucaud Université de Bordeaux

CALDAM pre-conference school, February 2020

Definition - Separating set (Rényi, 1961)

Hypergraph (X, \mathcal{E}) . A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathcal{E}$ contains a distinct subset of C.

$$X = \{v_1, v_2, v_3, v_4, v_5\}$$

$$\mathscr{E} = \{\{v_1\}, \{v_1, v_2, v_3\}, \{v_3, v_4\}, \{v_3, v_4, v_5\}\}$$

Definition - Separating set (Rényi, 1961)

Hypergraph (X,\mathscr{E}) . A separating set is a subset $C\subseteq X$ such that each edge $e\in\mathscr{E}$ contains a distinct subset of C.

Equivalently: for any pair e,f of edges, there is a vertex in ${\cal C}$ contained in **exactly** one of e,f.

$$X = \{v_1, v_2, v_3, v_4, v_5\}$$

$$\mathscr{E} = \{\{v_1\}, \{v_1, v_2, v_3\}, \{v_3, v_4\}, \{v_3, v_4, v_5\}\}$$

Definition - Separating set (Rényi, 1961)

Hypergraph (X,\mathscr{E}) . A separating set is a subset $C\subseteq X$ such that each edge $e\in\mathscr{E}$ contains a distinct subset of C.

Equivalently: for any pair e,f of edges, there is a vertex in ${\cal C}$ contained in **exactly** one of e,f.

$$X = \{v_1, v_2, v_3, v_4, v_5\}$$

$$\mathcal{E} = \{\{v_1\}, \{v_1, v_2, v_3\}, \{v_3, v_4\}, \{v_3, v_4, v_5\}\}$$

$$C = \{v_5\}$$

$$e_1 \cap C = \emptyset$$

$$e_2 \cap C = \emptyset$$

$$e_3 \cap C = \emptyset$$

$$e_4 \cap C = \{v_5\}$$

Definition - Separating set (Rényi, 1961)

Hypergraph (X,\mathscr{E}) . A separating set is a subset $C\subseteq X$ such that each edge $e\in\mathscr{E}$ contains a distinct subset of C.

Equivalently: for any pair e, f of edges, there is a vertex in C contained in **exactly** one of e, f.

$$X = \{v_1, v_2, v_3, v_4, v_5\}$$

$$\mathcal{E} = \{\{v_1\}, \{v_1, v_2, v_3\}, \{v_3, v_4\}, \{v_3, v_4, v_5\}\}$$

$$C = \{v_5, v_2\}$$

$$e_1 \cap C = \emptyset$$

$$e_2 \cap C = \{v_2\}$$

$$e_3 \cap C = \emptyset$$

$$e_4 \cap C = \{v_5\}$$

Definition - Separating set (Rényi, 1961)

Hypergraph (X,\mathscr{E}) . A separating set is a subset $C\subseteq X$ such that each edge $e\in\mathscr{E}$ contains a distinct subset of C.

Equivalently: for any pair e, f of edges, there is a vertex in C contained in **exactly** one of e, f.

$$X = \{v_1, v_2, v_3, v_4, v_5\}$$

$$\mathcal{E} = \{\{v_1\}, \{v_1, v_2, v_3\}, \{v_3, v_4\}, \{v_3, v_4, v_5\}\}$$

$$C = \{v_5, v_2, v_3\}$$

$$e_1 \cap C = \emptyset$$

$$e_2 \cap C = \{v_2, v_3\}$$

$$e_3 \cap C = \{v_3\}$$

$$e_4 \cap C = \{v_3, v_5\}$$

Definition - Separating set (Rényi, 1961)

Hypergraph (X, \mathcal{E}) . A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathcal{E}$ contains a distinct subset of C.

Equivalently: for any pair e, f of edges, there is a vertex in C contained in **exactly** one of e, f.

$$X = \{v_1, v_2, v_3, v_4, v_5\}$$

$$\mathcal{E} = \{\{v_1\}, \{v_1, v_2, v_3\}, \{v_3, v_4\}, \{v_3, v_4, v_5\}\}$$

$$C = \{v_5, v_1, v_3\}$$

$$e_1 \cap C = \{v_1\}$$

$$e_2 \cap C = \{v_1, v_3\}$$

$$e_3 \cap C = \{v_3\}$$

$$e_4 \cap C = \{v_3, v_5\}$$

Definition - Separating set (Rényi, 1961)

Hypergraph (X, \mathcal{E}) . A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathcal{E}$ contains a distinct subset of C.

Equivalently: for any pair e, f of edges, there is a vertex in C contained in **exactly** one of e, f.

$$X = \{v_1, v_2, v_3, v_4, v_5\}$$

$$\mathcal{E} = \{\{v_1\}, \{v_1, v_2, v_3\}, \{v_3, v_4\}, \{v_3, v_4, v_5\}\}$$

$$C = \{v_5, v_1, v_3\}$$

$$e_1 \cap C = \{v_1\}$$

$$e_2 \cap C = \{v_1, v_3\}$$

$$e_3 \cap C = \{v_3\}$$

$$e_4 \cap C = \{v_2, v_5\}$$

Also known as Separating system, Distinguishing set, Test cover, Distinguishing transversal, Discriminating code...

Proposition

For a hypergraph (X, \mathscr{E}) , a separating set C has size at least $\log_2(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|C|}$.

Proposition

For a hypergraph (X, \mathscr{E}) , a separating set C has size at least $\log_2(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathcal{E}| \leq 2^{|C|}$.

Theorem (Bondy's theorem, 1972)

A minimal separating set of hypergraph (X, \mathcal{E}) has size at most $|\mathcal{E}| - 1$.

Proposition

For a hypergraph (X, \mathscr{E}) , a separating set C has size at least $\log_2(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathcal{E}| \leq 2^{|C|}$.

Theorem (Bondy's theorem, 1972)

A minimal separating set of hypergraph (X, \mathscr{E}) has size at most $|\mathscr{E}| - 1$.

Proof:

Proposition

For a hypergraph (X, \mathcal{E}) , a separating set C has size at least $\log_2(|\mathcal{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|C|}$.

Theorem (Bondy's theorem, 1972)

A minimal separating set of hypergraph (X, \mathcal{E}) has size at most $|\mathcal{E}| - 1$.

Which are the "problematic" vertices?

Proposition

For a hypergraph (X, \mathcal{E}) , a separating set C has size at least $\log_2(|\mathcal{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|C|}$.

Theorem (Bondy's theorem, 1972)

A minimal separating set of hypergraph (X, \mathcal{E}) has size at most $|\mathcal{E}| - 1$.

 \mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{3}

e₅

Identification problems on graphs

Build graph G on vertex set $V(G) = \mathcal{E}$.

Proposition

For a hypergraph (X, \mathcal{E}) , a separating set C has size at least $\log_2(|\mathcal{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|C|}$.

Theorem (Bondy's theorem, 1972)

A minimal separating set of hypergraph (X, \mathcal{E}) has size at most $|\mathcal{E}| - 1$.

Build graph G on vertex set $V(G) = \mathcal{E}$.

Join e_i to e_j iff $e_i = e_j \cup \{x\}$ for some $x \in X$, label it "x"

Proposition

For a hypergraph (X, \mathcal{E}) , a separating set C has size at least $\log_2(|\mathcal{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|C|}$.

Theorem (Bondy's theorem, 1972)

A minimal separating set of hypergraph (X, \mathcal{E}) has size at most $|\mathcal{E}| - 1$.

Build graph G on vertex set $V(G) = \mathscr{E}$.

Join e_i to e_j iff $e_i = e_j \cup \{x\}$ for some $x \in X$, label it "x"

Proposition

For a hypergraph (X, \mathcal{E}) , a separating set C has size at least $\log_2(|\mathcal{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|C|}$.

Theorem (Bondy's theorem, 1972)

A minimal separating set of hypergraph (X, \mathcal{E}) has size at most $|\mathcal{E}| - 1$.

Build graph G on vertex set $V(G) = \mathscr{E}$.

Join e_i to e_j iff $e_i = e_j \cup \{x\}$ for some $x \in X$, label it "x"

If an edge labeled x appears multiple times, keep only one of them.

This destroys all cycles in *G*!

Proposition

For a hypergraph (X, \mathcal{E}) , a separating set C has size at least $\log_2(|\mathcal{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|C|}$.

Theorem (Bondy's theorem, 1972)

A minimal separating set of hypergraph (X, \mathcal{E}) has size at most $|\mathcal{E}| - 1$.

Build graph G on vertex set $V(G) = \mathscr{E}$.

Join e_i to e_j iff $e_i = e_j \cup \{x\}$ for some $x \in X$, label it "x"

If an edge labeled x appears multiple times, keep only one of them.

This destroys all cycles in G!

So, there are at most $|\mathscr{E}|-1$ "problematic" vertices. \rightarrow Find one "non-problematic vertex" and omit it.

Special graph-based cases of separating sets in hypergraphs:

- identifying codes
- identifying open codes
- path/cycle identifying covers
- separating path systems

Special graph-based cases of separating sets in hypergraphs:

- identifying codes
- identifying open codes
- path/cycle identifying covers
- separating path systems

A variation:

- locating-dominating sets
- locating-total dominating sets

Special graph-based cases of separating sets in hypergraphs:

- identifying codes
- identifying open codes
- path/cycle identifying covers
- separating path systems

A variation:

- locating-dominating sets
- locating-total dominating sets

Geometric versions: e.g. seperating points using disks in Euclidean space

Special graph-based cases of separating sets in hypergraphs:

- identifying codes
- identifying open codes
- path/cycle identifying covers
- separating path systems

A variation:

- locating-dominating sets
- locating-total dominating sets

Geometric versions: e.g. seperating points using disks in Euclidean space

Distance-based identification:

- resolving sets (metric dimension)
- centroidal locating sets
- tracking paths problem

Identifying codes in graphs

G: undirected graph

N[u]: set of vertices v s.t. $d(u,v) \le 1$

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v \text{ of } V(G), N[u] \cap C \neq N[v] \cap C$

ID(G): identifying code number of G, minimum size of an identifying code in G

G: undirected graph

N[u]: set of vertices v s.t. $d(u,v) \le 1$

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v \text{ of } V(G), N[u] \cap C \neq N[v] \cap C$

ID(G): identifying code number of G, minimum size of an identifying code in G

Separating set of G = separating set of neighbourhood hypergraph of G

G: undirected graph

N[u]: set of vertices v s.t. $d(u,v) \le 1$

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v \text{ of } V(G), N[u] \cap C \neq N[v] \cap C$

ID(G): identifying code number of G, minimum size of an identifying code in G

Separating set of G = separating set of neighbourhood hypergraph of G

G: undirected graph

N[u]: set of vertices v s.t. $d(u,v) \le 1$

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v \text{ of } V(G), N[u] \cap C \neq N[v] \cap C$

ID(G): identifying code number of G, minimum size of an identifying code in G

Separating set of G = separating set of neighbourhood hypergraph of G

Examples: paths

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

Domination number: $DOM(P_n) = \lceil \frac{n}{3} \rceil$

Examples: paths

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v \text{ of } V(G), \ N[u] \cap C \neq N[v] \cap C$

Domination number: $DOM(P_n) = \lceil \frac{n}{3} \rceil$

Identifying code number: $ID(P_n) = \lceil \frac{n+1}{2} \rceil$

Identifiable graphs

Remark

Not all graphs have an identifying code!

Closed twins = pair u, v such that N[u] = N[v].

Remark

Not all graphs have an identifying code!

Closed twins = pair u, v such that N[u] = N[v].

Proposition

A graph is identifiable if and only if it is closed twin-free (i.e. has no twins).

Bounds on ID(G)

n: number of vertices

Proposition

G identifiable graph on n vertices: $\lceil \log_2(n+1) \rceil \le ID(G)$.

Bounds on ID(G)

n: number of vertices

Proposition

G identifiable graph on *n* vertices: $\lceil \log_2(n+1) \rceil \le ID(G)$.

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

 ${\it G}$ identifiable graph on ${\it n}$ vertices with at least one edge:

$$ID(G) \leq n-1$$

Bounds on ID(G)

n: number of vertices

Proposition

G identifiable graph on n vertices: $\lceil \log_2(n+1) \rceil \le ID(G)$.

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

 ${\it G}$ identifiable graph on ${\it n}$ vertices with at least one edge:

$$ID(G) \leq n-1$$

$$ID(G) = n \Leftrightarrow G$$
 has no edges

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

Theorem

 ${\it G}$ identifiable, n vertices, some edges: $\lceil \log_2(n+1) \rceil \leq {\it ID}({\it G}) \leq n-1$

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

Theorem

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v \text{ of } V(G), N[u] \cap C \neq N[v] \cap C$

Theorem

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

Theorem

$$ID(G) = \log_2(n+1)$$

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

Theorem

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

Theorem

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

Theorem

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

Theorem

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v \text{ of } V(G), N[u] \cap C \neq N[v] \cap C$

Theorem

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

Theorem

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

Theorem

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

Theorem

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v \text{ of } V(G), N[u] \cap C \neq N[v] \cap C$

Theorem

A question

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

$$ID(G) \leq n-1$$

Question

What are the graphs G with n vertices and ID(G) = n-1?

Forced vertices

$$u, v$$
 such that $N[v] \ominus N[u] = \{f\}$:

f belongs to any identifying code

 $\rightarrow f$ forced by u, v.

$$A_2 = P_4$$

$$A_3=P_6^2$$

$$A_2 = P_4$$

$$A_3=P_6^2$$

$$A_4 = P_8^3$$

$$A_2 = P_4$$

$$A_3=P_6^2$$

$$A_4 = P_8^3$$

$$A_2 = P_4$$

$$A_3 = P_6^2$$

Special path powers: $A_k = P_{2k}^{k-1}$

$$A_2 = P_4$$

$$A_3 = P_6^2$$

$$A_4 = P_8^3$$

Proposition

$$ID(A_k) = n-1$$

Two graphs A_k and $A_{k'}$

Join: add all edges between them

Join the new graph to two non-adjacent vertices $(\overline{{\it K}_2})$

Join the new graph to two non-adjacent vertices, again

Finally, add a universal vertex

Finally, add a universal vertex

Proposition

At each step, the constructed graph has ID = n - 1

A characterization

- (1) stars
- (2) $A_k = P_{2k}^{k-1}$
- (3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_2}$
- (4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

G connected identifiable graph, n vertices:

$$ID(G) = n - 1 \Leftrightarrow G \in (1), (2), (3) \text{ or } (4)$$

Proposition

G identifiable graph on n vertices: $\lceil \log_2(n+1) \rceil \le ID(G)$.

Proposition

G identifiable graph on *n* vertices: $\lceil \log_2(n+1) \rceil \le ID(G)$.

Tight example (k = 4):

Proposition

G identifiable graph on *n* vertices: $\lceil \log_2(n+1) \rceil \le ID(G)$.

Theorem (Rall & Slater, 1980's)

G planar graph, order n, ID(G) = k. Then $n \le 7k - 10 \rightarrow ID(G) \ge \frac{n+10}{7}$.

Lower bounds

Proposition

G identifiable graph on *n* vertices: $\lceil \log_2(n+1) \rceil \le ID(G)$.

Theorem (Rall & Slater, 1980's)

G planar graph, order n, ID(G) = k. Then $n \le 7k - 10 \rightarrow ID(G) \ge \frac{n+10}{7}$.

Tight examples:

Interval graphs

Definition - Interval graph

Intersection graph of intervals of the real line.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

Then
$$n \leq \frac{k(k+1)}{2}$$
, i.e. $ID(G) = \Omega(\sqrt{n})$.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

Then
$$n \leq \frac{k(k+1)}{2}$$
, i.e. $ID(G) = \Omega(\sqrt{n})$.

- Identifying code *D* of size *k*.
- Define zones using the right points of intervals in D.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

Then
$$n \leq \frac{k(k+1)}{2}$$
, i.e. $ID(G) = \Omega(\sqrt{n})$.

$$\begin{array}{c|ccccc}
1 & 2 & & & \\
\hline
1-1 & 2-3 & 3 & & \\
\hline
1-2 & 2-4 & & & \\
\hline
1-4 & 4 & & & \\
\hline
1-3 & 3-4 & & & \\
\end{array}$$

- Identifying code *D* of size *k*.
- Define zones using the right points of intervals in D.
- Each vertex intersects a consecutive set of intervals of *D* when ordered by left points.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

Then
$$n \leq \frac{k(k+1)}{2}$$
, i.e. $ID(G) = \Omega(\sqrt{n})$.

$$\begin{array}{c|ccccc}
1 & 2 & & & \\
\hline
1-1 & 2-3 & 3 & & \\
\hline
1-2 & 2-4 & & & \\
\hline
1-4 & 4 & & & \\
\hline
1-3 & 3-4 & & & \\
\end{array}$$

- Identifying code *D* of size *k*.
- Define zones using the right points of intervals in D.
- Each vertex intersects a consecutive set of intervals of D when ordered by left points.

$$\rightarrow n \leq \sum_{i=1}^{k} (k-i) = \frac{k(k+1)}{2}$$
.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

G interval graph of order
$$n$$
, $ID(G) = k$.

Then
$$n \leq \frac{k(k+1)}{2}$$
, i.e. $ID(G) = \Omega(\sqrt{n})$.

Tight:

Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X,\mathcal{E}) (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered:

for every subset $S' \subseteq S$, there is an edge e with $e \cap S = S'$.

V-C dimension of H: maximum size of a shattered set in H

Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X,\mathcal{E}) (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered:

for every subset $S' \subseteq S$, there is an edge e with $e \cap S = S'$.

V-C dimension of H: maximum size of a shattered set in H

Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X, \mathcal{E}) (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered:

for every subset $S' \subseteq S$, there is an edge e with $e \cap S = S'$.

V-C dimension of H: maximum size of a shattered set in H

Typically bounded for geometric hypergraphs:

V-C dimension of a graph: V-C dimension of its closed neighbourhood hypergraph

V-C dimension of a graph: V-C dimension of its closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:

```
\rightarrow interval graphs (d=2), C_4-free graphs (d=2), line graphs (d=4), permutation graphs (d=3), unit disk graphs (d=3), planar graphs (d=4)...
```

V-C dimension of a graph: V-C dimension of its closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:

 \rightarrow interval graphs (d=2), C_4 -free graphs (d=2), line graphs (d=4), permutation graphs (d=3), unit disk graphs (d=3), planar graphs (d=4)...

Theorem (Sauer-Shelah Lemma)

Let H be a hypergraph of V-C dimension at most d. Then, any set S of vertices has at most $|S|^d$ distinct traces.

V-C dimension of a graph: V-C dimension of its closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:

 \rightarrow interval graphs (d=2), C_4 -free graphs (d=2), line graphs (d=4), permutation graphs (d=3), unit disk graphs (d=3), planar graphs (d=4)...

Theorem (Sauer-Shelah Lemma)

Let H be a hypergraph of V-C dimension at most d. Then, any set S of vertices has at most $|S|^d$ distinct traces.

Corollary

G graph of order n, ID(G) = k, V-C dimension $\leq d$. Then $n = O(k^d)$.

Determination of Position in 3D euclidean space

 $\label{eq:GPS/GLONASS/Galileo/Beidou/IRNSS:} \\ \text{need to know the exact position of 4 satellites} + \text{distance to them} \\$

Determination of Position in 3D euclidean space

 $\label{eq:GPS/GLONASS/Galileo/Beidou/IRNSS:} \\ \text{need to know the exact position of 4 satellites} + \text{distance to them} \\$

Question

Does the "GPS" approach also work in undirected unweighted graphs?

Now, $w \in V(G)$ distinguishes $\{u,v\}$ if $dist(w,u) \neq dist(w,v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u,v\}$ if $dist(w,u) \neq dist(w,v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u,v\}$ if $dist(w,u) \neq dist(w,v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u,v\}$ if $dist(w,u) \neq dist(w,v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u,v\}$ if $dist(w,u) \neq dist(w,v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u,v\}$ if $dist(w,u) \neq dist(w,v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u,v\}$ if $dist(w,u) \neq dist(w,v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

 $\forall u \neq v \text{ in } V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

MD(G): metric dimension of G, minimum size of a resolving set of G.

Now, $w \in V(G)$ distinguishes $\{u,v\}$ if $dist(w,u) \neq dist(w,v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

 $\forall u \neq v \text{ in } V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

MD(G): metric dimension of G, minimum size of a resolving set of G.

Proposition

$$MD(G) = 1 \Leftrightarrow G \text{ is a path}$$

Proposition

$$MD(G) = 1 \Leftrightarrow G$$
 is a path

Proposition

$$MD(G) = 1 \Leftrightarrow G$$
 is a path

Proposition

For any square grid G, MD(G) = 2.

Leg: path with all inner-vertices of degree 2, endpoints of degree ≥ 3 and 1.

Leg: path with all inner-vertices of degree 2, endpoints of degree ≥ 3 and 1.

Leg: path with all inner-vertices of degree 2, endpoints of degree \geq 3 and 1.

Observation

R resolving set. If v has k legs, at least k-1 legs contain a vertex of R.

Simple leg rule: if v has $k \ge 2$ legs, select k-1 leg endpoints.

Leg: path with all inner-vertices of degree 2, endpoints of degree \geq 3 and 1.

Observation

R resolving set. If v has k legs, at least k-1 legs contain a vertex of R.

Simple leg rule: if v has $k \ge 2$ legs, select k-1 leg endpoints.

Theorem (Slater 1975)

For any tree, the simple leg rule produces an optimal resolving set.

Bounds with diameter

Example of path: no bound $n \le f(MD(G))$ possible.

Bounds with diameter

Example of path: no bound $n \le f(MD(G))$ possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)

G of order n, diameter D, MD(G) = k. Then $n \le D^k + k$.

(diameter: maximum distance between two vertices)

Example of path: no bound $n \le f(MD(G))$ possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)

G of order n, diameter D, MD(G) = k. Then $n \le D^k + k$.

(diameter: maximum distance between two vertices)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

G interval graph of order *n*, MD(G) = k, diameter *D*. Then $n = O(Dk^2)$ i.e. $k = \Omega\left(\sqrt{\frac{n}{D}}\right)$. (Tight.)

Example of path: no bound $n \le f(MD(G))$ possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)

G of order n, diameter D, MD(G) = k. Then $n \le D^k + k$.

(diameter: maximum distance between two vertices)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

G interval graph of order *n*, MD(G) = k, diameter *D*. Then $n = O(Dk^2)$ i.e. $k = \Omega\left(\sqrt{\frac{n}{D}}\right)$. (Tight.)

ightarrow Proofs are similar as for identifying codes.

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018)

T a tree with diameter D and MD(T) = k, then

$$n \le \begin{cases} \frac{1}{8}(kD+4)(D+2) & \text{if } D \text{ even,} \\ \frac{1}{8}(kD-k+8)(D+1) & \text{if } D \text{ odd.} \end{cases} = \Theta(kD^2)$$

Bounds are tight.

Planar graphs

Using the concept of distance-VC-dimension:

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018)

G planar with diameter D and MD(G) = k, then $n = O(k^4D^4)$.

Planar graphs

Using the concept of distance-VC-dimension:

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018)

G planar with diameter D and MD(G) = k, then $n = O(k^4D^4)$.

Tight? Example with k = 3 and $n = \Theta(D^3)$:

THANKS FOR YOUR ATTENTION

