Extremal graphs for domination-based identification

Florent Foucaud

Lilmos
 しのUNIVERSITÉ Clermont Auvergne

IWDG-2021, IIT Ropar, November 2021

Location-domination in graphs

Location-domination

Definition - Locating-dominating set (Slater, 1980's)
$D \subseteq V(G)$ locating-dominating set of G :

- for every $u \in V, N[v] \cap D \neq \emptyset$ (domination).
- $\forall u \neq v$ of $V(G) \backslash D, N(u) \cap D \neq N(v) \cap D$ (location).

Motivation: fault-detection in networks.
\rightarrow The set D of grey processors is a set of fault-detectors.

Location-domination

Definition - Locating-dominating set (Slater, 1980's)
$D \subseteq V(G)$ locating-dominating set of G :

- for every $u \in V, N[v] \cap D \neq \emptyset$ (domination).
- $\forall u \neq v$ of $V(G) \backslash D, N(u) \cap D \neq N(v) \cap D$ (location).

Notation. location-domination number $L D(G)$, smallest size of a locating-dominating set of G

Domination number: $\operatorname{DOM}\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$

Location-domination number: $L D\left(P_{n}\right)=\left\lceil\frac{2 n}{5}\right\rceil$

Upper bounds

Theorem (Domination bound, Ore, 1960's $\mathbf{\text { ili }}$)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Tight examples:

Upper bounds

Theorem (Domination bound, Ore, 1960's iil)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Tight examples:

Theorem (Location-domination bound, Slater, 1980's
G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Tight examples:

Upper bounds

Theorem (Domination bound, Ore, 1960's iil)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Tight examples:

Theorem (Location-domination bound, Slater, 1980's
G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Tight examples:

Remark: tight examples contain many twin-vertices!!

Upper bound: a conjecture

Theorem (Domination bound, Ore, 1960's $\mathbf{~ M})$
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's
G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Upper bound: a conjecture

Theorem (Domination bound, Ore, 1960's $\mathbf{\text { il }}$)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's
G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Conjecture (Garijo, González \& Márquez, 2014 图 (P)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Upper bound: a conjecture

Theorem (Domination bound, Ore, 1960's iil)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's s)
G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Conjecture (Garijo, González \& Márquez, 2014 (1)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Remark:

- twins are easy to detect
- twins have a trivial behaviour w.r.t. location-domination

Upper bound: a conjecture

Theorem (Domination bound, Ore, 1960's iil)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's 园)
G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Conjecture (Garijo, González \& Márquez, 2014 贯 (T)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
If true, tight: 1. domination-extremal graphs

Upper bound: a conjecture

Theorem (Domination bound, Ore, 1960's ili)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's
G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Conjecture (Garijo, González \& Márquez, 2014 B
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
If true, tight: 2. a similar construction

Upper bound: a conjecture

Theorem (Domination bound, Ore, 1960's $\mathbf{\text { il }}$)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's s)
G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Conjecture (Garijo, González \& Márquez, 2014 国 (T)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
If true, tight: 3. a family with domination number 2

Upper bound: a conjecture

Theorem (Domination bound, Ore, 1960's $\mathbf{i l}$)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's
G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Conjecture (Garijo, González \& Márquez, 2014 B
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
If true, tight:
4. family with dom. number 2: complements of half-graphs

Upper bound: a conjecture - special graph classes

Conjecture (Garijo, González \& Márquez, 2014 图 (V)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Conjecture true if G has independence number $\geq n / 2$.
(in particular, if bipartite)

Proof: every vertex cover is a locating-dominating set

Upper bound: a conjecture - special graph classes

Conjecture (Garijo, González \& Márquez, 2014 国 (V)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
$\alpha^{\prime}(G)$: matching number of G
Theorem (Garijo, González \& Márquez, 2014 图

$$
\text { If } G \text { has no } 4 \text {-cycles, then } L D(G) \leq \alpha^{\prime}(G) \leq \frac{n}{2} \text {. }
$$

Proof:

- Consider special maximum matching M
- Select one vertex in each edge of M

Upper bound: a conjecture - special graph classes

Conjecture (Garijo, González \& Márquez, 2014 国 (V)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
$\alpha^{\prime}(G)$: matching number of G
Theorem (Garijo, González \& Márquez, 2014 贯 (TVM)

$$
\text { If } G \text { has no } 4 \text {-cycles, then } L D(G) \leq \alpha^{\prime}(G) \leq \frac{n}{2} \text {. }
$$

Proof:

- Consider special maximum matching M
- Select one vertex in each edge of M

Upper bound: a conjecture - special graph classes

Conjecture (Garijo, González \& Márquez, 2014 国 (V)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Theorem (F., Henning, 2016 (i)
Conjecture true if G is cubic.

Proof: Involved argument using maximum matching and Tutte-Berge theorem.

Upper bound: a conjecture - special graph classes

Conjecture (Garijo, González \& Márquez, 2014 国 (1)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Theorem (F., Henning, 2016 (i)
Conjecture true if G is cubic.

Bound is tight:

Question

Do we have $L D(G)=\frac{n}{2}$ for other cubic graphs?

Upper bound: a conjecture - special graph classes

Conjecture (Garijo, González \& Márquez, 2014 图 (D)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Theorem (F., Henning, 2016 (t)
Conjecture true if G is cubic.

Question
Are there twin-free (cubic) graphs with $L D(G)>\alpha^{\prime}(G)$?
(if not, conjecture is true)

Upper bound: a conjecture - special graph classes

Conjecture (Garijo, González \& Márquez, 2014 图 Piv)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2016 (ain)
Conjecture true if G is split graph or complement of bipartite graph.

Line graph of G : intersection graph of the edges of G.
Theorem (F., Henning, 2017)
Conjecture true if G is a line graph.

Proof: By induction on the order, using edge-locating-dominating sets

Upper bound: a conjecture - general bound

Conjecture (Garijo, González \& Márquez, 2014 国 (TV)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2016 (ain)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{2}{3} n$.

Upper bound: a conjecture - general bound

Conjecture (Garijo, González \& Márquez, 2014 国 (V)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2016 (in)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{2}{3} n$.
Proof: - There exists a dominating set D such that each vertex has a private neighbour. We have $|D| \leq n_{1}+n_{2}$.

Upper bound: a conjecture - general bound

Conjecture (Garijo, González \& Márquez, 2014 国 (V)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2016 (ain)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{2}{3} n$.
Proof: - There exists a dominating set D such that each vertex has a private neighbour. We have $|D| \leq n_{1}+n_{2}$.

- there is a LD-set of size $|D|+n_{1}$;

Upper bound: a conjecture - general bound

Conjecture (Garijo, González \& Márquez, 2014 国 (V)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2016 8 (10
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{2}{3} n$.
Proof: - There exists a dominating set D such that each vertex has a private neighbour. We have $|D| \leq n_{1}+n_{2}$.

- there is a LD-set of size $|D|+n_{1}$; there is a LD-set of size $n-n_{1}-n_{2}$

Upper bound: a conjecture - general bound

Conjecture (Garijo, González \& Márquez, 2014 国 (V)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2016 (1)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{2}{3} n$.
Proof: - There exists a dominating set D such that each vertex has a private neighbour. We have $|D| \leq n_{1}+n_{2}$.

- there is a LD-set of size $|D|+n_{1}$; there is a LD-set of size $n-n_{1}-n_{2}$
- $\min \left\{|D|+n_{1}, n-n_{1}-n_{2}\right\} \leq \frac{2}{3} n$

Open neighbourhood location-domination

Open neighbourhood locating-dominating sets

G : undirected graph $\quad N(u)$: set of neighbours of v
Definition - OLD set (Seo, Slater, 2010 是
Subset D of $V(G)$ such that:

- D is a total dominating set: $\forall u \in V(G), N(u) \cap D \neq \emptyset$, and
- D is a separating set: $\forall u \neq v$ of $V(G), N(u) \cap D \neq N(v) \cap D$

Notation. $O L D(G)$: OLD number of G, minimum size of an OLD-set in G

Examples: paths

Definition - OLD set

Subset D of $V(G)$ such that:

- D is a total dominating set: $\forall u \in V(G), N(u) \cap D \neq \emptyset$, and
- D is a separating set: $\forall u \neq v$ of $V(G), N(u) \cap D \neq N(v) \cap D$

Total domination number: $\gamma_{t}\left(P_{n}\right) \approx\left\lceil\frac{n}{2}\right\rceil$

Examples: paths

Definition - OLD set

Subset D of $V(G)$ such that:

- D is a total dominating set: $\forall u \in V(G), N(u) \cap D \neq \emptyset$, and
- D is a separating set: $\forall u \neq v$ of $V(G), N(u) \cap D \neq N(v) \cap D$

Total domination number: $\gamma_{t}\left(P_{n}\right) \approx\left\lceil\frac{n}{2}\right\rceil$

OLD-number: $O L D\left(P_{n}\right) \approx\left\lceil\frac{2 n}{3}\right\rceil$

Locatable graphs

Remark

Not all graphs have an OLD set!

An isolated vertex cannot be totally dominated.

Locatable graphs

Remark

Not all graphs have an OLD set!

An isolated vertex cannot be totally dominated.

Open twins $=$ pair u, v such that $N(u)=N(v)$.

Locatable graphs

Remark

Not all graphs have an OLD set!

An isolated vertex cannot be totally dominated.

Open twins $=$ pair u, v such that $N(u)=N(v)$.

Proposition

A graph is locatable if and only if it has no isolated vertices and open twins.

Upper bound on $O L D(G)$?

Definition - Half-graph H_{k} (Erdős, Hajnal, 1983 (19)
Bipartite graph on vertex sets $\left\{v_{1}, \ldots, v_{k}\right\}$ and $\left\{w_{1}, \ldots, w_{k}\right\}$, with an edge $\left\{v_{i}, w_{j}\right\}$ if and only if $i \leq j$.

H_{5}

Upper bound on $O L D(G)$?

Definition - Half-graph H_{k} (Erdős, Hajnal, 1983)
Bipartite graph on vertex sets $\left\{v_{1}, \ldots, v_{k}\right\}$ and $\left\{w_{1}, \ldots, w_{k}\right\}$, with an edge $\left\{v_{i}, w_{j}\right\}$ if and only if $i \leq j$.

!

$H_{1}=P_{2}$
Some vertices are forced to be in any OLD-set because of domination

Upper bound on $O L D(G)$?

Definition - Half-graph H_{k} (Erdős, Hajnal, 1983)
Bipartite graph on vertex sets $\left\{v_{1}, \ldots, v_{k}\right\}$ and $\left\{w_{1}, \ldots, w_{k}\right\}$, with an edge $\left\{v_{i}, w_{j}\right\}$ if and only if $i \leq j$.

$$
H_{1}=P_{2} \quad H_{2}=P_{4}
$$

Some vertices are forced to be in any OLD-set because of domination

Upper bound on $O L D(G)$?

Definition - Half-graph H_{k} (Erdős, Hajnal, 1983)
Bipartite graph on vertex sets $\left\{v_{1}, \ldots, v_{k}\right\}$ and $\left\{w_{1}, \ldots, w_{k}\right\}$, with an edge $\left\{v_{i}, w_{j}\right\}$ if and only if $i \leq j$.

$$
H_{1}=P_{2} \quad H_{2}=P_{4}
$$

Some vertices are forced to be in any OLD-set because of domination or location

Upper bound on $O L D(G)$?

Definition - Half-graph H_{k} (Erdős, Hajnal, 1983)
Bipartite graph on vertex sets $\left\{v_{1}, \ldots, v_{k}\right\}$ and $\left\{w_{1}, \ldots, w_{k}\right\}$, with an edge $\left\{v_{i}, w_{j}\right\}$ if and only if $i \leq j$.

Some vertices are forced to be in any OLD-set because of domination or location

Upper bound on $O L D(G)$?

Definition - Half-graph H_{k} (Erdős, Hajnal, 1983)
Bipartite graph on vertex sets $\left\{v_{1}, \ldots, v_{k}\right\}$ and $\left\{w_{1}, \ldots, w_{k}\right\}$, with an edge $\left\{v_{i}, w_{j}\right\}$ if and only if $i \leq j$.

Some vertices are forced to be in any OLD-set because of domination or location

Proposition

For every half-graph H_{k} of order $n=2 k, O L D\left(H_{k}\right)=n$.

Characterizing "bad graphs" for OLD-sets

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 (atim
Let G be a connected locatable graph of order n.
Then, $O L D(G)=n$ if and only if G is a half-graph.

Characterizing "bad graphs" for OLD-sets

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 (1)
Let G be a connected locatable graph of order n.
Then, $O L D(G)=n$ if and only if G is a half-graph.

Proof:

Such a graph has only forced vertices.

Characterizing "bad graphs" for OLD-sets

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 (in (ivin
Let G be a connected locatable graph of order n.
Then, $O L D(G)=n$ if and only if G is a half-graph.

Proof:

Such a graph has only forced vertices.
By Bondy's theorem, there is at least one vertex x that is not location-forced: so, its neighbour y is of degree 1 .

Characterizing "bad graphs" for OLD-sets

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 (ain (ivin)
Let G be a connected locatable graph of order n.
Then, $O L D(G)=n$ if and only if G is a half-graph.

Proof:

Such a graph has only forced vertices.
By Bondy's theorem, there is at least one vertex x that is not location-forced: so, its neighbour y is of degree 1 .
$G^{\prime}=G-\{x, y\}$ is locatable, connected and has $O L D\left(G^{\prime}\right)=n-2$.

Characterizing "bad graphs" for OLD-sets

Let G be a connected locatable graph of order n.
Then, $O L D(G)=n$ if and only if G is a half-graph.

Proof:

Such a graph has only forced vertices.
By Bondy's theorem, there is at least one vertex x that is not location-forced: so, its neighbour y is of degree 1 .
$G^{\prime}=G-\{x, y\}$ is locatable, connected and has $O L D\left(G^{\prime}\right)=n-2$.
By induction, G^{\prime} is a half-graph. We can conclude that G is a half-graph too.

Identifying codes in graphs

Identifying codes

G : undirected graph
$N[u]$: set of vertices v s.t. $d(u, v) \leq 1$
Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$
$I D(G)$: identifying code number of G, minimum size of an identifying code in G

Examples: paths

Definition - Identifying code
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Domination number: $\operatorname{DOM}\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$

Examples: paths

Definition - Identifying code
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Domination number: $\operatorname{DOM}\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$

Identifying code number: $I D\left(P_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$

Identifiable graphs

Remark

Not all graphs have an identifying code!

Closed twins $=$ pair u, v such that $N[u]=N[v]$.

Identifiable graphs

Remark

Not all graphs have an identifying code!

Closed twins $=$ pair u, v such that $N[u]=N[v]$.

Proposition

A graph is identifiable if and only if it has no closed twins.

Bounds on $I D(G)$

n : number of vertices
Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)
G identifiable graph on n vertices with at least one edge:

$$
I D(G) \leq n-1
$$

Bounds on $I D(G)$

n : number of vertices
Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)
G identifiable graph on n vertices with at least one edge:

$$
I D(G) \leq n-1
$$

$$
I D(G)=n \Leftrightarrow G \text { has no edges }
$$

Bounds on $I D(G)$

Definition - Identifying code
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)
G identifiable graph on n vertices with at least one edge:

$$
I D(G) \leq n-1
$$

Bounds on $I D(G)$

Definition - Identifying code
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)
G identifiable graph on n vertices with at least one edge:

$$
I D(G) \leq n-1
$$

Bounds on $I D(G)$

Definition - Identifying code
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)
G identifiable graph on n vertices with at least one edge:

$$
I D(G) \leq n-1
$$

Bounds on $I D(G)$

Definition - Identifying code
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)
G identifiable graph on n vertices with at least one edge:

$$
I D(G) \leq n-1
$$

Bounds on $I D(G)$

Definition - Identifying code
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)
G identifiable graph on n vertices with at least one edge:

$$
I D(G) \leq n-1
$$

Bounds on $I D(G)$

Definition - Identifying code
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)
G identifiable graph on n vertices with at least one edge:

$$
I D(G) \leq n-1
$$

Bounds on $I D(G)$

Definition - Identifying code
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)
G identifiable graph on n vertices with at least one edge:

$$
I D(G) \leq n-1
$$

Bounds on $I D(G)$

Definition - Identifying code
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)
G identifiable graph on n vertices with at least one edge:

$$
I D(G) \leq n-1
$$

Bounds on $I D(G)$

Definition - Identifying code
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)
G identifiable graph on n vertices with at least one edge:

$$
I D(G) \leq n-1
$$

Bounds on $I D(G)$

Definition - Identifying code
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)
G identifiable graph on n vertices with at least one edge:

$$
I D(G) \leq n-1
$$

Bounds on ID (G)

Definition - Identifying code
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)
G identifiable graph on n vertices with at least one edge:

$$
I D(G) \leq n-1
$$

What are the graphs G with n vertices and $I D(G)=n-1$?

Forced vertices

u, v such that $N[v] \ominus N[u]=\{f\}:$
f belongs to any identifying code
$\rightarrow f$ forced by u, v.

Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$

$A_{3}=P_{6}^{2}$

$A_{4}=P_{8}^{3}$

Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$

$A_{3}=P_{6}^{2}$

$A_{4}=P_{8}^{3}$

Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$

$A_{2}=P_{4}$

$A_{3}=P_{6}^{2}$

$A_{4}=P_{8}^{3}$

Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$

$A_{2}=P_{4}$

$A_{3}=P_{6}^{2}$

$A_{4}=P_{8}^{3}$

Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$

$A_{2}=P_{4}$

$A_{3}=P_{6}^{2}$

$A_{4}=P_{8}^{3}$

Proposition

$$
I D\left(A_{k}\right)=n-1
$$

Constructions using joins

Two graphs A_{k} and $A_{k^{\prime}}$

Constructions using joins

Join: add all edges between them

Constructions using joins

Join the new graph to two non-adjacent vertices $\left(\overline{K_{2}}\right)$

Constructions using joins

Join the new graph to two non-adjacent vertices, again

Constructions using joins

Constructions using joins

Finally, add a universal vertex

Proposition

At each step, the constructed graph has $I D=n-1$

A characterization

(1) stars
(2) $A_{k}=P_{2 k}^{k-1}$
(3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_{2}}$
(4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)
G connected identifiable graph, n vertices:

$$
I D(G)=n-1 \Leftrightarrow G \in(1),(2),(3) \text { or }(4)
$$

A characterization

(1) stars
(2) $A_{k}=P_{2 k}^{k-1}$
(3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_{2}}$
(4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)
G connected identifiable graph, n vertices:

$$
I D(G)=n-1 \Leftrightarrow G \in(1),(2),(3) \text { or (4) }
$$

- G : minimum counterexample

A characterization

(1) stars
(2) $A_{k}=P_{2 k}^{k-1}$
(3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_{2}}$
(4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

G connected identifiable graph, n vertices:

$$
I D(G)=n-1 \Leftrightarrow G \in(1),(2),(3) \text { or }(4)
$$

- G: minimum counterexample
- v : vertex such that $G-v$ identifiable (exists)

A characterization

(1) stars
(2) $A_{k}=P_{2 k}^{k-1}$
(3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_{2}}$
(4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)
G connected identifiable graph, n vertices:

$$
I D(G)=n-1 \Leftrightarrow G \in(1),(2),(3) \text { or (4) }
$$

- G : minimum counterexample
- v : vertex such that $G-v$ identifiable (exists)
- Lemma: $I D(G-v)=n^{\prime}-1$

A characterization

(1) stars
(2) $A_{k}=P_{2 k}^{k-1}$
(3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_{2}}$
(4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

G connected identifiable graph, n vertices:

$$
I D(G)=n-1 \Leftrightarrow G \in(1),(2),(3) \text { or }(4)
$$

- G: minimum counterexample
- v : vertex such that $G-v$ identifiable (exists)
- Lemma: $I D(G-v)=n^{\prime}-1$
\Rightarrow By minimality of G :

$$
G-v \in(1),(2),(3) \text { or }(4)
$$

A characterization

(1) stars
(2) $A_{k}=P_{2 k}^{k-1}$
(3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_{2}}$
(4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)
G connected identifiable graph, n vertices:

$$
I D(G)=n-1 \Leftrightarrow G \in(1),(2),(3) \text { or }(4)
$$

- G : minimum counterexample
- v : vertex such that $G-v$ identifiable (exists)
- Lemma: $I D(G-v)=n^{\prime}-1$
\Rightarrow By minimality of G :

$$
G-v \in(1),(2),(3) \text { or }(4)
$$

- Put v back \Rightarrow contradiction:
no counterexample exists!

Lower bounds

Lower bounds

Proposition

G graph on n vertices: $n \leq 2^{L D(G)}+L D(G)-1 \Longrightarrow L D(G) \geq \log _{2}(n)-1$.

Lower bounds

Proposition

G graph on n vertices: $n \leq 2^{L D(G)}+L D(G)-1 \Longrightarrow L D(G) \geq \log _{2}(n)-1$.

Tight examples:

$$
L D(G)=\left\lceil\log _{2}(n)\right\rceil-1
$$

Lower bounds

Proposition

G graph on n vertices: $n \leq 2^{L D(G)}+L D(G)-1 \Longrightarrow L D(G) \geq \log _{2}(n)-1$.

Theorem (Rall \& Slater, 1980's \&
G planar graph, order $n, L D(G)=k$. Then $n \leq 7 k-10 \rightarrow L D(G) \geq \frac{n+10}{7}$.

Lower bounds

Proposition

G graph on n vertices: $n \leq 2^{L D(G)}+L D(G)-1 \Longrightarrow L D(G) \geq \log _{2}(n)-1$.

Theorem (Rall \& Slater, 1980's \&
G planar graph, order $n, L D(G)=k$. Then $n \leq 7 k-10 \rightarrow L D(G) \geq \frac{n+10}{7}$.

Tight examples:

Interval graphs

Definition - Interval graph
Intersection graph of intervals of the real line.

Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 (iven (1)
G interval graph of order $n, L D(G)=k$.
Then $n \leq \frac{k(k+1)}{2}$, i.e. $L D(G)=\Omega(\sqrt{n})$.

Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 (iven 国)
G interval graph of order $n, L D(G)=k$.

$$
\text { Then } n \leq \frac{k(k+1)}{2} \text {, i.e. } L D(G)=\Omega(\sqrt{n}) \text {. }
$$

- Identifying code D of size k.
- Define zones using the right points of intervals in D.

Lower bound for interval graphs

Theorem（F．，Mertzios，Naserasr，Parreau，Valicov， 2017 个到思）
G interval graph of order $n, L D(G)=k$ ．

$$
\text { Then } n \leq \frac{k(k+1)}{2} \text {, i.e. } L D(G)=\Omega(\sqrt{n}) \text {. }
$$

－Identifying code D of size k ．
－Define zones using the right points of intervals in D ．
－Each vertex intersects a consecutive set of intervals of D when ordered by left points．

Lower bound for interval graphs

Theorem（F．，Mertzios，Naserasr，Parreau，Valicov， 2017 个到思）
G interval graph of order $n, L D(G)=k$ ．

$$
\text { Then } n \leq \frac{k(k+1)}{2} \text {, i.e. } L D(G)=\Omega(\sqrt{n}) \text {. }
$$

－Identifying code D of size k ．
－Define zones using the right points of intervals in D ．
－Each vertex intersects a consecutive set of intervals of D when ordered by left points．
$\rightarrow n \leq \sum_{i=1}^{k}(k-i)=\frac{k(k+1)}{2}$ ．

Lower bound for interval graphs

G interval graph of order $n, L D(G)=k$.

$$
\text { Then } n \leq \frac{k(k+1)}{2} \text {, i.e. } L D(G)=\Omega(\sqrt{n}) \text {. }
$$

Tight:

Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X, \mathscr{E}) (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered:
for every subset $S^{\prime} \subseteq S$, there is an edge e with $e \cap S=S^{\prime}$.

V-C dimension of H : maximum size of a shattered set in H

Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X, \mathscr{E}) (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered:
for every subset $S^{\prime} \subseteq S$, there is an edge e with $e \cap S=S^{\prime}$.

V-C dimension of H : maximum size of a shattered set in H

Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X, \mathscr{E}) (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered:
for every subset $S^{\prime} \subseteq S$, there is an edge e with $e \cap S=S^{\prime}$.

V-C dimension of H : maximum size of a shattered set in H

Typically bounded for geometric hypergraphs:

Vapnik-Červonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph

Vapnik-Červonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:
\rightarrow interval graphs $(d=2), C_{4}$-free graphs $(d=2)$, line graphs $(d=4)$, permutation graphs $(d=3)$, unit disk graphs $(d=3)$, planar graphs $(d=4) \ldots$

Vapnik-Červonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:
\rightarrow interval graphs $(d=2), C_{4}$-free graphs $(d=2)$, line graphs $(d=4)$, permutation graphs $(d=3)$, unit disk graphs $(d=3)$, planar graphs $(d=4) \ldots$

Theorem (Sauer-Shelah Lemma 国

Let H be a hypergraph of V-C dimension at most d. Then, any set S of vertices has at most $|S|^{d}$ distinct traces.

Vapnik-Červonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:
\rightarrow interval graphs $(d=2), C_{4}$-free graphs $(d=2)$, line graphs $(d=4)$, permutation graphs $(d=3)$, unit disk graphs $(d=3)$, planar graphs $(d=4) \ldots$

Theorem (Sauer-Shelah Lemma (20)

Let H be a hypergraph of V-C dimension at most d. Then, any set S of vertices has at most $|S|^{d}$ distinct traces.

Corollary
G graph of order $n, L D(G)=k, \mathrm{~V}-\mathrm{C}$ dimension $\leq d$. Then $n=O\left(k^{d}\right)$.

Conclusion

Some open problems:

- Conjecture: $L D(G) \leq n / 2$ in the absence of twins
- Find tight bounds for id. problems in interesting graph classes
(e.g. cubic graphs)

Conclusion

Some open problems:

- Conjecture: $L D(G) \leq n / 2$ in the absence of twins
- Find tight bounds for id. problems in interesting graph classes
(e.g. cubic graphs)

THANKS FOR YOUR ATTENTION

