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Location-domination in graphs
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Location-domination

Definition - Locating-dominating set (Slater, 1980’s) ﬂ

D C V(G) locating-dominating set of G:
o for every ue V, N[v]N D # 0 (domination).
e Yu#v of V(G)\D, N(uynD # N(v)N D (location).

Motivation: fault-detection in networks.
— The set D of grey processors is a set of fault-detectors.
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Location-domination

Definition - Locating-dominating set (Slater, 1980’s) m

D C V(G) locating-dominating set of G:
o for every ue V, N[v]N D # 0 (domination).
e Yu#v of V(G)\D, N(u)ynD # N(v)ND (location).

Notation. location-domination number LD(G),
smallest size of a locating-dominating set of G

Domination number: DOM(P,) = {%1

oO—e—O0—41C—"6—O0—TC0C—"8—0O0—"0C—8—0C0—CO—e——0
Location-domination number: LD(P,) = [32]
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7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

e T O
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7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

T

Theorem (Location-domination bound, Slater, 1980’s m)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

Tight examples: E %
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7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

T

Theorem (Location-domination bound, Slater, 1980’s m)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

Tight examples: E %

Remark: tight examples contain many twin-vertices!!
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

7

Theorem (Location-domination bound, Slater, 1980’s ‘)

G graph of order n, no isolated vertices. Then LD(G) < n—1.
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

7

Theorem (Location-domination bound, Slater, 1980’s ‘)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 4 )

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

7

Theorem (Location-domination bound, Slater, 1980’s ﬂ)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 4 )

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

Remark:
e twins are easy to detect

e twins have a trivial behaviour w.r.t. location-domination
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

7

Theorem (Location-domination bound, Slater, 1980’s II)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 4 E)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

If true, tight: 1. domination-extremal graphs

’
oL
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

7

Theorem (Location-domination bound, Slater, 1980’s n)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 4 E)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

If true, tight: 2. a similar construction
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

7

Theorem (Location-domination bound, Slater, 1980’s ﬂ)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 4 ﬂ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

If true, tight: 3. a family with domination number 2

Florent Foucaud Extremal graphs for domination-based identification



Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

7

Theorem (Location-domination bound, Slater, 1980’s ﬂ)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 4 ﬂ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

If true, tight: 4. family with dom. number 2: complements of half-graphs

Clique on {xi+1,.-- %ok}
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Upper bound: a conjecture - special graph classes

7

Conjecture (Garijo, Gonzélez & Marquez, 2014 2 E)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

7

Theorem (Garijo, Gonzélez & Méarquez, 2014 2 )

Conjecture true if G has independence number > n/2.
(in particular, if bipartite)

Proof: every vertex cover is a locating-dominating set
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Upper bound: a conjecture - special graph classes

’

Conjecture (Garijo, Gonzélez & Marquez, 2014 2 ﬂ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

o/(G): matching number of G

Theorem (Garijo, Gonzalez & Marquez, 2014 ) 4 ﬂ )

If G has no 4-cycles, then LD(G) < o/(G) < 5.

Proof:
e Consider special maximum matching M

e Select one vertex in each edge of M
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Upper bound: a conjecture - special graph classes

’

Conjecture (Garijo, Gonzélez & Marquez, 2014 2 ﬂ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

o/(G): matching number of G

Theorem (Garijo, Gonzalez & Marquez, 2014 ) 4 ﬂ )

If G has no 4-cycles, then LD(G) < o/(G) < 5.

Proof:
e Consider special maximum matching M

e Select one vertex in each edge of M
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Upper bound: a conjecture - special graph classes

’

Conjecture (Garijo, Gonzélez & Marquez, 2014 2 ﬂ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

7

g
Theorem (F., Henning, 2016 &71)

Conjecture true if G is cubic.

Proof: Involved argument using maximum matching and Tutte-Berge theorem.

M-unmatched vertices

odd components
inG-X
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Upper bound: a conjecture - special graph classes

Conjecture (Garijo, Gonzélez & Marquez, 2014 ¢ E)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

Theorem (F., Henning, 2016 &%)

Conjecture true if G is cubic.

Bound is tight:

Question

Do we have LD(G) = 3 for other cubic graphs?
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Upper bound: a conjecture - special graph classes

Conjecture (Garijo, Gonzélez & Marquez, 2014 ¢ E)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

7

Theorem (F., Henning, 2016 &%)

Conjecture true if G is cubic.

Question

Are there twin-free (cubic) graphs with LD(G) > /(G)?

(if not, conjecture is true)

Florent Foucaud Extremal graphs for domination-based identification



Upper bound: a conjecture - special graph classes

Conjecture (Garijo, Gonzélez & Marquez, 2014 2 E)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

g 3
Theorem (F., Henning, Léwenstein, Sasse, 2016 &7 . ﬁ)

Conjecture true if G is split graph or complement of bipartite graph.

Line graph of G: intersection graph of the edges of G.

4
Theorem (F., Henning, 2017 &7)

Conjecture true if G is a line graph.

Proof: By induction on the order, using edge-locating-dominating sets
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Upper bound: a conjecture - general bound

Conjecture (Garijo, Gonzélez & Marquez, 2014 ¢ E)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

7

g 3
Theorem (F., Henning, Léwenstein, Sasse, 2016 &1 . ﬁ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < %n.
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Upper bound: a conjecture - general bound

Conjecture (Garijo, Gonzélez & Marquez, 2014 2 E)

n LD(G) < 4.

G graph of order n, no isolated vertices, no twins. The

7

§ 3
Theorem (F., Henning, Léwenstein, Sasse, 2016 &1 . ﬁ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < %n.

Proof: e There exists a dominating set D such that each vertex has a private
neighbour. We have |D| < nj + ny.

Extremal graphs for domination-based identification

Florent Foucaud



Upper bound: a conjecture - general bound

Conjecture (Garijo, Gonzélez & Marquez, 2014 2 ﬂ)

n LD(G) < 4.

G graph of order n, no isolated vertices, no twins. The

7

§ 3
Theorem (F., Henning, Léwenstein, Sasse, 2016 & I. ﬁ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < %n.

Proof: e There exists a dominating set D such that each vertex has a private
neighbour. We have |D| < nj + ny.

o there is a LD-set of size |D|+ ny;

Extremal graphs for domination-based identification
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Upper bound: a conjecture - general bound

Conjecture (Garijo, Gonzélez & Marquez, 2014 2 ﬂ)

n LD(G) < 4.

G graph of order n, no isolated vertices, no twins. The

7

§ 3
Theorem (F., Henning, Léwenstein, Sasse, 2016 & I. ﬁ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < %n.

Proof: e There exists a dominating set D such that each vertex has a private

neighbour. We have |D| < nj + ny.

o there is a LD-set of size |D|+ny; there is a LD-set of size n—ny — np

Extremal graphs for domination-based identification
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Upper bound: a conjecture - general bound

7

Conjecture (Garijo, Gonzélez & Marquez, 2014 2 ﬂ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

7

§ 3
Theorem (F., Henning, Léwenstein, Sasse, 2016 & I. ﬁ)

2,

G graph of order n, no isolated vertices, no twins. Then LD(G) < 5n

Proof: e There exists a dominating set D such that each vertex has a private
neighbour. We have |D| < nj + ny.

o there is a LD-set of size |D|+ny; there is a LD-set of size n—ny — np

e min{|D|+n1,n—ny —np} < %n

D

AN
‘A\ / \\ V/
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Open neighbourhood location-domination
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Open neighbourhood locating-dominating sets

G: undirected graph  N(u): set of neighbours of v

Definition - OLD set (Seo, Slater, 2010 2 II)

Subset D of V(G) such that:
e D is a total dominating set: Yu € V(G), N(u)ND # 0, and

e D is a separating set: Yu # v of V(G), N(u)NnD # N(v)ND

Notation. OLD(G): OLD number of G,
minimum size of an OLD-set in G

{b} | ! {b.f} ! {d}

© ' O,
S 1w
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Examples: paths

Definition - OLD set

Subset D of V/(G) such that:
e D is a total dominating set: Vu € V(G), N(u)ND # 0, and
o D is a separating set: Yu # v of V(G), N(u)ND # N(v)ND

Total domination number: 7:(Pn) ~ [ 5]

O—8—0O0—"0C—"08—0 O0—C—"0 00— 0O
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Examples: paths

Definition - OLD set

Subset D of V/(G) such that:
e D is a total dominating set: Vu € V(G), N(u)ND # 0, and
o D is a separating set: Yu # v of V(G), N(u)ND # N(v)ND

Total domination number: 7:(Pn) ~ [ 5]

O—8—0O0—"0C—"08—0 O0—C—"0 00— 0O

OLD-number: OLD(P,) ~ {%"]
06— 000000 0—0—0—0—0—0 O
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Locatable graphs

Remark

Not all graphs have an OLD set!

An isolated vertex cannot be totally dominated.
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Locatable graphs

Remark

Not all graphs have an OLD set!

An isolated vertex cannot be totally dominated.

Open twins = pair u, v such that N(u) = N(v).
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Locatable graphs

Remark
Not all graphs have an OLD set!
An isolated vertex cannot be totally dominated.
Open twins = pair u, v such that N(u) = N(v).
Proposition

A graph is locatable if and only if it has no isolated vertices and open twins.
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Upper bound on OLD(G)?

Definition - Half-graph Hy (Erd&s, Hajnal, 1983 H)

Bipartite graph on vertex sets {vi,...,v,} and {wy,...,w,}, with an edge {v;,w;}
if and only if i <.

%1 %1 %) %1 %) V3 V4 Vs
w1 w1 w2 wi w2 w3 1z ws
Hi=P, Hy =Py Hs

Florent Foucaud Extremal graphs for domination-based identification



Upper bound on OLD(G)?

Definition - Half-graph Hy (Erd&s, Hajnal, 1983 H)

Bipartite graph on vertex sets {vi,...,v,} and {wy,...,w,}, with an edge {v;,w;}
if and only if i <j.

vi

w1

Hi =P

Some vertices are forced to be in any OLD-set because of domination
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Upper bound on OLD(G)?

Definition - Half-graph Hy (Erd&s, Hajnal, 1983 H)

Bipartite graph on vertex sets {vi,...,v,} and {wy,...,w,}, with an edge {v;,w;}
if and only if i <j.

vi vi V2

w1 w1 w2

Hi =P Hy =Py

Some vertices are forced to be in any OLD-set because of domination
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Upper bound on OLD(G)?

Definition - Half-graph Hy (Erd&s, Hajnal, 1983 H)

Bipartite graph on vertex sets {vi,...,v,} and {wy,...,w,}, with an edge {v;,w;}
if and only if i <j.

vi vi V2

w1 w1 w2

Hi =P Hy =Py

Some vertices are forced to be in any OLD-set because of domination or location
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Upper bound on OLD(G)?

7

Definition - Half-graph Hy (Erd&s, Hajnal, 1983 H)

Bipartite graph on vertex sets {vi,...,vc} and {wy,...,w}, with an edge {v;,w;}
if and only if i <.

%1 %1 %) %1 %) V3 V4 Vs
w1 w1 w2 wi w2 w3 1z ws

Hi =P Hy =Py Hs

Some vertices are forced to be in any OLD-set because of domination or location
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Upper bound on OLD(G)?

Definition - Half-graph Hy (Erd&s, Hajnal, 1983 H)

Bipartite graph on vertex sets {vi,...,v,} and {wy,...,w,}, with an edge {v;,w;}
if and only if i <.

%1 %1 %) %1 %) V3 V4 Vs
w1 w1 w2 wi w2 w3 1z ws

Hi =P Hy =Py Hs

Some vertices are forced to be in any OLD-set because of domination or location

Proposition

For every half-graph Hy of order n =2k, OLD(H,) = n.
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Characterizing “bad graphs” for OLD-sets

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 @ ﬁ =)

Let G be a connected locatable graph of order n.
Then, OLD(G) = n if and only if G is a half-graph.
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Characterizing “bad graphs” for OLD-sets

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 ﬁ ﬁ =)

Let G be a connected locatable graph of order n.
Then, OLD(G) = n if and only if G is a half-graph.

Proof:

Such a graph has only forced vertices.
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Characterizing “bad graphs” for OLD-sets

e 40

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 ’

Let G be a connected locatable graph of order n.
Then, OLD(G) = n if and only if G is a half-graph.

Proof:
Such a graph has only forced vertices.

By Bondy's theorem, there is at least one vertex x that is not location-forced: so, its
neighbour y is of degree 1.
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Characterizing “bad graphs” for OLD-sets

T ]

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 ’

Let G be a connected locatable graph of order n.
Then, OLD(G) = n if and only if G is a half-graph.

Proof:
Such a graph has only forced vertices.

By Bondy's theorem, there is at least one vertex x that is not location-forced: so, its
neighbour y is of degree 1.

G' = G—{x,y} is locatable, connected and has OLD(G’) = n—2.
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Characterizing “bad graphs” for OLD-sets

T ]

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 ’

Let G be a connected locatable graph of order n.
Then, OLD(G) = n if and only if G is a half-graph.

Proof:
Such a graph has only forced vertices.

By Bondy's theorem, there is at least one vertex x that is not location-forced: so, its
neighbour y is of degree 1.

G' = G—{x,y} is locatable, connected and has OLD(G’) = n—2.

By induction, G’ is a half-graph. We can conclude that G is a half-graph too.
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Identifying codes in graphs
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Identifying codes

G: undirected graph
N[u]: set of vertices v s.t. d(u,v) <1

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)]

Subset C of V(G) such that:
e C is a dominating set: Yu € V(G), N[u]nC #0, and

e C is a separating set: Vu # v of V(G), N[u]nC # N[v]nC

ID(G): identifying code number of G,
minimum size of an identifying code in G

{a,b} | gy g
©

Florent Foucaud Extremal graphs for domination-based identification



Examples: paths

_[Definition - Identifying code]

Subset C of V(G) such that:
o C is a dominating set: Yu € V(G), N[ulnC #0, and
o C is a separating set: Vu # v of V(G), N[ulnC # N[v]nC

Domination number: DOM(P,) = [a

o0—ee—OC—41"C—e O0—4"C—e 0O0—0C—e—0—0O—8oO0
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Examples: paths

_[Definition - Identifying code]

Subset C of V(G) such that:
o C is a dominating set: Yu € V(G), N[ulnC #0, and
o C is a separating set: Vu # v of V(G), N[ulnC # N[v]nC

Domination number: DOM(P,) = [a

o0—ee—OC—41"C—e O0—4"C—e 0O0—0C—e—0—0O—8oO0

Identifying code number: ID(P,) =[]

o—O0—"0—OC0—0—OC—0—0O0—0—O0—0—0OC—0—0—0
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Identifiable graphs

Remark

Not all graphs have an identifying code!

Closed twins = pair u, v such that N[u] = N[v].
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Identifiable graphs

Remark

Not all graphs have an identifying code!

Closed twins = pair u, v such that N[u] = N[v].

Proposition

A graph is identifiable if and only if it has no closed twins.

Florent Foucaud Extremal graphs for domination-based identification



Bounds on ID(G)

n: number of vertices

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)]

G identifiable graph on n vertices with at least one edge:

ID(G)< n—1
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Bounds on ID(G)

n: number of vertices

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)]

G identifiable graph on n vertices with at least one edge:

ID(G)< n—1

ID(G) = n< G has no edges °
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Bounds on ID(G)

Definition - Identifying code]

Subset C of V(G) such that:
o C is a dominating set: Yu e V(G), N[ulnC # 0, and
o C is a separating set: Vu # v of V(G), N[ulnC # N[v]nC

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)]

G identifiable graph on n vertices with at least one edge:

ID(G) < n—1
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Bounds on ID(G)

Definition - Identifying code]

Subset C of V(G) such that:
o C is a dominating set: Yu e V(G), N[ulnC # 0, and
o C is a separating set: Vu # v of V(G), N[ulnC # N[v]nC

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)]

G identifiable graph on n vertices with at least one edge:

ID(G) < n—1
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Bounds on ID(G)

Definition - Identifying code]

Subset C of V(G) such that:
o C is a dominating set: Yu e V(G), N[ulnC # 0, and
o C is a separating set: Vu # v of V(G), N[ulnC # N[v]nC

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)]

G identifiable graph on n vertices with at least one edge:

ID(G) < n—1
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Bounds on ID(G)

Definition - Identifying code]

Subset C of V(G) such that:
o C is a dominating set: Yu e V(G), N[ulnC # 0, and
o C is a separating set: Vu # v of V(G), N[ulnC # N[v]nC

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)]

G identifiable graph on n vertices with at least one edge:

ID(G) < n—1
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Bounds on ID(G)

Definition - Identifying code]

Subset C of V(G) such that:
o C is a dominating set: Yu e V(G), N[ulnC # 0, and
o C is a separating set: Vu # v of V(G), N[ulnC # N[v]nC

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)]

G identifiable graph on n vertices with at least one edge:

ID(G) < n—1
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Bounds on ID(G)

Definition - Identifying code]

Subset C of V(G) such that:
o C is a dominating set: Yu e V(G), N[ulnC # 0, and
o C is a separating set: Vu # v of V(G), N[ulnC # N[v]nC

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)]

G identifiable graph on n vertices with at least one edge:

ID(G) < n—1
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Bounds on ID(G)

Definition - Identifying code]

Subset C of V(G) such that:
o C is a dominating set: Yu e V(G), N[ulnC # 0, and
o C is a separating set: Vu # v of V(G), N[ulnC # N[v]nC

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)]

G identifiable graph on n vertices with at least one edge:

ID(G) < n—1
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Bounds on ID(G)

Definition - Identifying code]

Subset C of V(G) such that:
o C is a dominating set: Yu e V(G), N[ulnC # 0, and
o C is a separating set: Vu # v of V(G), N[ulnC # N[v]nC

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)]

G identifiable graph on n vertices with at least one edge:

ID(G) < n—1

oO—O0—+—@—=O forced vertex
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Bounds on ID(G)

Definition - Identifying code]

Subset C of V(G) such that:
o C is a dominating set: Yu e V(G), N[ulnC # 0, and
o C is a separating set: Vu # v of V(G), N[ulnC # N[v]nC

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)]

G identifiable graph on n vertices with at least one edge:

ID(G) < n—1
forced vertex O—.—‘::—-_(-)—;-On .:"
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Bounds on ID(G)

Definition - Identifying code]

Subset C of V(G) such that:
o C is a dominating set: Yu e V(G), N[ulnC # 0, and
o C is a separating set: Vu # v of V(G), N[ulnC # N[v]nC

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)]

G identifiable graph on n vertices with at least one edge:

ID(G)<n—1
o 5 e
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Bounds on ID(G)

Definition - Identifying code]

Subset C of V(G) such that:
o C is a dominating set: Yu e V(G), N[ulnC # 0, and
o C is a separating set: Vu # v of V(G), N[ulnC # N[v]nC

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)]

G identifiable graph on n vertices with at least one edge:

ID(G) < n—1

Question

What are the graphs G with n vertices and ID(G)=n—17

Florent Foucaud Extremal graphs for domination-based identification



Forced vertices

u,v such that N[v]e N[u] = {f}: v u
f belongs to any identifying code

— f forced by u,v.
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Graphs with many forced vertices

Special path powers: Ay = Pé‘k_l

AN

Ay =Py

Az = P2 Ay =P
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Graphs with many forced vertices

Special path powers: Ay = Pé‘k_l

AN

Ay =P,
2 4 A3:P62 A4:Pg’
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Graphs with many forced vertices

Special path powers: Ay = Pé‘k_l

AN

Ay =P,
2 4 A3:P62 A4:Pg’
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Graphs with many forced vertices

Special path powers: Ay = Pé‘k_l

Ve
. <
S N
N N
N N
N .
.. N
.
Sl
Ay =Py
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Graphs with many forced vertices

Special path powers: Ay = Pé‘k_l

AN

Ay =P,
2 4 A3:P62 A4:Pg’

Proposition

ID(A) =n—1
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Constructions using joins

Two graphs Ay and Ay
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Constructions using joins

il

Ve

Join: add all edges between them

Extremal graphs for domination-based identification
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Constructions using joins

A

e ./

=~

"

/

Join the new graph to two non-adjacent vertices (K>)
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Constructions using joins

Join the new graph to two non-adjacent vertices, again
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Constructions using joins




Constructions using joins

Finally, add a universal vertex

Proposition

At each step, the constructed graph has ID=n—1
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A characterization

1) stars
2) Ap=Py1

3) joins between 0 or more members of (2) and 0 or more copies of Ko

—_~ o~ o~ o~

4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovse, Naserasr, Parreau, Valicov, 2011)]

G connected identifiable graph, n vertices:

ID(G)=n—-1< Ge (1), (2), (3) or (4)
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A characterization

(1) stars

(2) A= Pyt

(3) joins between 0 or more members of (2) and 0 or more copies of Ky
(

4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovse, Naserasr, Parreau, Valicov, 2011)]

G connected identifiable graph, n vertices:

ID(G)=n—14 Ge (1), (2), (3) or (4)

e G: minimum counterexample
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A characterization

1) stars
2) Ax=PK?

3) joins between 0 or more members of (2) and 0 or more copies of Ka

—_~ o~ o~ o~

4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovse, Naserasr, Parreau, Valicov, 2011)]

G connected identifiable graph, n vertices:

ID(G)=n—1 Ge (1), (2), (3) or (4)

e G: minimum counterexample

e v: vertex such that G — v identifiable
(exists)
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A characterization

(1) stars
_ pk-1
(2) Ak =Py
(3) joins between 0 or more members of (2) and 0 or more copies of Ky
(

4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovse, Naserasr, Parreau, Valicov, 2011)]

G connected identifiable graph, n vertices:

ID(G)=n—14 Ge (1), (2), (3) or (4)

e G: minimum counterexample

e v: vertex such that G — v identifiable
(exists)

e Lemma: ID(G—v)=n"—-1
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A characterization

1) stars
2) Ax=PK?

3) joins between 0 or more members of (2) and 0 or more copies of Ko

—_~ o~ o~ o~

4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovse, Naserasr, Parreau, Valicov, 2011)]

G connected identifiable graph, n vertices:

ID(G)=n—-1< Ge (1), (2), (3) or (4)

e G: minimum counterexample

e v: vertex such that G — v identifiable
(exists)

e Lemma: ID(G—v)=n"—1

= By minimality of G:
G—ve (1), (2), (3) or (4)
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A characterization

1) stars

2) Ag=PK?

3) joins between 0 or more members of (2) and 0 or more copies of Ky
4) (2) or (3) with a universal vertex

(
(
(
(

Theorem (F., Guerrini, Kovse, Naserasr, Parreau, Valicov, 2011)]

G connected identifiable graph, n vertices:

ID(G)=n—-1& Ge (1), (2), (3) or (4)

e G: minimum counterexample

e v: vertex such that G — v identifiable
(exists)
e Lemma: ID(G—v)=n'-1
= By minimality of G:
G—ve (1), (2), (3) or (4)

e Put v back = contradiction: no counterexample exists!
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Lower bounds
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Proposition

G graph on n vertices: n < 2LP(C) 1 I D(G)—1 = LD(G) > logy(n) — 1.
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Lower bounds

Proposition

G graph on n vertices: n < 2LP(C) 1 I D(G)—1 = LD(G) > logy(n) — 1.

Tight examples:

LD(6) = floga(n) 1 L= lomlnl
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Proposition

G graph on n vertices: n < 2LP(C) 1 I D(G)—1 = LD(G) > logy(n) — 1.

7

Theorem (Rall & Slater, 1080's £ i)

10
G planar graph, order n, LD(G) = k. Then n < 7k—10 — LD(G) > 210
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Proposition

G graph on n vertices: n < 2LP(C) 1 I D(G)—1 = LD(G) > logy(n) — 1.

7

Theorem (Rall & Slater, 1080's £ i)

10
G planar graph, order n, LD(G) = k. Then n < 7k—10 — LD(G) > 210

Tight examples: Figure 3.
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Interval graphs

Definition - Interval graph]

Intersection graph of intervals of the real line.

I3
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Lower bound for interval graphs

7

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 3 “ E )

G interval graph of order n, LD(G) = k.

Then n < X5 ie 1D(G) = Q(v/n).
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Lower bound for interval graphs

7

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 3 “ E )

G interval graph of order n, LD(G) = k.

Then n < X5 ie 1D(G) = Q(v/n).

1 2
— —
3
—
4
—

o Identifying code D of size k.

@ Define zones using the right points of intervals in D.
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Lower bound for interval graphs

7

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 3 “ E )

G interval graph of order n, LD(G) = k.

Then n < X5 ie 1D(G) = Q(v/n).

1 2
— —
1-1 2-3
3
— —
1-2 2-4
————————————
1-4 4
— —
1-3 3-4

o Identifying code D of size k.
@ Define zones using the right points of intervals in D.

@ Each vertex intersects a consecutive set of intervals of D when ordered by left
points.
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Lower bound for interval graphs

7

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 3 “ E )

G interval graph of order n, LD(G) = k.

Then n < X5 ie 1D(G) = Q(v/n).

1 2
— —
1-1 2-3
3
— —
1-2 2-4
————————————
1-4 4
— —
1-3 3-4

o Identifying code D of size k.
@ Define zones using the right points of intervals in D.

@ Each vertex intersects a consecutive set of intervals of D when ordered by left
points.

S <Yk (k—i)= Mk
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Lower bound for interval graphs

7

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 3 “ E )

G interval graph of order n, LD(G) = k.

Then n < X5 ie 1D(G) = Q(v/n).

Tight:
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Measure of intersection complexity of sets in a hypergraph (X, &)
(initial motivation: machine learning, 1971)

A set S C X is shattered:
for every subset S’ C S, there is an edge e with eNS=5'.

V-C dimension of H: maximum size of a shattered set in H
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Measure of intersection complexity of sets in a hypergraph (X, &)
(initial motivation: machine learning, 1971)

A set S C X is shattered:
for every subset S’ C S, there is an edge e with eNS=5'.

V-C dimension of H: maximum size of a shattered set in H
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Vapnik-Cervonenkis dimension

na

Measure of intersection complexity of sets in a hypergraph (X, &)
(initial motivation: machine learning, 1971)

A set S C X is shattered:
for every subset S’ C S, there is an edge e with eNS=5'.

V-C dimension of H: maximum size of a shattered set in H

Typically bounded for geometric hypergraphs: @ [ o
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood
hypergraph

/NI (G
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood
hypergraph

Typically bounded for geometric intersection graphs:

— interval graphs (d = 2), Cs-free graphs (d = 2), line graphs (d = 4), permutation
graphs (d = 3), unit disk graphs (d = 3), planar graphs (d =4)...
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood
hypergraph

Typically bounded for geometric intersection graphs:

— interval graphs (d = 2), Cs-free graphs (d = 2), line graphs (d = 4), permutation
graphs (d = 3), unit disk graphs (d = 3), planar graphs (d =4)...

7

Theorem (Sauer-Shelah Lemma R ﬁ)

Let H be a hypergraph of V-C dimension at most d. Then, any set S of vertices
has at most |S|? distinct traces.
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood
hypergraph

Typically bounded for geometric intersection graphs:

— interval graphs (d = 2), Cs-free graphs (d = 2), line graphs (d = 4), permutation
graphs (d = 3), unit disk graphs (d = 3), planar graphs (d =4)...

7

Theorem (Sauer-Shelah Lemma R ﬁ)

Let H be a hypergraph of V-C dimension at most d. Then, any set S of vertices
has at most |S|? distinct traces.

Corollary

G graph of order n, LD(G) = k, V-C dimension < d. Then n= O(k9).
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Conclusion

Some open problems:

o Conjecture: LD(G) < n/2 in the absence of twins

e Find tight bounds for id. problems in interesting graph classes
(e.g. cubic graphs)
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Conclusion

Some open problems:

o Conjecture: LD(G) < n/2 in the absence of twins

e Find tight bounds for id. problems in interesting graph classes
(e.g. cubic graphs)

THANKS FOR YOUR ATTENTION
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