Extremal graphs for domination-based identification

Florent Foucaud

IWDG-2021, IIT Ropar, November 2021

Florent Foucaud

Location-domination in graphs

Location-domination

 $D \subseteq V(G)$ locating-dominating set of G:

- for every $u \in V$, $N[v] \cap D \neq \emptyset$ (domination).
- $\forall u \neq v$ of $V(G) \setminus D$, $N(u) \cap D \neq N(v) \cap D$ (location).

Motivation: fault-detection in networks.

 \rightarrow The set D of grey processors is a set of fault-detectors.

Location-domination

 $D \subseteq V(G)$ locating-dominating set of G:

- for every $u \in V$, $N[v] \cap D \neq \emptyset$ (domination).
- $\forall u \neq v$ of $V(G) \setminus D$, $N(u) \cap D \neq N(v) \cap D$ (location).

Notation. location-domination number LD(G), smallest size of a locating-dominating set of G

Domination number: $DOM(P_n) = \left\lceil \frac{n}{3} \right\rceil$

Upper bounds

Theorem (Domination bound, Ore, 1960's 🌒)

G graph of order n, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.

Theorem (Domination bound, Ore, 1960's 🏜)

G graph of order *n*, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's 🗟)

G graph of order *n*, no isolated vertices. Then $LD(G) \le n-1$.

Theorem (Domination bound, Ore, 1960's 🎒)

G graph of order *n*, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's 🚵)

G graph of order *n*, no isolated vertices. Then $LD(G) \le n-1$.

Conjecture (Garijo, González & Márquez, 2014 🙎 🛃 🎆

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

G graph of order *n*, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's 🚵)

G graph of order *n*, no isolated vertices. Then $LD(G) \le n-1$.

Remark:

- twins are easy to detect
- twins have a trivial behaviour w.r.t. location-domination

Theorem (Domination bound, Ore, 1960's 🏜)

G graph of order *n*, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's 🚵)

G graph of order n, no isolated vertices. Then $LD(G) \le n-1$.

If true, tight: 1. domination-extremal graphs

Theorem (Domination bound, Ore, 1960's 🏜)

G graph of order *n*, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's 🚵)

G graph of order *n*, no isolated vertices. Then $LD(G) \le n-1$.

If true, tight: 2. a similar construction

G graph of order *n*, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's 🚵)

G graph of order *n*, no isolated vertices. Then $LD(G) \leq n-1$.

3. a family with domination number 2 If true, tight:

Upper bound: a conjecture - special graph classes

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (Garijo, González & Márquez, 2014 🙎 🕃 🏹)

Conjecture true if G has independence number $\ge n/2$. (in particular, if bipartite)

Proof: every vertex cover is a locating-dominating set

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

 $\alpha'(G)$: matching number of G

Theorem (Garijo, González & Márquez, 2014 🙎 🛃 🎆)

If G has no 4-cycles, then $LD(G) \le \alpha'(G) \le \frac{n}{2}$.

Proof:

- Consider special maximum matching M
- Select one vertex in each edge of M

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

 $\alpha'(G)$: matching number of G

Theorem (Garijo, González & Márquez, 2014 🙎 🛃 🎆)

If G has no 4-cycles, then $LD(G) \le \alpha'(G) \le \frac{n}{2}$.

Proof:

- Consider special maximum matching M
- Select one vertex in each edge of M

Upper bound: a conjecture - special graph classes Conjecture (Garijo, González & Márquez, 2014 \bigcirc \bigcirc \bigcirc) G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$. Theorem (F., Henning, 2016 \bigcirc)

Conjecture true if G is cubic.

Proof: Involved argument using maximum matching and Tutte-Berge theorem.

Upper bound: a conjecture - special graph classes

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (F., Henning, 2016 취)

Conjecture true if G is cubic.

Bound is tight:

Florent Foucaud

Upper bound: a conjecture - special graph classes

Question

Are there twin-free (cubic) graphs with $LD(G) > \alpha'(G)$?

(if not, conjecture is true)

Conjecture (Garijo, González & Márquez, 2014 🙎 📓 🎆

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Conjecture true if G is split graph or complement of bipartite graph.

Line graph of G: intersection graph of the edges of G.

Proof: By induction on the order, using edge-locating-dominating sets

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2016 🍰 💽 🚠)

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \le \frac{2}{3}n$.

Proof: • There exists a dominating set *D* such that each vertex has a private neighbour. We have $|D| \le n_1 + n_2$.

Proof: • There exists a dominating set *D* such that each vertex has a private neighbour. We have $|D| \le n_1 + n_2$.

• there is a LD-set of size $|D| + n_1$;

Proof: • There exists a dominating set *D* such that each vertex has a private neighbour. We have $|D| \le n_1 + n_2$.

• there is a LD-set of size $|D| + n_1$; there is a LD-set of size $n - n_1 - n_2$

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2016 🕌 📓

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{2}{3}n$.

Proof: • There exists a dominating set *D* such that each vertex has a private neighbour. We have $|D| \le n_1 + n_2$.

- there is a LD-set of size $|D| + n_1$; there is a LD-set of size $n n_1 n_2$
- $\min\{|D|+n_1, n-n_1-n_2\} \le \frac{2}{3}n$

Open neighbourhood location-domination

Open neighbourhood locating-dominating sets

G: undirected graph N(u): set of neighbours of v

Definition - OLD set (Seo, Slater, 2010 🗟 🗟)

Subset D of V(G) such that:

- *D* is a total dominating set: $\forall u \in V(G)$, $N(u) \cap D \neq \emptyset$, and
- D is a separating set: $\forall u \neq v$ of V(G), $N(u) \cap D \neq N(v) \cap D$

Notation. OLD(G): OLD number of G, minimum size of an OLD-set in G

Total domination number: $\gamma_t(P_n) \approx \left\lceil \frac{n}{2} \right\rceil$

OLD-number: $OLD(P_n) \approx \left\lceil \frac{2n}{3} \right\rceil$

Remark

Not all graphs have an OLD set!

An isolated vertex cannot be totally dominated.

Remark

Not all graphs have an OLD set!

An isolated vertex cannot be totally dominated.

Open twins = pair u, v such that N(u) = N(v).

Bipartite graph on vertex sets $\{v_1, \ldots, v_k\}$ and $\{w_1, \ldots, w_k\}$, with an edge $\{v_i, w_j\}$ if and only if $i \leq j$.

Definition - Half-graph H_k (Erdős, Hajnal, 1983 🕅

Bipartite graph on vertex sets $\{v_1, \ldots, v_k\}$ and $\{w_1, \ldots, w_k\}$, with an edge $\{v_i, w_j\}$ if and only if $i \leq j$.

Some vertices are forced to be in any OLD-set because of domination

Definition - Half-graph H_k (Erdős, Hajnal, 1983 [m]) Bipartite graph on vertex sets $\{v_1, \dots, v_k\}$ and $\{w_1, \dots, w_k\}$, with an edge $\{v_i, w_j\}$ if and only if $i \le j$.

 $H_1 = P_2 \qquad \qquad H_2 = P_4$

Some vertices are forced to be in any OLD-set because of domination

Bipartite graph on vertex sets $\{v_1, \ldots, v_k\}$ and $\{w_1, \ldots, w_k\}$, with an edge $\{v_i, w_j\}$ if and only if $i \leq j$.

 $H_1 = P_2 \qquad \qquad H_2 = P_4$

Some vertices are forced to be in any OLD-set because of domination or location

Some vertices are forced to be in any OLD-set because of domination or location

Some vertices are forced to be in any OLD-set because of domination or location

Let G be a connected locatable graph of order n. Then, OLD(G) = n if and only if G is a half-graph.

Proof:

Such a graph has only *forced* vertices.

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 🎬 🔒 🌌)

Let G be a connected locatable graph of order n. Then, OLD(G) = n if and only if G is a half-graph.

Proof:

Such a graph has only *forced* vertices.

By Bondy's theorem, there is at least one vertex x that is not location-forced: so, its neighbour y is of degree 1.

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 🎬 🔒 🌌)

Let G be a connected locatable graph of order n. Then, OLD(G) = n if and only if G is a half-graph.

Proof:

Such a graph has only *forced* vertices.

By Bondy's theorem, there is at least one vertex x that is not location-forced: so, its neighbour y is of degree 1.

 $G' = G - \{x, y\}$ is locatable, connected and has OLD(G') = n - 2.

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 🎬 🔒 🌌

Let G be a connected locatable graph of order n. Then, OLD(G) = n if and only if G is a half-graph.

Proof:

Such a graph has only *forced* vertices.

By Bondy's theorem, there is at least one vertex x that is not location-forced: so, its neighbour y is of degree 1.

 $G' = G - \{x, y\}$ is locatable, connected and has OLD(G') = n - 2.

By induction, G' is a half-graph. We can conclude that G is a half-graph too.

Identifying codes in graphs

Identifying codes

G: undirected graph N[u]: set of vertices v s.t. $d(u, v) \leq 1$

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

ID(G): identifying code number of G, minimum size of an identifying code in G

Domination number: $DOM(P_n) = \left\lceil \frac{n}{3} \right\rceil$

Closed twins = pair u, v such that N[u] = N[v].

A graph is identifiable if and only if it has no closed twins.

n: number of vertices

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

n: number of vertices

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

 $ID(G) \leq n-1$

 $ID(G) = n \Leftrightarrow G$ has no edges

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

 $ID(G) \leq n-1$

Florent Foucaud

u, v such that $N[v] \ominus N[u] = \{f\}$:

f belongs to any identifying code

 $\rightarrow f$ forced by u, v.

 $A_2 = P_4$

 $A_3 = P_6^2$

 $A_4 = P_8^3$

 $A_2 = P_4$

 $A_3 = P_6^2$

 $A_4 = P_8^3$

 $A_2 = P_4$

 $A_3 = P_6^2$

 $A_4 = P_8^3$

 $A_2 = P_4$

 $A_3 = P_6^2$

 $A_4 = P_8^3$

Two graphs A_k and $A_{k'}$

Join: add all edges between them

Join the new graph to two non-adjacent vertices $(\overline{K_2})$

Join the new graph to two non-adjacent vertices, again

Finally, add a universal vertex

Finally, add a universal vertex

Proposition

At each step, the constructed graph has ID = n - 1

(2)
$$A_k = P_{2k}^{k-1}$$

- (3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_2}$
- (4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

$$ID(G) = n-1 \Leftrightarrow G \in (1), (2), (3) \text{ or } (4)$$

(2)
$$A_k = P_{2k}^{k-1}$$

- (3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_2}$
- (4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

G connected identifiable graph, n vertices:

$$ID(G) = n-1 \Leftrightarrow G \in (1)$$
, (2), (3) or (4)

• G: minimum counterexample

(2)
$$A_k = P_{2k}^{k-1}$$

- (3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_2}$
- (4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

$$ID(G) = n-1 \Leftrightarrow G \in (1)$$
, (2), (3) or (4)

- G: minimum counterexample
- v: vertex such that G v identifiable (exists)

(2)
$$A_k = P_{2k}^{k-1}$$

- (3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_2}$
- (4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

$$ID(G) = n-1 \Leftrightarrow G \in (1)$$
, (2), (3) or (4)

- G: minimum counterexample
- v: vertex such that G v identifiable (exists)
- Lemma: ID(G v) = n' 1

(2)
$$A_k = P_{2k}^{k-1}$$

- (3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_2}$
- (4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

$$ID(G) = n-1 \Leftrightarrow G \in (1)$$
, (2), (3) or (4)

- G: minimum counterexample
- *v*: vertex such that *G v* identifiable (exists)
- Lemma: ID(G v) = n' 1 \Rightarrow By minimality of G: $G - v \in (1), (2), (3)$ or (4)

A characterization

(1) stars

(2)
$$A_k = P_{2k}^{k-1}$$

- (3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_2}$
- (4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

G connected identifiable graph, n vertices:

$$ID(G) = n - 1 \Leftrightarrow G \in (1), (2), (3) \text{ or } (4)$$

- G: minimum counterexample
- v: vertex such that G v identifiable (exists)
- Lemma: ID(G-v) = n'-1
- $\Rightarrow \text{ By minimality of } G:$ $G-v \in (1), (2), (3) \text{ or } (4)$
- Put *v* back ⇒ contradiction:

no counterexample exists!

Lower bounds

Proposition

G graph on n vertices: $n \leq 2^{LD(G)} + LD(G) - 1 \Longrightarrow LD(G) \geq \log_2(n) - 1$.

Lower bounds

Proposition

G graph on *n* vertices:
$$n \le 2^{LD(G)} + LD(G) - 1 \Longrightarrow LD(G) \ge \log_2(n) - 1$$
.

Tight examples:

Proposition

G graph on *n* vertices:
$$n \le 2^{LD(G)} + LD(G) - 1 \Longrightarrow LD(G) \ge \log_2(n) - 1$$
.

Theorem (Rall & Slater, 1980's 🖹 🗟)

G planar graph, order *n*, LD(G) = k. Then $n \leq 7k - 10 \rightarrow LD(G) \geq \frac{n+10}{7}$.

Proposition

G graph on *n* vertices:
$$n \leq 2^{LD(G)} + LD(G) - 1 \Longrightarrow LD(G) \geq \log_2(n) - 1$$
.

Theorem (Rall & Slater, 1980's ଛ 🗟)

G planar graph, order *n*, LD(G) = k. Then $n \leq 7k - 10 \rightarrow LD(G) \geq \frac{n+10}{7}$.

Tight examples:

Definition - Interval graph

Intersection graph of intervals of the real line.

Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 🗰 🎥 🕵

Then
$$n \leq rac{k(k+1)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 跡 🎥 🗑

Then
$$n \leq rac{k(k+1)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.

- Identifying code *D* of size *k*.
- Define zones using the right points of intervals in *D*.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 跡 🎥 🖗

Then
$$n \leq rac{k(k+1)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.

- Identifying code D of size k.
- Define zones using the right points of intervals in *D*.
- Each vertex intersects a consecutive set of intervals of *D* when ordered by left points.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 跡 🎥 🖗

Then
$$n \leq \frac{k(k+1)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.

- Identifying code D of size k.
- Define zones using the right points of intervals in *D*.
- Each vertex intersects a consecutive set of intervals of *D* when ordered by left points.

$$\rightarrow n \leq \sum_{i=1}^{k} (k-i) = \frac{k(k+1)}{2}.$$

Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 📷 🗺 🛒

G interval graph of order n, LD(G) = k.

Then
$$n \leq rac{k(k+1)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.

Tight:

_	 _	_
_	 —	

Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X, \mathscr{E}) (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered:

for every subset $S' \subseteq S$, there is an edge e with $e \cap S = S'$.

V-C dimension of H: maximum size of a shattered set in H

Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X, \mathscr{E}) (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered:

for every subset $S' \subseteq S$, there is an edge e with $e \cap S = S'$.

V-C dimension of H: maximum size of a shattered set in H

Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X, \mathscr{E}) (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered:

for every subset $S' \subseteq S$, there is an edge e with $e \cap S = S'$.

V-C dimension of H: maximum size of a shattered set in H

Typically bounded for geometric hypergraphs:

Florent Foucaud

Extremal graphs for domination-based identification

Vapnik-Červonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:

 \rightarrow interval graphs (d = 2), C₄-free graphs (d = 2), line graphs (d = 4), permutation graphs (d = 3), unit disk graphs (d = 3), planar graphs (d = 4)...

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:

 \rightarrow interval graphs (d = 2), C₄-free graphs (d = 2), line graphs (d = 4), permutation graphs (d = 3), unit disk graphs (d = 3), planar graphs (d = 4)...

Theorem (Sauer-Shelah Lemma 🖉 🏙

Let H be a hypergraph of V-C dimension at most d. Then, any set S of vertices has at most $|S|^d$ distinct traces.

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:

 \rightarrow interval graphs (d = 2), C₄-free graphs (d = 2), line graphs (d = 4), permutation graphs (d = 3), unit disk graphs (d = 3), planar graphs (d = 4)...

Theorem (Sauer-Shelah Lemma 🖉 🏙

Let *H* be a hypergraph of V-C dimension at most *d*. Then, any set *S* of vertices has at most $|S|^d$ distinct traces.

Corollary

G graph of order n, LD(G) = k, V-C dimension $\leq d$. Then $n = O(k^d)$.

Conclusion

Some open problems:

- Conjecture: $LD(G) \le n/2$ in the absence of twins
- Find tight bounds for id. problems in interesting graph classes

(e.g. cubic graphs)

Conclusion

Some open problems:

- Conjecture: $LD(G) \le n/2$ in the absence of twins
- Find tight bounds for id. problems in interesting graph classes

(e.g. cubic graphs)

THANKS FOR YOUR ATTENTION

