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Location-domination in graphs
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Location-domination

D ⊆ V (G) locating-dominating set of G :

for every u ∈ V , N[v ]∩D 6= /0 (domination).
∀u 6= v of V (G)\D, N(u)∩D 6= N(v)∩D (location).

Definition - Locating-dominating set (Slater, 1980’s)

Motivation: fault-detection in networks.
→ The set D of grey processors is a set of fault-detectors.

a

b c

{a,c}{a,b}

{b,c}

!

!

Notation. location-domination number LD(G),
smallest size of a locating-dominating set of G
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for every u ∈ V , N[v ]∩D 6= /0 (domination).
∀u 6= v of V (G)\D, N(u)∩D 6= N(v)∩D (location).

Definition - Locating-dominating set (Slater, 1980’s)

Notation. location-domination number LD(G),
smallest size of a locating-dominating set of G

Domination number: DOM(Pn) =
⌈ n
3
⌉

Location-domination number: LD(Pn) =
⌈ 2n
5
⌉
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Upper bounds

G graph of order n, no isolated vertices. Then DOM(G)≤ n
2 .

Theorem (Domination bound, Ore, 1960’s )

Tight examples:
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Upper bounds

G graph of order n, no isolated vertices. Then DOM(G)≤ n
2 .

Theorem (Domination bound, Ore, 1960’s )

Tight examples:

G graph of order n, no isolated vertices. Then LD(G)≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s )

Tight examples:

Remark: tight examples contain many twin-vertices!!
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Upper bound: a conjecture

G graph of order n, no isolated vertices. Then DOM(G)≤ n
2 .

Theorem (Domination bound, Ore, 1960’s )

G graph of order n, no isolated vertices. Then LD(G)≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s )
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Theorem (Domination bound, Ore, 1960’s )

G graph of order n, no isolated vertices. Then LD(G)≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s )

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )
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Upper bound: a conjecture

G graph of order n, no isolated vertices. Then DOM(G)≤ n
2 .

Theorem (Domination bound, Ore, 1960’s )

G graph of order n, no isolated vertices. Then LD(G)≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s )

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

Remark:

• twins are easy to detect

• twins have a trivial behaviour w.r.t. location-domination
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2 .

Theorem (Domination bound, Ore, 1960’s )

G graph of order n, no isolated vertices. Then LD(G)≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s )

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

If true, tight: 1. domination-extremal graphs
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2 .

Theorem (Domination bound, Ore, 1960’s )

G graph of order n, no isolated vertices. Then LD(G)≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s )

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

If true, tight: 2. a similar construction
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If true, tight: 3. a family with domination number 2
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Upper bound: a conjecture

G graph of order n, no isolated vertices. Then DOM(G)≤ n
2 .

Theorem (Domination bound, Ore, 1960’s )

G graph of order n, no isolated vertices. Then LD(G)≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s )

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

If true, tight: 4. family with dom. number 2: complements of half-graphs

Clique on {xk+1, ...,x2k}

Clique on {x1, ...,xk}

xk+1 xk+2 xk+3 ...
x2k−1 x2k

x1 x2 x3
...

xk−1 xk
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Upper bound: a conjecture - special graph classes

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

Conjecture true if G has independence number ≥ n/2.
(in particular, if bipartite)

Theorem (Garijo, González & Márquez, 2014 )

Proof: every vertex cover is a locating-dominating set
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Upper bound: a conjecture - special graph classes

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

α ′(G): matching number of G

If G has no 4-cycles, then LD(G)≤ α ′(G)≤ n
2 .

Theorem (Garijo, González & Márquez, 2014 )

Proof:

• Consider special maximum matching M

• Select one vertex in each edge of M
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Upper bound: a conjecture - special graph classes

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

Conjecture true if G is cubic.

Theorem (F., Henning, 2016 )

Proof: Involved argument using maximum matching and Tutte-Berge theorem.

. . .. . .

. . .. . .

. . .. . .

. . .. . .

..
.

..
.

..
.

X

. . .. . .

. . .. . .

. . .. . .
M-unmatched vertices

odd components
in G−X

. . .. . .

. . .. . .

. . .. . .

..
.

even components
in G−X
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Upper bound: a conjecture - special graph classes

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

Conjecture true if G is cubic.

Theorem (F., Henning, 2016 )

Bound is tight:

Do we have LD(G) = n
2 for other cubic graphs?

Question
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Upper bound: a conjecture - special graph classes

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

Conjecture true if G is cubic.

Theorem (F., Henning, 2016 )

Are there twin-free (cubic) graphs with LD(G) > α ′(G)?

Question

(if not, conjecture is true)

Florent Foucaud Extremal graphs for domination-based identification 8 / 32



Upper bound: a conjecture - special graph classes

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

Conjecture true if G is split graph or complement of bipartite graph.

Theorem (F., Henning, Löwenstein, Sasse, 2016 )

Line graph of G : intersection graph of the edges of G .

Conjecture true if G is a line graph.

Theorem (F., Henning, 2017 )

Proof: By induction on the order, using edge-locating-dominating sets
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Upper bound: a conjecture - general bound

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ 2
3n.

Theorem (F., Henning, Löwenstein, Sasse, 2016 )

• there is a LD-set of size |D|+ n1; there is a LD-set of size n−n1−n2
• min{|D|+ n1,n−n1−n2} ≤ 2

3n
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Open neighbourhood location-domination
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Open neighbourhood locating-dominating sets

G : undirected graph N(u): set of neighbours of v

Subset D of V (G) such that:
D is a total dominating set: ∀u ∈ V (G), N(u)∩D 6= /0, and
D is a separating set: ∀u 6= v of V (G), N(u)∩D 6= N(v)∩D

Definition - OLD set (Seo, Slater, 2010 )

Notation. OLD(G): OLD number of G ,
minimum size of an OLD-set in G

{b}

{a,b}

{a,d,f}

{b,f}

{b,d}

{d}

{f}
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Examples: paths

Subset D of V (G) such that:
D is a total dominating set: ∀u ∈ V (G), N(u)∩D 6= /0, and
D is a separating set: ∀u 6= v of V (G), N(u)∩D 6= N(v)∩D

Definition - OLD set

Total domination number: γt(Pn)≈
⌈ n
2
⌉

OLD-number: OLD(Pn)≈
⌈ 2n
3
⌉
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Locatable graphs

Not all graphs have an OLD set!

Remark

An isolated vertex cannot be totally dominated.

Open twins = pair u, v such that N(u) = N(v).

u v

A graph is locatable if and only if it has no isolated vertices and open twins.

Proposition
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Upper bound on OLD(G)?

Bipartite graph on vertex sets {v1, . . . ,vk} and {w1, . . . ,wk}, with an edge {vi ,wj}
if and only if i ≤ j.

Definition - Half-graph Hk (Erdős, Hajnal, 1983 )

w1

v1

H1 = P2

w1

v1

w2

v2

H2 = P4

w1

v1

w2

v2 v3

w3

v4

w4

v5

w5

H5

Some vertices are forced to be in any OLD-set because of domination or location

For every half-graph Hk of order n = 2k, OLD(Hk ) = n.

Proposition
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Characterizing “bad graphs” for OLD-sets

Let G be a connected locatable graph of order n.
Then, OLD(G) = n if and only if G is a half-graph.

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 )

Proof:

Such a graph has only forced vertices.

By Bondy’s theorem, there is at least one vertex x that is not location-forced: so, its
neighbour y is of degree 1.

G ′ = G−{x ,y} is locatable, connected and has OLD(G ′) = n−2.

By induction, G ′ is a half-graph. We can conclude that G is a half-graph too.
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Identifying codes in graphs
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Identifying codes

G : undirected graph
N[u]: set of vertices v s.t. d(u,v)≤ 1

Subset C of V (G) such that:
C is a dominating set: ∀u ∈ V (G), N[u]∩C 6= /0, and
C is a separating set: ∀u 6= v of V (G), N[u]∩C 6= N[v ]∩C

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

ID(G): identifying code number of G ,
minimum size of an identifying code in G
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Examples: paths

Subset C of V (G) such that:
C is a dominating set: ∀u ∈ V (G), N[u]∩C 6= /0, and
C is a separating set: ∀u 6= v of V (G), N[u]∩C 6= N[v ]∩C

Definition - Identifying code

Domination number: DOM(Pn) =
⌈ n
3
⌉

Identifying code number: ID(Pn) =
⌈ n+1

2
⌉
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Identifiable graphs

Not all graphs have an identifying code!

Remark

Closed twins = pair u, v such that N[u] = N[v ].

u v

A graph is identifiable if and only if it has no closed twins.

Proposition
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Bounds on ID(G)

n: number of vertices

G identifiable graph on n vertices with at least one edge:

ID(G)≤ n−1

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

ID(G) = n⇔ G has no edges
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Bounds on ID(G)

Subset C of V (G) such that:
C is a dominating set: ∀u ∈ V (G), N[u]∩C 6= /0, and
C is a separating set: ∀u 6= v of V (G), N[u]∩C 6= N[v ]∩C

Definition - Identifying code

G identifiable graph on n vertices with at least one edge:

ID(G)≤ n−1

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

forced vertexforced vertex

What are the graphs G with n vertices and ID(G) = n−1 ?

Question
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Forced vertices

u,v such that N[v ]	N[u] = {f }:

f belongs to any identifying code

→ f forced by u,v .

f
v u
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Graphs with many forced vertices

Special path powers: Ak = Pk−1
2k

A2 = P4
A3 = P2

6 A4 = P3
8

ID(Ak ) = n−1

Proposition
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Constructions using joins

Ak Ak'

Two graphs Ak and Ak ′

At each step, the constructed graph has ID = n−1

Proposition
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Constructions using joins

Ak Ak'

Join: add all edges between them

At each step, the constructed graph has ID = n−1

Proposition
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Constructions using joins

Ak Ak'

Join the new graph to two non-adjacent vertices (K2)

At each step, the constructed graph has ID = n−1

Proposition
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Constructions using joins

Ak Ak'

Join the new graph to two non-adjacent vertices, again

At each step, the constructed graph has ID = n−1

Proposition
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Constructions using joins

Ak Ak'

Finally, add a universal vertex

At each step, the constructed graph has ID = n−1

Proposition

Florent Foucaud Extremal graphs for domination-based identification 24 / 32



Constructions using joins

Ak Ak'

Finally, add a universal vertex

At each step, the constructed graph has ID = n−1

Proposition
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A characterization

(1) stars
(2) Ak = Pk−1

2k
(3) joins between 0 or more members of (2) and 0 or more copies of K2

(4) (2) or (3) with a universal vertex

G connected identifiable graph, n vertices:

ID(G) = n−1 ⇔ G ∈ (1), (2), (3) or (4)

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)
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• G : minimum counterexample

G
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• G : minimum counterexample

• v : vertex such that G−v identifiable
(exists)

• Lemma: ID(G−v) = n′−1

G-v

v
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(1) stars
(2) Ak = Pk−1

2k
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Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

• G : minimum counterexample

• v : vertex such that G−v identifiable
(exists)

• Lemma: ID(G−v) = n′−1
⇒ By minimality of G :

G−v ∈ (1), (2), (3) or (4)

G-v

v
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A characterization

(1) stars
(2) Ak = Pk−1

2k
(3) joins between 0 or more members of (2) and 0 or more copies of K2
(4) (2) or (3) with a universal vertex

G connected identifiable graph, n vertices:

ID(G) = n−1 ⇔ G ∈ (1), (2), (3) or (4)

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

• G : minimum counterexample

• v : vertex such that G−v identifiable
(exists)

• Lemma: ID(G−v) = n′−1
⇒ By minimality of G :

G−v ∈ (1), (2), (3) or (4)

• Put v back ⇒ contradiction:

G-v

v

no counterexample exists!
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Lower bounds
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Lower bounds

G graph on n vertices: n ≤ 2LD(G) + LD(G)−1 =⇒ LD(G)≥ log2(n)−1.

Proposition
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Lower bounds

G graph on n vertices: n ≤ 2LD(G) + LD(G)−1 =⇒ LD(G)≥ log2(n)−1.

Proposition

Tight examples:

LD(G) = dlog2(n)e−1
LD(G) = dlog2(n)e−1
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Lower bounds

G graph on n vertices: n ≤ 2LD(G) + LD(G)−1 =⇒ LD(G)≥ log2(n)−1.

Proposition

G planar graph, order n, LD(G) = k. Then n ≤ 7k−10 → LD(G)≥ n+10
7 .

Theorem (Rall & Slater, 1980’s )
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Interval graphs

Intersection graph of intervals of the real line.

Definition - Interval graph

I1 I4

I2 I5

I3 1

2

3

4 5
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Lower bound for interval graphs

G interval graph of order n, LD(G) = k.

Then n ≤ k(k+1)
2 , i.e. LD(G) = Ω(

√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 )
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Lower bound for interval graphs

G interval graph of order n, LD(G) = k.

Then n ≤ k(k+1)
2 , i.e. LD(G) = Ω(

√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 )

1 2

3

4

1−1 2−3

1−2 2−4

1−4

1−3 3−4

Identifying code D of size k.

Define zones using the right points of intervals in D.

Each vertex intersects a consecutive set of intervals of D when ordered by left
points.

→ n ≤ ∑
k
i=1(k− i) = k(k+1)

2 .
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Lower bound for interval graphs

G interval graph of order n, LD(G) = k.

Then n ≤ k(k+1)
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Identifying code D of size k.

Define zones using the right points of intervals in D.

Each vertex intersects a consecutive set of intervals of D when ordered by left
points.
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Lower bound for interval graphs

G interval graph of order n, LD(G) = k.

Then n ≤ k(k+1)
2 , i.e. LD(G) = Ω(

√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 )

Tight:
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Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X ,E )
(initial motivation: machine learning, 1971)

A set S ⊆ X is shattered:
for every subset S ′ ⊆ S, there is an edge e with e∩S = S ′.

V-C dimension of H: maximum size of a shattered set in H

Typically bounded for geometric hypergraphs:
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A set S ⊆ X is shattered:
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Vapnik-Červonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood
hypergraph

Typically bounded for geometric intersection graphs:

→ interval graphs (d = 2), C4-free graphs (d = 2), line graphs (d = 4), permutation
graphs (d = 3), unit disk graphs (d = 3), planar graphs (d = 4)...

Let H be a hypergraph of V-C dimension at most d . Then, any set S of vertices
has at most |S|d distinct traces.

Theorem (Sauer-Shelah Lemma )

G graph of order n, LD(G) = k, V-C dimension ≤ d . Then n = O(kd ).

Corollary
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Conclusion

Some open problems:

Conjecture: LD(G)≤ n/2 in the absence of twins

Find tight bounds for id. problems in interesting graph classes
(e.g. cubic graphs)

THANKS FOR YOUR ATTENTION
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