10 years of
 Identification problems in (hyper)graphs

selected topics

Florent Foucaud
 LaBRI

based on joint works with:
Laurent Beaudou, Peter Dankelmann, Sylvain Gravier, Michael A. Henning, Arnaud Mary, Christian Löwenstein, George B. Mertzios, Reza Naserasr, Aline Parreau, Thomas Sasse, Petru Valicov

LABRI, November 2019

Identification problems

Locating a burglar

Separating systems in hypergraphs

Definition - Separating system (Rényi, 1961)

Hypergraph (X, \mathscr{E}). A separating system is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

Separating systems in hypergraphs

Definition - Separating system (Rényi, 1961)

Hypergraph (X, \mathscr{E}). A separating system is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.
also known as Distinguishing set, Test cover, Distinguishing transversal, Discriminating code...

Separating systems in hypergraphs

Definition - Separating system (Rényi, 1961)

Hypergraph (X, \mathscr{E}). A separating system is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.
also known as Distinguishing set, Test cover, Distinguishing transversal, Discriminating code...

Equivalently: for any pair e,f of edges, there is a vertex in C contained in exactly one of e, f

General bounds

Theorem (Folklore)

For a hypergraph (X, \mathscr{E}), a separating system has size at least $\log _{2}(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of $C:|\mathscr{E}| \leq 2^{|C|}$.

General bounds

Theorem (Folklore)

For a hypergraph (X, \mathscr{E}), a separating system has size at least $\log _{2}(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C : $|\mathscr{E}| \leq 2^{|C|}$.

Theorem (Bondy's theorem, 1972)
For a hypergraph (X, \mathscr{E}), a minimal separating system has size at most $|X|-1$.

General bounds

Theorem (Folklore)

For a hypergraph (X, \mathscr{E}), a separating system has size at least $\log _{2}(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of $C:|\mathscr{E}| \leq 2^{|C|}$.

Theorem (Bondy's theorem, 1972)
For a hypergraph (X, \mathscr{E}), a minimal separating system has size at most $|X|-1$.

Example with $|X|=|\mathscr{E}|$
$X=\{1,2,3,4\}$ and $\mathscr{E}=\{\{1,4\},\{3\},\{2,4\},\{1,2,4\}\}$

General bounds

Theorem (Folklore)

For a hypergraph (X, \mathscr{E}), a separating system has size at least $\log _{2}(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C : $|\mathscr{E}| \leq 2^{|C|}$.

Theorem (Bondy's theorem, 1972)
For a hypergraph (X, \mathscr{E}), a minimal separating system has size at most $|X|-1$.

Example with $|X|=|\mathscr{E}|$
$X=\{1,2,3,4\}$ and $\mathscr{E}=\{\{1,4\},\{3\},\{2,4\},\{1,2,4\}\}$
Example with $|X|=|\mathscr{E}|+1$
$X=\{1,2,3,4,5\}$ and $\mathscr{E}=\{\{1,4,5\},\{1,3\},\{2,4,5\},\{1,2,4,5\}\}$

General bounds

Theorem (Folklore)

For a hypergraph (X, \mathscr{E}), a separating system has size at least $\log _{2}(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C : $|\mathscr{E}| \leq 2^{|C|}$.

Theorem (Bondy's theorem, 1972)

For a hypergraph (X, \mathscr{E}), a minimal separating system has size at most $|X|-1$.

Example with $|X|=|\mathscr{E}|$
$X=\{1,2,3,4\}$ and $\mathscr{E}=\{\{1,4\},\{3\},\{2,4\},\{1,2,4\}\}$
Example with $|X|=|\mathscr{E}|+1$
$X=\{1,2,3,4,5\}$ and $\mathscr{E}=\{\{1,4,5\},\{1,3\},\{2,4,5\},\{1,2,4,5\}\}$
It is best possible
$X=\{1,2,3,4\}$ and $\mathscr{E}=\{\{1\},\{2\},\{3\},\{4\}\}$

General bounds

Theorem (Folklore)

For a hypergraph (X, \mathscr{E}), a separating system has size at least $\log _{2}(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C : $|\mathscr{E}| \leq 2^{|C|}$.

Theorem (Bondy's theorem, 1972)

For a hypergraph (X, \mathscr{E}), a minimal separating system has size at most $|X|-1$.

Proof: Note: if $E_{1}, E_{2} \subseteq X$ and $E_{1}-x=E_{2}-x$, then $E_{1} \Delta E_{2}=\{x\}$.
Construct a graph H on vertex set \mathscr{E} where for each $x \in X$, choose (at most) one unique pair E_{i}, E_{j} of \mathscr{E} s.t. $E_{i}=E_{j}+x$, and connect E_{i} to E_{j}. Claim: H has no cycle.
So there are at most $|X|-1$ "forbidden" elements of X, and there is $x_{0} \in X$ s.t. $X-x_{0}$ works.

Some example problems

Special graph-based cases of separating sets in hypergraphs:

- identifying codes
- identifying open codes
- path identifying covers
- cycle identifying covers
- separating path systems
- geometric versions: e.g. seperating points using disks in Euclidean space

Some example problems

Special graph-based cases of separating sets in hypergraphs:

- identifying codes
- identifying open codes
- path identifying covers
- cycle identifying covers
- separating path systems
- geometric versions: e.g. seperating points using disks in Euclidean space

A variation:

- locating-dominating sets
- locating-total dominating sets

Special graph-based cases of separating sets in hypergraphs:

- identifying codes
- identifying open codes
- path identifying covers
- cycle identifying covers
- separating path systems
- geometric versions: e.g. seperating points using disks in Euclidean space

A variation:

- locating-dominating sets
- locating-total dominating sets

Distance-based identification:

- resolving sets (metric dimension)
- centroidal locating sets
- tracking paths problem

Identifying codes in digraphs

Identifying codes in digraphs

$N^{-}[u]$: in-neighbourhood of u
Definition - Identifying code of a digraph $D=(V, A)$
subset C of V such that:

- C is a dominating set in D : for all $u \in V, N^{-}[u] \cap C \neq \emptyset$, and
- C is a separating code in D : for all $u \neq v, N^{-}[u] \cap C \neq N^{-}[v] \cap C$

$I D(D)$: minimum size of an identifying code of D

Identifiable digraphs

Remark

Not all digraphs have an identifying code!

Closed in-twins $=$ pair u, v such that $N^{-}[u]=N^{-}[v]$.

Identifiable digraphs

Remark

Not all digraphs have an identifying code!

Closed in-twins $=$ pair u, v such that $N^{-}[u]=N^{-}[v]$.

Proposition

A digraph is identifiable if and only if it is closed in-twin-free (i.e. has no closed in-twins).

Bounds

Theorem (Folklore)

G identifiable digraph on n vertices:

$$
\left\lceil\log _{2}(n+1)\right\rceil \leq I D(D) \leq n
$$

Bounds

Theorem (Folklore)

G identifiable digraph on n vertices:

$$
\left\lceil\log _{2}(n+1)\right\rceil \leq I D(D) \leq n
$$

Question

Which digraphs D have $I D(D)=n$?

Which digraphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\vec{\triangleleft}(D): D$ joined to K_{1} by incoming arcs only

$$
\begin{equation*}
D_{1} \oplus D_{2} \tag{J}
\end{equation*}
$$

Which digraphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\vec{子}(D): D$ joined to K_{1} by incoming arcs only

Definition

Let ($K_{1}, \oplus, \vec{\triangleleft}$) be the digraphs which can be built from K_{1} by successive applications of \oplus and $\vec{ব}$, starting with K_{1}.

Which digraphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\vec{子}(D): D$ joined to K_{1} by incoming arcs only

Definition

Let ($K_{1}, \oplus, \vec{\triangleleft}$) be the digraphs which can be built from K_{1} by successive applications of \oplus and $\vec{ব}$, starting with K_{1}.

Which digraphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\vec{子}(D): D$ joined to K_{1} by incoming arcs only

Definition

Let ($K_{1}, \oplus, \vec{\triangleleft}$) be the digraphs which can be built from K_{1} by successive applications of \oplus and $\vec{ব}$, starting with K_{1}.

Which digraphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\vec{J}(D): D$ joined to K_{1} by incoming arcs only

Definition

Let ($K_{1}, \oplus, \vec{\triangleleft}$) be the digraphs which can be built from K_{1} by successive applications of \oplus and $\vec{ব}$, starting with K_{1}.

Which digraphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\exists(D): D$ joined to K_{1} by incoming arcs only

Definition

Let $\left(K_{1}, \oplus, \triangleleft\right)$ be the digraphs which can be built from K_{1} by successive applications of \oplus and $\vec{\checkmark}$, starting with K_{1}.

Which digraphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\exists(D): D$ joined to K_{1} by incoming arcs only

Definition

Let $\left(K_{1}, \oplus, \triangleleft\right)$ be the digraphs which can be built from K_{1} by successive applications of \oplus and $\vec{\checkmark}$, starting with K_{1}.

A characterization

Proposition

For each digraph D of order n in $\left(K_{1}, \oplus, \vec{\triangleleft}\right), I D(D)=n$.

$$
D_{1} \oplus D_{2}
$$

$$
\vec{ব}(D)
$$

A characterization

Theorem (F., Naserasr, Parreau, 2013)

Let D be an identifiable digraph on n vertices. $I D(G)=n$ iff $D \in\left(K_{1}, \oplus, \triangleleft\right)$.

$D_{1} \oplus D_{2}$

$\vec{\triangleleft}(D)$

A characterization

Theorem (F., Naserasr, Parreau, 2013)
Let D be an identifiable digraph on n vertices. $I D(G)=n$ iff $D \in\left(K_{1}, \oplus, \triangleleft\right)$.

Proof of the theorem.

Proposition

Let D be a digraph with $I D(D)=|V(D)|$, then there is a vertex x of D such that $I D(D-x)=|V(D-x)|$.

A characterization

```
Theorem (F., Naserasr, Parreau, 2013)
```

Let D be an identifiable digraph on n vertices. $I D(G)=n$ iff $D \in\left(K_{1}, \oplus, \vec{\triangleleft}\right)$.

Proof of the theorem.

Proposition

Let D be a digraph with $I D(D)=|V(D)|$, then there is a vertex x of D such that $I D(D-x)=|V(D-x)|$.

- By contradiction: take a minimum counterexample, D
- By the proposition, there is a vertex x such that $I D(D-x)=|V(D-x)|-1$. By minimality of $D, D-x \in\left(K_{1}, \oplus, \triangleleft\right)$.
- Show that in any way of adding a vertex to $D-x$, we either stay in the family or decrease ID.

Back to Bondy

Theorem (Bondy's theorem, 1972)

For a hypergraph (X, \mathscr{E}), a minimal separating system has size at most $|X|-1$.

Remark

$B=B(X, \mathscr{E})$: bipartite graph representing (X, \mathscr{E}). If B has a matching from \mathscr{E} to X, then B is the neighbourhood graph of a digraph D. \Rightarrow Any separating system of (X, \mathscr{E}) is a separating code of D.

Back to Bondy

Theorem (Bondy's theorem, 1972)

For a hypergraph (X, \mathscr{E}), a minimal separating system has size at most $|X|-1$.

Remark

$B=B(X, \mathscr{E})$: bipartite graph representing (X, \mathscr{E}). If B has a matching from \mathscr{E} to X, then B is the neighbourhood graph of a digraph D.
\Rightarrow Any separating system of (X, \mathscr{E}) is a separating code of D.

Back to Bondy

Theorem (Bondy's theorem, 1972)

For a hypergraph (X, \mathscr{E}), a minimal separating system has size at most $|X|-1$.

Remark

$B=B(X, \mathscr{E})$: bipartite graph representing (X, \mathscr{E}). If B has a matching from \mathscr{E} to X, then B is the neighbourhood graph of a digraph D.
\Rightarrow Any separating system of (X, \mathscr{E}) is a separating code of D.

Application to Bondy's setting

Corollary (F., Naserasr, Parreau, 2013)

In Bondy's theorem (with $|X|=|\mathscr{E}|$ and non-empty sets), if for any good choice of x we have $E_{i}-x=\emptyset$ for some E_{i}, then $B(X, \mathscr{E})$ is the neighbourhood graph of a digraph in $\left(K_{1}, \oplus, \triangleleft\right)$.

Application to Bondy's setting

Corollary (F., Naserasr, Parreau, 2013)

In Bondy's theorem (with $|X|=|\mathscr{E}|$ and non-empty sets), if for any good choice of x we have $E_{i}-x=\emptyset$ for some E_{i}, then $B(X, \mathscr{E})$ is the neighbourhood graph of a digraph in $\left(K_{1}, \oplus, \triangleleft\right)$.

Proof:

- If B has a perfect matching: use our theorem.
- Otherwise, by Hall's theorem, there is a subset X_{1} of X s.t. $\left|X_{1}\right|>\left|N\left(X_{1}\right)\right|$.

Location-domination in graphs

Definition - Locating-dominating set (Slater, 1980's)

$D \subseteq V(G)$ locating-dominating set of G :

- for every $u \in V, N[v] \cap D \neq \emptyset$ (domination).
- $\forall u \neq v$ of $V(G) \backslash D, N(u) \cap D \neq N(v) \cap D$ (location).

Motivation: fault-detection in networks.
\rightarrow The set D of grey processors is a set of fault-detectors.

Definition - Locating-dominating set (Slater, 1980's)
$D \subseteq V(G)$ locating-dominating set of G :

- for every $u \in V, N[v] \cap D \neq \emptyset$ (domination).
- $\forall u \neq v$ of $V(G) \backslash D, N(u) \cap D \neq N(v) \cap D$ (location).

Notation. location-domination number $L D(G)$: smallest size of a locating-dominating set of G

Location-domination

Definition - Locating-dominating set (Slater, 1980's)

$D \subseteq V(G)$ locating-dominating set of G :

- for every $u \in V, N[v] \cap D \neq \emptyset$ (domination).
- $\forall u \neq v$ of $V(G) \backslash D, N(u) \cap D \neq N(v) \cap D$ (location).

Notation. location-domination number $L D(G)$: smallest size of a locating-dominating set of G

Domination number: $\operatorname{DOM}\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$

Identifying code number: $I D\left(P_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$

Location-domination number: $L D\left(P_{n}\right)=\left\lceil\frac{2 n}{5}\right\rceil$

Upper bounds

Theorem (Domination bound, Ore, 1960's)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Tight examples:

Upper bounds

Theorem (Domination bound, Ore, 1960's)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Tight examples:

Theorem (Location-domination bound, Slater, 1980's)
G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Tight examples:

Upper bounds

Theorem (Domination bound, Ore, 1960's)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Tight examples:

Theorem (Location-domination bound, Slater, 1980's)

G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Tight examples:

Remark: tight examples contain many twin-vertices!!

Upper bound: a conjecture

Theorem (Domination bound, Ore, 1960's)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's)
G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Upper bound: a conjecture

Theorem (Domination bound, Ore, 1960's)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's)
G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Conjecture (Garijo, González \& Márquez, 2014)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Upper bound: a conjecture

Theorem (Domination bound, Ore, 1960's)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's)
G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Conjecture (Garijo, González \& Márquez, 2014)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Remark:

- twins are easy to detect
- twins have a trivial behaviour w.r.t. location-domination

Upper bound: a conjecture

Theorem (Domination bound, Ore, 1960's)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's)
G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Conjecture (Garijo, González \& Márquez, 2014)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
If true, tight: 1. domination-extremal graphs

Upper bound: a conjecture

Theorem (Domination bound, Ore, 1960's)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's)
G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Conjecture (Garijo, González \& Márquez, 2014)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
If true, tight: 2. a similar construction

Upper bound: a conjecture

Theorem (Domination bound, Ore, 1960's)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's)
G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Conjecture (Garijo, González \& Márquez, 2014)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
If true, tight: 3. a family with domination number 2

Upper bound: a conjecture

Theorem (Domination bound, Ore, 1960's)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's)
G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Conjecture (Garijo, González \& Márquez, 2014)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
If true, tight:
4. a dense family with domination number 2

Upper bound: a conjecture - special graph classes

Conjecture (Garijo, González \& Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
Theorem (Garijo, González \& Márquez, 2014)
Conjecture true if G has independence number $\geq n / 2$. (in particular, if bipartite)

Proof: every vertex cover is a locating-dominating set

Upper bound: a conjecture - special graph classes

Conjecture (Garijo, González \& Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
$\alpha^{\prime}(G)$: matching number of G
Theorem (Garijo, González \& Márquez, 2014)
If G has no 4-cycles, then $L D(G) \leq \alpha^{\prime}(G) \leq \frac{n}{2}$.

Proof:

- Consider special maximum matching M
- Select one vertex in each edge of M

Upper bound: a conjecture - special graph classes

Conjecture (Garijo, González \& Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
$\alpha^{\prime}(G)$: matching number of G
Theorem (Garijo, González \& Márquez, 2014)
If G has no 4 -cycles, then $L D(G) \leq \alpha^{\prime}(G) \leq \frac{n}{2}$.

Proof:

- Consider special maximum matching M
- Select one vertex in each edge of M

Upper bound: a conjecture - special graph classes

Conjecture (Garijo, González \& Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
Theorem (F., Henning, 2016)

Conjecture true if G is cubic.

Proof: Involved argument using maximum matching and Tutte-Berge theorem.

Upper bound: a conjecture - special graph classes

Conjecture (Garijo, González \& Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
Theorem (F., Henning, 2016)
Conjecture true if G is cubic.

Bound is tight:

Question

Upper bound: a conjecture - special graph classes

Conjecture (Garijo, González \& Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
Theorem (F., Henning, 2016)
Conjecture true if G is cubic.

Question

Are there twin-free (cubic) graphs with $L D(G)>\alpha^{\prime}(G)$?
(if not, conjecture is true)

Upper bound: a conjecture - special graph classes

Conjecture (Garijo, González \& Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2016)
Conjecture true if G is split graph or complement of bipartite graph.

Line graph of G : intersection graph of the edges of G.
Theorem (F., Henning, 2017)
Conjecture true if G is line graph.

Proof: By induction on the order, using edge-locating-dominating sets

Upper bound: a conjecture - general bound

Conjecture (Garijo, González \& Márquez, 2014)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
Theorem (F., Henning, Löwenstein, Sasse, 2016)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{2}{3} n$.

Upper bound: a conjecture - general bound

Conjecture (Garijo, González \& Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
Theorem (F., Henning, Löwenstein, Sasse, 2016)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{2}{3} n$.
Proof: - There exists a dominating set D such that each vertex has a private neighbour. We have $|D| \leq n_{1}+n_{2}$.

Upper bound: a conjecture - general bound

Conjecture (Garijo, González \& Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
Theorem (F., Henning, Löwenstein, Sasse, 2016)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{2}{3} n$.
Proof: - There exists a dominating set D such that each vertex has a private neighbour. We have $|D| \leq n_{1}+n_{2}$.

- there is a LD-set of size $|D|+n_{1}$;

Upper bound: a conjecture - general bound

Conjecture (Garijo, González \& Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
Theorem (F., Henning, Löwenstein, Sasse, 2016)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{2}{3} n$.
Proof: - There exists a dominating set D such that each vertex has a private neighbour. We have $|D| \leq n_{1}+n_{2}$.

- there is a LD-set of size $|D|+n_{1}$; there is a LD-set of size $n-n_{1}-n_{2}$

Upper bound: a conjecture - general bound

Conjecture (Garijo, González \& Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
Theorem (F., Henning, Löwenstein, Sasse, 2016)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{2}{3} n$.
Proof: - There exists a dominating set D such that each vertex has a private neighbour. We have $|D| \leq n_{1}+n_{2}$.

- there is a LD-set of size $|D|+n_{1}$; there is a LD-set of size $n-n_{1}-n_{2}$
- $\min \left\{|D|+n_{1}, n-n_{1}-n_{2}\right\} \leq \frac{2}{3} n$

Lower bounds

Theorem (Slater, 1980's)
G graph of order $n, L D(G)=k$. Then $n \leq 2^{k}+k-1 \rightarrow L D(G)=\Omega(\log n)$.

Lower bounds

Theorem (Slater, 1980's)

G graph of order $n, L D(G)=k$. Then $n \leq 2^{k}+k-1 \rightarrow L D(G)=\Omega(\log n)$.

Tight example $(k=4)$:

Theorem (Slater, 1980's)
G graph of order $n, L D(G)=k$. Then $n \leq 2^{k}+k-1 \rightarrow L D(G)=\Omega(\log n)$.

Theorem (Slater, 1980's)

$$
G \text { tree of order } n, L D(G)=k \text {. Then } n \leq 3 k-1 \rightarrow L D(G) \geq \frac{n+1}{3} \text {. }
$$

Theorem (Rall \& Slater, 1980's)

G planar graph, order $n, L D(G)=k$. Then $n \leq 7 k-10 \rightarrow L D(G) \geq \frac{n+10}{7}$.

Lower bounds

Theorem (Slater, 1980's)

G graph of order $n, L D(G)=k$. Then $n \leq 2^{k}+k-1 \rightarrow L D(G)=\Omega(\log n)$.

Theorem (Slater, 1980's)

$$
G \text { tree of order } n, L D(G)=k \text {. Then } n \leq 3 k-1 \rightarrow L D(G) \geq \frac{n+1}{3} \text {. }
$$

Theorem (Rall \& Slater, 1980's)

G planar graph, order $n, L D(G)=k$. Then $n \leq 7 k-10 \rightarrow L D(G) \geq \frac{n+10}{7}$.

Tight examples:

Interval graphs

Definition - Interval graph

Intersection graph of intervals of the real line.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)
G interval graph of order $n, L D(G)=k$.
Then $n \leq \frac{k(k+3)}{2}$, i.e. $L D(G)=\Omega(\sqrt{n})$.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)
G interval graph of order $n, L D(G)=k$.
Then $n \leq \frac{k(k+3)}{2}$, i.e. $L D(G)=\Omega(\sqrt{n})$.

- Locating-dominating D of size k.
- Define zones using the right points of intervals in D.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)
G interval graph of order $n, L D(G)=k$.

$$
\text { Then } n \leq \frac{k(k+3)}{2} \text {, i.e. } L D(G)=\Omega(\sqrt{n}) \text {. }
$$

- Locating-dominating D of size k.
- Define zones using the right points of intervals in D.
- Each vertex intersects a consecutive set of intervals of D when ordered by left points.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)
G interval graph of order $n, L D(G)=k$.

$$
\text { Then } n \leq \frac{k(k+3)}{2} \text {, i.e. } L D(G)=\Omega(\sqrt{n}) \text {. }
$$

- Locating-dominating D of size k.
- Define zones using the right points of intervals in D.
- Each vertex intersects a consecutive set of intervals of D when ordered by left points.

$$
\rightarrow n \leq \sum_{i=1}^{k}(k-i)+k=\frac{k(k+3)}{2} .
$$

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)
G interval graph of order $n, L D(G)=k$.
Then $n \leq \frac{k(k+3)}{2}$, i.e. $L D(G)=\Omega(\sqrt{n})$.

Tight:

Permutation graphs

Definition - Permutation graph

Given two parallel lines A and B : intersection graph of segments joining A and B.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)
G permutation graph of order $n, L D(G)=k$.
Then $n \leq k^{2}+k-2$, i.e. $L D(G)=\Omega(\sqrt{n})$.

Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)
G permutation graph of order $n, L D(G)=k$.
Then $n \leq k^{2}+k-2$, i.e. $L D(G)=\Omega(\sqrt{n})$.

- Locating-sominating set D of size $k: k+1$ "top zones" and $k+1$ "bottom zones"
- Only one segment in $V \backslash D$ for one pair of zones
$\rightarrow n \leq(k+1)^{2}+k$
- Careful counting for the precise bound

Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)
G permutation graph of order $n, L D(G)=k$.
Then $n \leq k^{2}+k-2$, i.e. $L D(G)=\Omega(\sqrt{n})$.

Tight:

Bounds for subclasses of interval/permutation

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)
Let G be a graph on n vertices, $L D(G)=k$.

- If G is unit interval, then $n \leq 3 k-1$.
- If G is bipartite permutation, then $n \leq 3 k+2$.
- If G is a cograph, then $n \leq 3 k$.

Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph

In graphs: $X \subseteq V(G)$ is shattered:
for every subset $S \subseteq X$, there is a vertex v with $N[v] \cap X=S$
V-C dimension of G : maximum size of a shattered set in G
Typically bounded for geometric intersection graphs

Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph

In graphs: $X \subseteq V(G)$ is shattered:
for every subset $S \subseteq X$, there is a vertex v with $N[v] \cap X=S$
V-C dimension of G : maximum size of a shattered set in G
Typically bounded for geometric intersection graphs
Theorem (Bousquet, Lagoutte, Li, Parreau, Thomassé, 2015)
G graph of order $n, L D(G)=k, \mathrm{~V}-\mathrm{C}$ dimension $\leq d$. Then $n=O\left(k^{d}\right)$.
\rightarrow interval graphs $(d=2)$, line graphs $(d=4)$, permutation graphs $(d=3)$, unit disk graphs $(d=3)$, planar graphs $(d=4) \ldots$

Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph

In graphs: $X \subseteq V(G)$ is shattered:
for every subset $S \subseteq X$, there is a vertex v with $N[v] \cap X=S$
V-C dimension of G : maximum size of a shattered set in G
Typically bounded for geometric intersection graphs
Theorem (Bousquet, Lagoutte, Li, Parreau, Thomassé, 2015)
G graph of order $n, L D(G)=k$, V-C dimension $\leq d$. Then $n=O\left(k^{d}\right)$.
\rightarrow interval graphs $(d=2)$, line graphs $(d=4)$, permutation graphs $(d=3)$, unit disk graphs $(d=3)$, planar graphs $(d=4) \ldots$

But better bounds exist:

- planar: $n \leq 7 k-10$ (Slater \& Rall, 1984)
- line: $n \leq \frac{8}{9} k^{2}$ (F., Gravier, Naserasr, Parreau, Valicov, 2013)
- permutation: $n=O\left(k^{2}\right)$ (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

Metric dimension

Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them

Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them

Question

Does the "GPS" approach also work in undirected unweighted graphs?

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

$M D(G)$: metric dimension of G, minimum size of a resolving set of G.

Example

Remarks

Remark

- Any locating-dominating set is a resolving set, hence $M D(G) \leq L D(G)$.
- A locating-dominating set can be seen as a "distance-1-resolving set".

Remarks

Remark

- Any locating-dominating set is a resolving set, hence $M D(G) \leq L D(G)$.
- A locating-dominating set can be seen as a "distance-1-resolving set".

Proposition

$$
M D(G)=1 \Leftrightarrow G \text { is a path }
$$

Bounds with diameter

Example of path: no bound $n \leq f(M D(G))$ possible.

Bounds with diameter

Example of path: no bound $n \leq f(M D(G))$ possible.
Theorem (Khuller, Raghavachari \& Rosenfeld, 2002)
G of order n, diameter $D, M D(G)=k$. Then $n \leq D^{k}+k$.
(diameter: maximum distance between two vertices)

Bounds with diameter

Example of path: no bound $n \leq f(M D(G))$ possible.
Theorem (Khuller, Raghavachari \& Rosenfeld, 2002)
G of order n, diameter $D, M D(G)=k$. Then $n \leq D^{k}+k$.
(diameter: maximum distance between two vertices)

Theorem (Hernando, Mora, Pelayo, Seara, Wood 2010)
G of order n, diameter $D, M D(G)=k$.
Then $n \leq\left(\left\lfloor\frac{2 D}{3}\right\rfloor+1\right)^{k}+k \sum_{i=1}^{\lceil D / 3\rceil}(2 i-1)^{k-1}$. (Tight.)

Bounds with diameter

Example of path: no bound $n \leq f(M D(G))$ possible.
Theorem (Khuller, Raghavachari \& Rosenfeld, 2002)
G of order n, diameter $D, M D(G)=k$. Then $n \leq D^{k}+k$.
(diameter: maximum distance between two vertices)

Theorem (Hernando, Mora, Pelayo, Seara, Wood 2010)
G of order n, diameter $D, M D(G)=k$.
Then $n \leq\left(\left\lfloor\frac{2 D}{3}\right\rfloor+1\right)^{k}+k \sum_{i=1}^{\lceil D / 3\rceil}(2 i-1)^{k-1}$. (Tight.)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)
G permutation graph or interval graph of order $n, M D(G)=k$, diameter D. Then $n=O\left(D k^{2}\right)$ i.e. $k=\Omega\left(\sqrt{\frac{n}{D}}\right)$. (Tight.)

Bounds with diameter

Example of path: no bound $n \leq f(M D(G))$ possible.
Theorem (Khuller, Raghavachari \& Rosenfeld, 2002)
G of order n, diameter $D, M D(G)=k$. Then $n \leq D^{k}+k$.
(diameter: maximum distance between two vertices)

Theorem (Hernando, Mora, Pelayo, Seara, Wood 2010)
G of order n, diameter $D, M D(G)=k$.
Then $n \leq\left(\left\lfloor\frac{2 D}{3}\right\rfloor+1\right)^{k}+k \sum_{i=1}^{\lceil D / 3\rceil}(2 i-1)^{k-1}$. (Tight.)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)
G permutation graph or interval graph of order $n, M D(G)=k$, diameter D. Then $n=O\left(D k^{2}\right)$ i.e. $k=\Omega\left(\sqrt{\frac{n}{D}}\right)$. (Tight.)
\rightarrow Proofs are similar as for locating-dominating sets.

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018)
T a tree with diameter D and $M D(T)=k$, then

$$
n \leq\left\{\begin{array}{cc}
\frac{1}{8}(k D+4)(D+2) & \text { if } D \text { even, } \\
\frac{1}{8}(k D-k+8)(D+1) & \text { if } D \text { odd. }
\end{array}=\Theta\left(k D^{2}\right)\right.
$$

Bounds are tight.

Planar graphs

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018)
G outerplanar with diameter D and $M D(G)=k$, then $n=O\left(k D^{2}\right)$. Tight.

Planar graphs

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018)
G outerplanar with diameter D and $M D(G)=k$, then $n=O\left(k D^{2}\right)$. Tight.

Using the concept of distance-VC-dimension:

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018)
G planar with diameter D and $M D(G)=k$, then $n=O\left(k^{4} D^{4}\right)$.

Tight? Example with $k=3$ and $n=\Theta\left(D^{3}\right)$.

THANKS FOR YOUR ATTENTION

