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Separating systems in hypergraphs

Hypergraph (X ,E ). A separating system is a subset C ⊆ X such that each
edge e ∈ E contains a distinct subset of C .

Definition - Separating system (Rényi, 1961)

also known as Distinguishing set, Test cover, Distinguishing transversal,
Discriminating code...

E (edges)

Example:

X = {1,2,3,4,5} ; E = {{1},{1,2,3},{3,4},{3,4,5}}

C = {2,3,5}

/0

{2,3}

{3}

{3,5}

X (vertices)
1

2

3

4

5

Equivalently: for any pair e, f of edges, there is a vertex in C contained in
exactly one of e, f

Remark
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General bounds

For a hypergraph (X ,E ), a separating system has size at least log2(|E |).

Theorem (Folklore)

Proof: Must assign to each edge, a distinct subset of C : |E | ≤ 2|C |.
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Theorem (Folklore)

Proof: Must assign to each edge, a distinct subset of C : |E | ≤ 2|C |.

For a hypergraph (X ,E ), a minimal separating system has size at most
|X |−1.

Theorem (Bondy’s theorem, 1972)

Example with |X |= |E |
X = {1,2,3,4} and E = {{1,4},{3},{2,4},{1,2,4}}
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General bounds

For a hypergraph (X ,E ), a separating system has size at least log2(|E |).

Theorem (Folklore)

Proof: Must assign to each edge, a distinct subset of C : |E | ≤ 2|C |.

For a hypergraph (X ,E ), a minimal separating system has size at most
|X |−1.

Theorem (Bondy’s theorem, 1972)

Example with |X |= |E |
X = {1,2,3,4} and E = {{1,4},{3},{2,4},{1,2,4}}

Example with |X |= |E |+1
X = {1,2,3,4,5} and E = {{1,4,5},{1,3},{2,4,5},{1,2,4,5}}
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General bounds

For a hypergraph (X ,E ), a separating system has size at least log2(|E |).

Theorem (Folklore)

Proof: Must assign to each edge, a distinct subset of C : |E | ≤ 2|C |.

For a hypergraph (X ,E ), a minimal separating system has size at most
|X |−1.

Theorem (Bondy’s theorem, 1972)

Example with |X |= |E |
X = {1,2,3,4} and E = {{1,4},{3},{2,4},{1,2,4}}

Example with |X |= |E |+1
X = {1,2,3,4,5} and E = {{1,4,5},{1,3},{2,4,5},{1,2,4,5}}

It is best possible
X = {1,2,3,4} and E = {{1},{2},{3},{4}}
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General bounds

For a hypergraph (X ,E ), a separating system has size at least log2(|E |).

Theorem (Folklore)

Proof: Must assign to each edge, a distinct subset of C : |E | ≤ 2|C |.

For a hypergraph (X ,E ), a minimal separating system has size at most
|X |−1.

Theorem (Bondy’s theorem, 1972)

Proof: Note: if E1,E2 ⊆ X and E1−x = E2−x , then E1∆E2 = {x}.
Construct a graph H on vertex set E where for each x ∈ X , choose (at most)
one unique pair Ei ,Ej of E s.t. Ei = Ej + x , and connect Ei to Ej .
Claim: H has no cycle.
So there are at most |X |−1 “forbidden” elements of X , and there is x0 ∈ X s.t.
X −x0 works.
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Some example problems

Special graph-based cases of separating sets in hypergraphs:

identifying codes
identifying open codes
path identifying covers
cycle identifying covers
separating path systems
geometric versions: e.g. seperating points using disks in Euclidean space

A variation:
locating-dominating sets
locating-total dominating sets

Distance-based identification:

resolving sets (metric dimension)
centroidal locating sets
tracking paths problem
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Identifying codes in digraphs
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Identifying codes in digraphs

N−[u]: in-neighbourhood of u

subset C of V such that:
C is a dominating set in D: for all u ∈ V , N−[u]∩C 6= /0, and
C is a separating code in D: for all u 6= v , N−[u]∩C 6= N−[v ]∩C

Definition - Identifying code of a digraph D = (V ,A)

a

b

c d

e f

{b}

{b,c,e}

{c, f }
{c}

{e} {b,c, f }

ID(D): minimum size of an identifying code of D
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Identifiable digraphs

Not all digraphs have an identifying code!

Remark

Closed in-twins = pair u, v such that N−[u] = N−[v ].

u v

A digraph is identifiable if and only if it is closed in-twin-free (i.e. has no
closed in-twins).

Proposition
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Bounds

G identifiable digraph on n vertices:

dlog2(n +1)e ≤ ID(D)≤ n

Theorem (Folklore)

Which digraphs D have ID(D) = n?

Question
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Which digraphs need n vertices?

Two operations
D1⊕D2: disjoint union of D1 and D2
−→/ (D): D joined to K1 by incoming arcs only

D1 D2

D1⊕D2

D

−→/ (D)
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A characterization

For each digraph D of order n in (K1,⊕,−→/ ), ID(D) = n.

Proposition

D1 D2

D1⊕D2

D

−→/ (D)
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A characterization

Let D be an identifiable digraph on n vertices. ID(G) = n iff D ∈ (K1,⊕,−→/ ).

Theorem (F., Naserasr, Parreau, 2013)

D1 D2

D1⊕D2

D

−→/ (D)
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A characterization

Let D be an identifiable digraph on n vertices. ID(G) = n iff D ∈ (K1,⊕,−→/ ).

Theorem (F., Naserasr, Parreau, 2013)

Proof of the theorem.

Let D be a digraph with ID(D) = |V (D)|, then there is a vertex x of D such
that ID(D−x) = |V (D−x)|.

Proposition
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A characterization

Let D be an identifiable digraph on n vertices. ID(G) = n iff D ∈ (K1,⊕,−→/ ).

Theorem (F., Naserasr, Parreau, 2013)

Proof of the theorem.

Let D be a digraph with ID(D) = |V (D)|, then there is a vertex x of D such
that ID(D−x) = |V (D−x)|.

Proposition

By contradiction: take a minimum counterexample, D
By the proposition, there is a vertex x such that
ID(D−x) = |V (D−x)|−1. By minimality of D, D−x ∈ (K1,⊕,−→/ ).
Show that in any way of adding a vertex to D−x , we either stay in the
family or decrease ID.
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Back to Bondy

For a hypergraph (X ,E ), a minimal separating system has size at most
|X |−1.

Theorem (Bondy’s theorem, 1972)

B = B(X ,E ): bipartite graph representing (X ,E ). If B has a matching from
E to X , then B is the neighbourhood graph of a digraph D.
⇒ Any separating system of (X ,E ) is a separating code of D.

Remark

E

{1}

{1,3}

{2,3}

{1,3,4}

X

1

2

3

4 {1}/1 {2,3}/2

{1,3}/3 {1,3,4}/4
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Application to Bondy’s setting

In Bondy’s theorem (with |X | = |E | and non-empty sets), if for any good
choice of x we have Ei −x = /0 for some Ei ,
then B(X ,E ) is the neighbourhood graph of a digraph in (K1,⊕,−→/ ).

Corollary (F., Naserasr, Parreau, 2013)

Proof:
If B has a perfect matching: use our theorem.
Otherwise, by Hall’s theorem, there is a subset X1 of X s.t. |X1|> |N(X1)|.

E X

X0

N(X0)

N(X1)
X1
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Location-domination in graphs
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Location-domination

D ⊆ V (G) locating-dominating set of G :

for every u ∈ V , N[v ]∩D 6= /0 (domination).
∀u 6= v of V (G)\D, N(u)∩D 6= N(v)∩D (location).

Definition - Locating-dominating set (Slater, 1980’s)

Motivation: fault-detection in networks.
→ The set D of grey processors is a set of fault-detectors.

a

b c

{a,c}{a,b}

{b,c}

!

!
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for every u ∈ V , N[v ]∩D 6= /0 (domination).
∀u 6= v of V (G)\D, N(u)∩D 6= N(v)∩D (location).

Definition - Locating-dominating set (Slater, 1980’s)

Notation. location-domination number LD(G): smallest size of a
locating-dominating set of G
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Location-domination

D ⊆ V (G) locating-dominating set of G :

for every u ∈ V , N[v ]∩D 6= /0 (domination).
∀u 6= v of V (G)\D, N(u)∩D 6= N(v)∩D (location).

Definition - Locating-dominating set (Slater, 1980’s)

Notation. location-domination number LD(G): smallest size of a
locating-dominating set of G

Domination number: DOM(Pn) =
⌈ n
3
⌉

Identifying code number: ID(Pn) =
⌈ n+1

2
⌉

Location-domination number: LD(Pn) =
⌈ 2n
5
⌉
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Upper bounds

G graph of order n, no isolated vertices. Then DOM(G)≤ n
2 .

Theorem (Domination bound, Ore, 1960’s)

Tight examples:
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Tight examples:

G graph of order n, no isolated vertices. Then LD(G)≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s)
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Upper bounds

G graph of order n, no isolated vertices. Then DOM(G)≤ n
2 .

Theorem (Domination bound, Ore, 1960’s)

Tight examples:

G graph of order n, no isolated vertices. Then LD(G)≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s)

Tight examples:

Remark: tight examples contain many twin-vertices!!
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Upper bound: a conjecture

G graph of order n, no isolated vertices. Then DOM(G)≤ n
2 .

Theorem (Domination bound, Ore, 1960’s)

G graph of order n, no isolated vertices. Then LD(G)≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s)
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Upper bound: a conjecture

G graph of order n, no isolated vertices. Then DOM(G)≤ n
2 .

Theorem (Domination bound, Ore, 1960’s)

G graph of order n, no isolated vertices. Then LD(G)≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s)

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014)
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Upper bound: a conjecture

G graph of order n, no isolated vertices. Then DOM(G)≤ n
2 .

Theorem (Domination bound, Ore, 1960’s)

G graph of order n, no isolated vertices. Then LD(G)≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s)

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014)

Remark:

• twins are easy to detect

• twins have a trivial behaviour w.r.t. location-domination
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Upper bound: a conjecture

G graph of order n, no isolated vertices. Then DOM(G)≤ n
2 .

Theorem (Domination bound, Ore, 1960’s)

G graph of order n, no isolated vertices. Then LD(G)≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s)

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014)

If true, tight: 1. domination-extremal graphs
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Upper bound: a conjecture

G graph of order n, no isolated vertices. Then DOM(G)≤ n
2 .

Theorem (Domination bound, Ore, 1960’s)

G graph of order n, no isolated vertices. Then LD(G)≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s)

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014)

If true, tight: 2. a similar construction
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If true, tight: 3. a family with domination number 2
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Upper bound: a conjecture

G graph of order n, no isolated vertices. Then DOM(G)≤ n
2 .

Theorem (Domination bound, Ore, 1960’s)

G graph of order n, no isolated vertices. Then LD(G)≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s)

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014)

If true, tight: 4. a dense family with domination number 2

Clique on {xk+1, ...,x2k}

Clique on {x1, ...,xk}

xk+1 xk+2 xk+3 ...
x2k−1 x2k

x1 x2 x3
...

xk−1 xk
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Upper bound: a conjecture - special graph classes

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014)

Conjecture true if G has independence number ≥ n/2.
(in particular, if bipartite)

Theorem (Garijo, González & Márquez, 2014)

Proof: every vertex cover is a locating-dominating set
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Upper bound: a conjecture - special graph classes

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014)

α ′(G): matching number of G

If G has no 4-cycles, then LD(G)≤ α ′(G)≤ n
2 .

Theorem (Garijo, González & Márquez, 2014)

Proof:

• Consider special maximum matching M

• Select one vertex in each edge of M
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Upper bound: a conjecture - special graph classes

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014)

Conjecture true if G is cubic.

Theorem (F., Henning, 2016)

Proof: Involved argument using maximum matching and Tutte-Berge theorem.

. . .. . .

. . .. . .

. . .. . .

. . .. . .

..
.

..
.

..
.

X

. . .. . .

. . .. . .

. . .. . .
M-unmatched vertices

odd components
in G−X

. . .. . .

. . .. . .

. . .. . .

..
.

even components
in G−X

Florent Foucaud Identification problems in (hyper)graphs 20 / 38



Upper bound: a conjecture - special graph classes

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014)

Conjecture true if G is cubic.

Theorem (F., Henning, 2016)

Bound is tight:

Do we have LD(G) = n
2 for other cubic graphs?

Question
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G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014)

Conjecture true if G is cubic.

Theorem (F., Henning, 2016)

Are there twin-free (cubic) graphs with LD(G) > α ′(G)?

Question

(if not, conjecture is true)
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Upper bound: a conjecture - special graph classes

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014)

Conjecture true if G is split graph or complement of bipartite graph.

Theorem (F., Henning, Löwenstein, Sasse, 2016)

Line graph of G : intersection graph of the edges of G .

Conjecture true if G is line graph.

Theorem (F., Henning, 2017)

Proof: By induction on the order, using edge-locating-dominating sets
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Upper bound: a conjecture - general bound

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ 2
3n.

Theorem (F., Henning, Löwenstein, Sasse, 2016)

• there is a LD-set of size |D|+ n1; there is a LD-set of size n−n1−n2
• min{|D|+ n1,n−n1−n2} ≤ 2

3n
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Lower bounds
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Lower bounds

G graph of order n, LD(G) = k. Then n ≤ 2k + k−1 → LD(G) = Ω(logn).

Theorem (Slater, 1980’s)
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Lower bounds

G graph of order n, LD(G) = k. Then n ≤ 2k + k−1 → LD(G) = Ω(logn).

Theorem (Slater, 1980’s)

Tight example (k = 4):
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Lower bounds

G graph of order n, LD(G) = k. Then n ≤ 2k + k−1 → LD(G) = Ω(logn).

Theorem (Slater, 1980’s)

G tree of order n, LD(G) = k. Then n ≤ 3k−1 → LD(G)≥ n+1
3 .

Theorem (Slater, 1980’s)

G planar graph, order n, LD(G) = k. Then n ≤ 7k−10 → LD(G)≥ n+10
7 .

Theorem (Rall & Slater, 1980’s)
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Lower bounds

G graph of order n, LD(G) = k. Then n ≤ 2k + k−1 → LD(G) = Ω(logn).

Theorem (Slater, 1980’s)

G tree of order n, LD(G) = k. Then n ≤ 3k−1 → LD(G)≥ n+1
3 .

Theorem (Slater, 1980’s)

G planar graph, order n, LD(G) = k. Then n ≤ 7k−10 → LD(G)≥ n+10
7 .

Theorem (Rall & Slater, 1980’s)

Tight examples:
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Interval graphs

Intersection graph of intervals of the real line.

Definition - Interval graph

I1 I4

I2 I5

I3 1

2

3

4 5
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Lower bound for interval graphs

G interval graph of order n, LD(G) = k.

Then n ≤ k(k+3)
2 , i.e. LD(G) = Ω(

√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)
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Lower bound for interval graphs

G interval graph of order n, LD(G) = k.

Then n ≤ k(k+3)
2 , i.e. LD(G) = Ω(

√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

1 2

3

4

1−1 2−3

1−2 2−4

1−4

1−3 3−4

Locating-dominating D of size k.

Define zones using the right points of intervals in D.

Each vertex intersects a consecutive set of intervals of D when ordered by
left points.

→ n ≤ ∑
k
i=1(k− i) + k = k(k+3)

2 .
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Lower bound for interval graphs

G interval graph of order n, LD(G) = k.

Then n ≤ k(k+3)
2 , i.e. LD(G) = Ω(

√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

Tight:
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Permutation graphs

Given two parallel lines A and B:
intersection graph of segments joining A and B.

Definition - Permutation graph
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Lower bound for permutation graphs

G permutation graph of order n, LD(G) = k.
Then n ≤ k2 + k−2, i.e. LD(G) = Ω(

√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

Locating-sominating set D of size k: k +1 “top zones” and k +1 “bottom
zones”

Only one segment in V \D for one pair of zones

→ n ≤ (k +1)2 + k

Careful counting for the precise bound

Tight:
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Lower bound for permutation graphs
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Bounds for subclasses of interval/permutation

Let G be a graph on n vertices, LD(G) = k.

If G is unit interval, then n ≤ 3k−1.

If G is bipartite permutation, then n ≤ 3k +2.

If G is a cograph, then n ≤ 3k.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)
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Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph

In graphs: X ⊆ V (G) is shattered:
for every subset S ⊆ X , there is a vertex v with N[v ]∩X = S

V-C dimension of G : maximum size of a shattered set in G

Typically bounded for geometric intersection graphs

G graph of order n, LD(G) = k, V-C dimension ≤ d . Then n = O(kd ).

Theorem (Bousquet, Lagoutte, Li, Parreau, Thomassé, 2015)

→ interval graphs (d = 2), line graphs (d = 4), permutation graphs (d = 3),
unit disk graphs (d = 3), planar graphs (d = 4)...

But better bounds exist:
planar: n ≤ 7k−10 (Slater & Rall, 1984)
line: n ≤ 8

9k2 (F., Gravier, Naserasr, Parreau, Valicov, 2013)
permutation: n = O(k2) (F., Mertzios, Naserasr, Parreau, Valicov, 2017)
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Metric dimension
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Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them

Does the “GPS” approach also work in undirected unweighted graphs?

Question
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Metric dimension

Now, w ∈ V (G) distinguishes {u,v} if dist(w ,u) 6= dist(w ,v)

R ⊆ V (G) resolving set of G :

∀u 6= v in V (G), there exists w ∈ R that distinguishes {u,v}.

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)
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Metric dimension

Now, w ∈ V (G) distinguishes {u,v} if dist(w ,u) 6= dist(w ,v)

R ⊆ V (G) resolving set of G :

∀u 6= v in V (G), there exists w ∈ R that distinguishes {u,v}.

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

w

MD(G): metric dimension of G , minimum size of a resolving set of G .
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Example

s1 s2

(0,3) (3,0)

(1,2)

(2,1)

(2,3) (2,2)

S = {s1,s2}

MD(G) = 2
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Remarks

• Any locating-dominating set is a resolving set, hence MD(G)≤ LD(G).

• A locating-dominating set can be seen as a “distance-1-resolving set”.

Remark

MD(G) = 1 ⇔ G is a path

Proposition
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Bounds with diameter

Example of path: no bound n ≤ f (MD(G)) possible.

G of order n, diameter D, MD(G) = k. Then n ≤Dk + k.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)

(diameter: maximum distance between two vertices)

G of order n, diameter D, MD(G) = k.
Then n ≤ (b 2D

3 c+1)k + k ∑
dD/3e
i=1 (2i−1)k−1. (Tight.)

Theorem (Hernando, Mora, Pelayo, Seara, Wood 2010)

G permutation graph or interval graph of order n, MD(G) = k, diameter D.
Then n = O(Dk2) i.e. k = Ω

(√ n
D
)
. (Tight.)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

→ Proofs are similar as for locating-dominating sets.

Florent Foucaud Identification problems in (hyper)graphs 35 / 38



Bounds with diameter

Example of path: no bound n ≤ f (MD(G)) possible.

G of order n, diameter D, MD(G) = k. Then n ≤Dk + k.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)

(diameter: maximum distance between two vertices)

G of order n, diameter D, MD(G) = k.
Then n ≤ (b 2D

3 c+1)k + k ∑
dD/3e
i=1 (2i−1)k−1. (Tight.)

Theorem (Hernando, Mora, Pelayo, Seara, Wood 2010)

G permutation graph or interval graph of order n, MD(G) = k, diameter D.
Then n = O(Dk2) i.e. k = Ω

(√ n
D
)
. (Tight.)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

→ Proofs are similar as for locating-dominating sets.

Florent Foucaud Identification problems in (hyper)graphs 35 / 38



Bounds with diameter

Example of path: no bound n ≤ f (MD(G)) possible.

G of order n, diameter D, MD(G) = k. Then n ≤Dk + k.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)

(diameter: maximum distance between two vertices)

G of order n, diameter D, MD(G) = k.
Then n ≤ (b 2D

3 c+1)k + k ∑
dD/3e
i=1 (2i−1)k−1. (Tight.)

Theorem (Hernando, Mora, Pelayo, Seara, Wood 2010)

G permutation graph or interval graph of order n, MD(G) = k, diameter D.
Then n = O(Dk2) i.e. k = Ω

(√ n
D
)
. (Tight.)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

→ Proofs are similar as for locating-dominating sets.

Florent Foucaud Identification problems in (hyper)graphs 35 / 38



Bounds with diameter

Example of path: no bound n ≤ f (MD(G)) possible.

G of order n, diameter D, MD(G) = k. Then n ≤Dk + k.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)

(diameter: maximum distance between two vertices)

G of order n, diameter D, MD(G) = k.
Then n ≤ (b 2D

3 c+1)k + k ∑
dD/3e
i=1 (2i−1)k−1. (Tight.)

Theorem (Hernando, Mora, Pelayo, Seara, Wood 2010)

G permutation graph or interval graph of order n, MD(G) = k, diameter D.
Then n = O(Dk2) i.e. k = Ω

(√ n
D
)
. (Tight.)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

→ Proofs are similar as for locating-dominating sets.

Florent Foucaud Identification problems in (hyper)graphs 35 / 38



Bounds with diameter

Example of path: no bound n ≤ f (MD(G)) possible.

G of order n, diameter D, MD(G) = k. Then n ≤Dk + k.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)

(diameter: maximum distance between two vertices)

G of order n, diameter D, MD(G) = k.
Then n ≤ (b 2D

3 c+1)k + k ∑
dD/3e
i=1 (2i−1)k−1. (Tight.)

Theorem (Hernando, Mora, Pelayo, Seara, Wood 2010)

G permutation graph or interval graph of order n, MD(G) = k, diameter D.
Then n = O(Dk2) i.e. k = Ω

(√ n
D
)
. (Tight.)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017)

→ Proofs are similar as for locating-dominating sets.
Florent Foucaud Identification problems in (hyper)graphs 35 / 38



Trees

T a tree with diameter D and MD(T ) = k, then

n ≤
{ 1

8 (kD +4)(D +2) if D even,
1
8 (kD−k +8)(D +1) if D odd.

= Θ(kD2)

Bounds are tight.

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018)

k = 2, D = 6 k = 2, D = 7
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Planar graphs

G outerplanar with diameter D and MD(G) = k, then n = O(kD2). Tight.

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018)

Using the concept of distance-VC-dimension:

G planar with diameter D and MD(G) = k, then n = O(k4D4).

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018)

Tight? Example with k = 3 and n = Θ(D3).
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THANKS FOR YOUR ATTENTION
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