10 years of Identification problems in (hyper)graphs

selected topics

Florent Foucaud LaBRI

based on joint works with:

Laurent Beaudou, Peter Dankelmann, Sylvain Gravier, Michael A. Henning, Arnaud Mary, Christian Löwenstein, George B. Mertzios, Reza Naserasr, Aline Parreau, Thomas Sasse, Petru Valicov

LABRI, November 2019

Identification problems

Definition - Separating system (Rényi, 1961)

Hypergraph (X, \mathscr{E}) . A separating system is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

Separating systems in hypergraphs

Definition - Separating system (Rényi, 1961)

Hypergraph (X, \mathscr{E}) . A separating system is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

also known as Distinguishing set, Test cover, Distinguishing transversal, Discriminating code...

Definition - Separating system (Rényi, 1961)

Hypergraph (X, \mathscr{E}) . A separating system is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

also known as Distinguishing set, Test cover, Distinguishing transversal, Discriminating code...

General bounds

Theorem (Folklore)

For a hypergraph (X, \mathscr{E}) , a separating system has size at least $\log_2(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|C|}$.

General bounds

Theorem (Folklore)

For a hypergraph (X, \mathscr{E}) , a separating system has size at least $\log_2(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathcal{E}| \leq 2^{|C|}$.

Theorem (Bondy's theorem, 1972)

For a hypergraph $(X, \mathscr{E}),$ a minimal separating system has size at most |X|-1.

General bounds

Theorem (Folklore)

For a hypergraph (X, \mathscr{E}) , a separating system has size at least $\log_2(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|C|}$.

Theorem (Bondy's theorem, 1972)

For a hypergraph (X, \mathscr{E}) , a minimal separating system has size at most |X|-1.

Example with $|X| = |\mathcal{E}|$ $X = \{1,2,3,4\}$ and $\mathcal{E} = \{\{1,4\},\{3\},\{2,4\},\{1,2,4\}\}$

For a hypergraph (X, \mathscr{E}) , a separating system has size at least $\log_2(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|C|}$.

Theorem (Bondy's theorem, 1972)

For a hypergraph (X, \mathscr{E}) , a minimal separating system has size at most |X|-1.

Example with $|X| = |\mathscr{E}|$ $X = \{1,2,3,4\}$ and $\mathscr{E} = \{\{1,4\},\{3\},\{2,4\},\{1,2,4\}\}$ Example with $|X| = |\mathscr{E}| + 1$ $X = \{1,2,3,4,5\}$ and $\mathscr{E} = \{\{1,4,5\},\{1,3\},\{2,4,5\},\{1,2,4,5\}\}$

For a hypergraph (X, \mathscr{E}) , a separating system has size at least $\log_2(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|C|}$.

Theorem (Bondy's theorem, 1972)

For a hypergraph (X, \mathscr{E}) , a minimal separating system has size at most |X| - 1.

Example with $|X| = |\mathcal{E}|$ $X = \{1,2,3,4\}$ and $\mathcal{E} = \{\{1,4\},\{3\},\{2,4\},\{1,2,4\}\}$

Example with $|X| = |\mathcal{E}| + 1$ $X = \{1,2,3,4,5\}$ and $\mathcal{E} = \{\{1,4,5\},\{1,3\},\{2,4,5\},\{1,2,4,5\}\}$

It is best possible $X = \{1, 2, 3, 4\}$ and $\mathscr{E} = \{\{1\}, \{2\}, \{3\}, \{4\}\}$

For a hypergraph (X, \mathscr{E}) , a separating system has size at least $\log_2(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|C|}$.

Theorem (Bondy's theorem, 1972)

For a hypergraph (X, \mathscr{E}) , a minimal separating system has size at most |X| - 1.

Proof: Note: if $E_1, E_2 \subseteq X$ and $E_1 - x = E_2 - x$, then $E_1 \Delta E_2 = \{x\}$. Construct a graph *H* on vertex set \mathscr{E} where for each $x \in X$, choose (at most) one unique pair E_i, E_j of \mathscr{E} s.t. $E_i = E_j + x$, and connect E_i to E_j . Claim: *H* has no cycle. So there are at most |X| - 1 "forbidden" elements of *X*, and there is $x_0 \in X$ s.t. $X - x_0$ works. Special graph-based cases of separating sets in hypergraphs:

- identifying codes
- identifying open codes
- path identifying covers
- cycle identifying covers
- separating path systems
- geometric versions: e.g. seperating points using disks in Euclidean space

Special graph-based cases of separating sets in hypergraphs:

- identifying codes
- identifying open codes
- path identifying covers
- cycle identifying covers
- separating path systems
- geometric versions: e.g. seperating points using disks in Euclidean space

A variation:

- locating-dominating sets
- locating-total dominating sets

Special graph-based cases of separating sets in hypergraphs:

- identifying codes
- identifying open codes
- path identifying covers
- cycle identifying covers
- separating path systems
- geometric versions: e.g. seperating points using disks in Euclidean space

A variation:

- locating-dominating sets
- locating-total dominating sets

Distance-based identification:

- resolving sets (metric dimension)
- centroidal locating sets
- tracking paths problem

Identifying codes in digraphs

 $N^{-}[u]$: in-neighbourhood of u

Definition - Identifying code of a digraph D = (V, A)

subset C of V such that:

- C is a dominating set in D: for all $u \in V$, $N^{-}[u] \cap C \neq \emptyset$, and
- C is a separating code in D: for all $u \neq v$, $N^{-}[u] \cap C \neq N^{-}[v] \cap C$

ID(D): minimum size of an identifying code of D

Identifiable digraphs

Remark

Closed in-twins = pair u, v such that $N^{-}[u] = N^{-}[v]$.

Identifiable digraphs

G identifiable digraph on n vertices:

 $\lceil \log_2(n+1) \rceil \leq ID(D) \leq n$

G identifiable digraph on n vertices:

```
\lceil \log_2(n+1) \rceil \leq ID(D) \leq n
```

Question

Which digraphs *D* have ID(D) = n?

- $D_1 \oplus D_2$: disjoint union of D_1 and D_2
- $\overrightarrow{\triangleleft}(D)$: *D* joined to K_1 by incoming arcs only

- $D_1 \oplus D_2$: disjoint union of D_1 and D_2
- $\overrightarrow{\triangleleft}(D)$: *D* joined to K_1 by incoming arcs only

Definition

- $D_1 \oplus D_2$: disjoint union of D_1 and D_2
- $\overrightarrow{\triangleleft}(D)$: *D* joined to K_1 by incoming arcs only

Definition

- $D_1 \oplus D_2$: disjoint union of D_1 and D_2
- $\overrightarrow{\triangleleft}(D)$: *D* joined to K_1 by incoming arcs only

(Definition)

- $D_1 \oplus D_2$: disjoint union of D_1 and D_2
- $\overrightarrow{\triangleleft}(D)$: *D* joined to K_1 by incoming arcs only

Definition

- $D_1 \oplus D_2$: disjoint union of D_1 and D_2
- $\overrightarrow{\triangleleft}(D)$: *D* joined to K_1 by incoming arcs only

Definition

- $D_1 \oplus D_2$: disjoint union of D_1 and D_2
- $\overrightarrow{\triangleleft}(D)$: *D* joined to K_1 by incoming arcs only

Definition

Proposition

For each digraph *D* of order *n* in $(K_1, \oplus, \overrightarrow{\triangleleft})$, ID(D) = n.

Theorem (F., Naserasr, Parreau, 2013)

Let *D* be an identifiable digraph on *n* vertices. ID(G) = n iff $D \in (K_1, \oplus, \overrightarrow{\triangleleft})$.

Theorem (F., Naserasr, Parreau, 2013)

Let *D* be an identifiable digraph on *n* vertices. ID(G) = n iff $D \in (K_1, \oplus, \overrightarrow{\triangleleft})$.

Proof of the theorem.

Proposition

Let D be a digraph with ID(D) = |V(D)|, then there is a vertex x of D such that ID(D-x) = |V(D-x)|.

Theorem (F., Naserasr, Parreau, 2013)

Let *D* be an identifiable digraph on *n* vertices. ID(G) = n iff $D \in (K_1, \oplus, \overrightarrow{\triangleleft})$.

Proof of the theorem.

Proposition

Let D be a digraph with ID(D) = |V(D)|, then there is a vertex x of D such that ID(D-x) = |V(D-x)|.

- By contradiction: take a minimum counterexample, D
- By the proposition, there is a vertex x such that ID(D-x) = |V(D-x)| 1. By minimality of D, $D-x \in (K_1, \oplus, \overrightarrow{\triangleleft})$.
- Show that in any way of adding a vertex to D-x, we either stay in the family or decrease *ID*.

Back to Bondy

Theorem (Bondy's theorem, 1972)

For a hypergraph (X, \mathscr{E}) , a minimal separating system has size at most |X| - 1.

Remark

 $B = B(X, \mathscr{E})$: bipartite graph representing (X, \mathscr{E}) . If B has a matching from \mathscr{E} to X, then B is the neighbourhood graph of a digraph D. \Rightarrow Any separating system of (X, \mathscr{E}) is a separating code of D.

Back to Bondy

Theorem (Bondy's theorem, 1972)

For a hypergraph (X, \mathscr{E}) , a minimal separating system has size at most |X| - 1.

Remark

 $B = B(X, \mathscr{E})$: bipartite graph representing (X, \mathscr{E}) . If B has a matching from \mathscr{E} to X, then B is the neighbourhood graph of a digraph D. \Rightarrow Any separating system of (X, \mathscr{E}) is a separating code of D.

Back to Bondy

Theorem (Bondy's theorem, 1972)

For a hypergraph (X, \mathscr{E}) , a minimal separating system has size at most |X| - 1.

Remark

 $B = B(X, \mathscr{E})$: bipartite graph representing (X, \mathscr{E}) . If B has a matching from \mathscr{E} to X, then B is the neighbourhood graph of a digraph D. \Rightarrow Any separating system of (X, \mathscr{E}) is a separating code of D.

Corollary (F., Naserasr, Parreau, 2013)

In Bondy's theorem (with $|X| = |\mathscr{E}|$ and non-empty sets), if for any good choice of x we have $E_i - x = \emptyset$ for some E_i , then $B(X, \mathscr{E})$ is the neighbourhood graph of a digraph in $(K_1, \oplus, \overrightarrow{\triangleleft})$.

Corollary (F., Naserasr, Parreau, 2013)

In Bondy's theorem (with $|X| = |\mathscr{E}|$ and non-empty sets), if for any good choice of x we have $E_i - x = \emptyset$ for some E_i , then $B(X,\mathscr{E})$ is the neighbourhood graph of a digraph in $(K_1, \oplus, \overrightarrow{d})$.

Proof:

- If *B* has a perfect matching: use our theorem.
- Otherwise, by Hall's theorem, there is a subset X_1 of X s.t. $|X_1| > |N(X_1)|$.

Location-domination in graphs

Location-domination

Definition - Locating-dominating set (Slater, 1980's)

 $D \subseteq V(G)$ locating-dominating set of G:

- for every $u \in V$, $N[v] \cap D \neq \emptyset$ (domination).
- $\forall u \neq v$ of $V(G) \setminus D$, $N(u) \cap D \neq N(v) \cap D$ (location).

Motivation: fault-detection in networks.

 \rightarrow The set D of grey processors is a set of fault-detectors.

Location-domination

Definition - Locating-dominating set (Slater, 1980's)

 $D \subseteq V(G)$ locating-dominating set of G:

- for every $u \in V$, $N[v] \cap D \neq \emptyset$ (domination).
- $\forall u \neq v$ of $V(G) \setminus D$, $N(u) \cap D \neq N(v) \cap D$ (location).

Notation. location-domination number LD(G): smallest size of a locating-dominating set of G

Location-domination

Definition - Locating-dominating set (Slater, 1980's)

 $D \subseteq V(G)$ locating-dominating set of G:

- for every $u \in V$, $N[v] \cap D \neq \emptyset$ (domination).
- $\forall u \neq v$ of $V(G) \setminus D$, $N(u) \cap D \neq N(v) \cap D$ (location).

Notation. location-domination number LD(G): smallest size of a locating-dominating set of G

Domination number: $DOM(P_n) = \left\lceil \frac{n}{3} \right\rceil$

Upper bounds

Theorem (Domination bound, Ore, 1960's)

G graph of order *n*, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.

Upper bounds

G graph of order n, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.

Tight examples:

Upper bounds

Remark: tight examples contain many twin-vertices!!

G graph of order *n*, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's)

G graph of order *n*, no isolated vertices. Then $LD(G) \le n-1$.

G graph of order *n*, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's)

G graph of order *n*, no isolated vertices. Then $LD(G) \le n-1$.

Conjecture (Garijo, González & Márquez, 2014)

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

G graph of order *n*, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's)

G graph of order *n*, no isolated vertices. Then $LD(G) \le n-1$.

Conjecture (Garijo, González & Márquez, 2014)

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Remark:

- twins are easy to detect
- twins have a trivial behaviour w.r.t. location-domination

G graph of order *n*, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's)

G graph of order n, no isolated vertices. Then $LD(G) \leq n-1$.

Conjecture (Garijo, González & Márquez, 2014)

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

If true, tight: 1. domination-extremal graphs

G graph of order *n*, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's)

G graph of order n, no isolated vertices. Then $LD(G) \leq n-1$.

Conjecture (Garijo, González & Márquez, 2014)

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

If true, tight: 2. a similar construction

G graph of order *n*, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's)

G graph of order n, no isolated vertices. Then $LD(G) \leq n-1$.

Conjecture (Garijo, González & Márquez, 2014)

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

If true, tight: 3. a family with domination number 2

G graph of order *n*, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's)

G graph of order *n*, no isolated vertices. Then $LD(G) \le n-1$.

Conjecture (Garijo, González & Márquez, 2014)

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

If true, tight: 4. a *dense* family with domination number 2

Conjecture (Garijo, González & Márquez, 2014)

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (Garijo, González & Márquez, 2014)

Conjecture true if G has independence number $\ge n/2$. (in particular, if bipartite)

Proof: every vertex cover is a locating-dominating set

Conjecture (Garijo, González & Márquez, 2014)

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

 $\alpha'(G)$: matching number of G

Theorem (Garijo, González & Márquez, 2014)

If G has no 4-cycles, then $LD(G) \leq \alpha'(G) \leq \frac{n}{2}$.

Proof:

- Consider special maximum matching M
- Select one vertex in each edge of M

Conjecture (Garijo, González & Márquez, 2014)

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

 $\alpha'(G)$: matching number of G

Theorem (Garijo, González & Márquez, 2014)

If G has no 4-cycles, then $LD(G) \leq \alpha'(G) \leq \frac{n}{2}$.

Proof:

- Consider special maximum matching M
- Select one vertex in each edge of M

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (F., Henning, 2016)

Conjecture true if G is cubic.

Proof: Involved argument using maximum matching and Tutte-Berge theorem.

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (F., Henning, 2016)

Conjecture true if G is cubic.

Bound is tight:

Conjecture (Garijo, González & Márquez, 2014)

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (F., Henning, 2016)

Conjecture true if G is cubic.

Question

Are there twin-free (cubic) graphs with $LD(G) > \alpha'(G)$?

(if not, conjecture is true)

Conjecture (Garijo, González & Márquez, 2014)

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2016)

Conjecture true if G is split graph or complement of bipartite graph.

Line graph of *G*: intersection graph of the edges of *G*.

Theorem (F., Henning, 2017)

Conjecture true if *G* is line graph.

Proof: By induction on the order, using edge-locating-dominating sets

Upper bound: a conjecture - general bound

Conjecture (Garijo, González & Márquez, 2014)

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2016)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{2}{3}n$.

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2016)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{2}{3}n$.

Proof: • There exists a dominating set *D* such that each vertex has a private neighbour. We have $|D| \le n_1 + n_2$.

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2016)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{2}{3}n$.

Proof: • There exists a dominating set *D* such that each vertex has a private neighbour. We have $|D| \le n_1 + n_2$.

• there is a LD-set of size $|D| + n_1$;

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2016)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{2}{3}n$.

Proof: • There exists a dominating set *D* such that each vertex has a private neighbour. We have $|D| \le n_1 + n_2$.

• there is a LD-set of size $|D| + n_1$; there is a LD-set of size $n - n_1 - n_2$

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2016)

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{2}{3}n$.

Proof: • There exists a dominating set *D* such that each vertex has a private neighbour. We have $|D| \le n_1 + n_2$.

- there is a LD-set of size $|D| + n_1$; there is a LD-set of size $n n_1 n_2$
- $\min\{|D|+n_1, n-n_1-n_2\} \le \frac{2}{3}n$

Lower bounds

Lower bounds

Theorem (Slater, 1980's)

G graph of order n, LD(G) = k. Then $n \le 2^k + k - 1 \rightarrow LD(G) = \Omega(\log n)$.

Lower bounds

Theorem (Slater, 1980's)

G graph of order n, LD(G) = k. Then $n \le 2^k + k - 1 \rightarrow LD(G) = \Omega(\log n)$.

Tight example (k = 4):

Lower bounds

G graph of order n, LD(G) = k. Then $n \leq 2^k + k - 1 \rightarrow LD(G) = \Omega(\log n)$.

Theorem (Slater, 1980's)

G tree of order n, LD(G) = k. Then $n \leq 3k - 1 \rightarrow LD(G) \geq \frac{n+1}{3}$.

Theorem (Rall & Slater, 1980's)

G planar graph, order n, LD(G) = k. Then $n \leq 7k - 10 \rightarrow LD(G) \geq \frac{n+10}{7}$.

Lower bounds

Definition - Interval graph

Intersection graph of intervals of the real line.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

Then
$$n \leq \frac{k(k+3)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

Then
$$n \leq \frac{k(k+3)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.

- Locating-dominating D of size k.
- Define zones using the right points of intervals in D.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

Then
$$n \leq \frac{k(k+3)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.

- Locating-dominating D of size k.
- Define zones using the right points of intervals in *D*.
- Each vertex intersects a consecutive set of intervals of *D* when ordered by left points.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

Then
$$n \leq \frac{k(k+3)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.

- Locating-dominating D of size k.
- Define zones using the right points of intervals in *D*.
- Each vertex intersects a consecutive set of intervals of *D* when ordered by left points.

$$\rightarrow n \leq \sum_{i=1}^{k} (k-i) + k = \frac{k(k+3)}{2}.$$

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

G interval graph of order n, LD(G) = k.

Then
$$n \leq \frac{k(k+3)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.

Tight:

Definition - Permutation graph

Given two parallel lines A and B: intersection graph of segments joining A and B.

Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

G permutation graph of order n, LD(G) = k. Then $n \le k^2 + k - 2$, i.e. $LD(G) = \Omega(\sqrt{n})$.

Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

G permutation graph of order n, LD(G) = k. Then $n \le k^2 + k - 2$, i.e. $LD(G) = \Omega(\sqrt{n})$.

- Locating-sominating set *D* of size *k*: *k*+1 "top zones" and *k*+1 "bottom zones"
- Only one segment in $V \setminus D$ for one pair of zones

$$\rightarrow n \leq (k+1)^2 + k$$

Careful counting for the precise bound

Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

G permutation graph of order n, LD(G) = k. Then $n \le k^2 + k - 2$, i.e. $LD(G) = \Omega(\sqrt{n})$.

Tight:

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

Let G be a graph on n vertices, LD(G) = k.

- If G is unit interval, then $n \leq 3k 1$.
- If G is *bipartite* permutation, then $n \leq 3k + 2$.
- If G is a cograph, then $n \leq 3k$.

Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph

In graphs: $X \subseteq V(G)$ is shattered: for every subset $S \subseteq X$, there is a vertex v with $N[v] \cap X = S$

V-C dimension of G: maximum size of a shattered set in G

Typically bounded for geometric intersection graphs

Measure of intersection complexity of sets in a hypergraph

In graphs: $X \subseteq V(G)$ is shattered: for every subset $S \subseteq X$, there is a vertex v with $N[v] \cap X = S$

V-C dimension of G: maximum size of a shattered set in G

Typically bounded for geometric intersection graphs

Theorem (Bousquet, Lagoutte, Li, Parreau, Thomassé, 2015)

G graph of order n, LD(G) = k, V-C dimension $\leq d$. Then $n = O(k^d)$.

 \rightarrow interval graphs (d = 2), line graphs (d = 4), permutation graphs (d = 3), unit disk graphs (d = 3), planar graphs (d = 4)...

Measure of intersection complexity of sets in a hypergraph

In graphs: $X \subseteq V(G)$ is shattered: for every subset $S \subseteq X$, there is a vertex v with $N[v] \cap X = S$

V-C dimension of G: maximum size of a shattered set in G

Typically bounded for geometric intersection graphs

Theorem (Bousquet, Lagoutte, Li, Parreau, Thomassé, 2015)

G graph of order n, LD(G) = k, V-C dimension $\leq d$. Then $n = O(k^d)$.

 \rightarrow interval graphs (d = 2), line graphs (d = 4), permutation graphs (d = 3), unit disk graphs (d = 3), planar graphs (d = 4)...

But better bounds exist:

- planar: $n \le 7k 10$ (Slater & Rall, 1984)
- line: $n \leq \frac{8}{9}k^2$ (F., Gravier, Naserasr, Parreau, Valicov, 2013)
- permutation: $n = O(k^2)$ (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:

need to know the exact position of 4 satellites + distance to them

Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:

need to know the exact position of 4 satellites + distance to them

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

 $\forall u \neq v \text{ in } V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

MD(G): metric dimension of G, minimum size of a resolving set of G.

Remark

- Any locating-dominating set is a resolving set, hence $MD(G) \leq LD(G)$.
- A locating-dominating set can be seen as a "distance-1-resolving set".

Remark

- Any locating-dominating set is a resolving set, hence $MD(G) \leq LD(G)$.
- A locating-dominating set can be seen as a "distance-1-resolving set".

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)

G of order n, diameter D, MD(G) = k. Then $n \le D^k + k$.

(diameter: maximum distance between two vertices)

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)

G of order n, diameter D, MD(G) = k. Then $n \le D^k + k$.

(diameter: maximum distance between two vertices)

Theorem (Hernando, Mora, Pelayo, Seara, Wood 2010)

G of order n, diameter D, MD(G) = k. Then $n \leq (\lfloor \frac{2D}{3} \rfloor + 1)^k + k \sum_{i=1}^{\lceil D/3 \rceil} (2i-1)^{k-1}$. (Tight.)

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)

G of order n, diameter D, MD(G) = k. Then $n \le D^k + k$.

(diameter: maximum distance between two vertices)

Theorem (Hernando, Mora, Pelayo, Seara, Wood 2010)

G of order n, diameter D, MD(G) = k. Then $n \leq (\lfloor \frac{2D}{3} \rfloor + 1)^k + k \sum_{i=1}^{\lceil D/3 \rceil} (2i-1)^{k-1}$. (Tight.)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

G permutation graph or interval graph of order *n*, MD(G) = k, diameter *D*. Then $n = O(Dk^2)$ i.e. $k = \Omega(\sqrt{\frac{n}{D}})$. (Tight.)

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)

G of order n, diameter D, MD(G) = k. Then $n \le D^k + k$.

(diameter: maximum distance between two vertices)

Theorem (Hernando, Mora, Pelayo, Seara, Wood 2010)

G of order n, diameter D, MD(G) = k. Then $n \leq (\lfloor \frac{2D}{3} \rfloor + 1)^k + k \sum_{i=1}^{\lceil D/3 \rceil} (2i-1)^{k-1}$. (Tight.)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

G permutation graph or interval graph of order n, MD(G) = k, diameter D. Then $n = O(Dk^2)$ i.e. $k = \Omega(\sqrt{\frac{n}{D}})$. (Tight.)

 \rightarrow Proofs are similar as for locating-dominating sets.

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018)

T a tree with diameter D and MD(T) = k, then

$$n \le \begin{cases} \frac{1}{8}(kD+4)(D+2) & \text{if } D \text{ even,} \\ \frac{1}{8}(kD-k+8)(D+1) & \text{if } D \text{ odd.} \end{cases} = \Theta(kD^2)$$

Bounds are tight.

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018)

G outerplanar with diameter D and MD(G) = k, then $n = O(kD^2)$. Tight.

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018)

G outerplanar with diameter D and MD(G) = k, then $n = O(kD^2)$. Tight.

Using the concept of distance-VC-dimension:

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018)

G planar with diameter D and MD(G) = k, then $n = O(k^4D^4)$.

Tight? Example with k = 3 and $n = \Theta(D^3)$.

THANKS FOR YOUR ATTENTION

