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Definitions
isometric path = shortest path between its endpoints

A set of shortest paths covering every vertex from a graph.

We want to minimize the number of paths.

Isometric Path Cover
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Covering a city by bus routes

→ The shortest paths represent optimal bus routes
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Context: pursuit-evasion problems

Cops and robber game: k cops and one robber are placed on a
graph, and alternate their moves (along edges of the graph). The
cops win if they can eventually catch the robber.

In cops and robber, one cop can "protect" a shortest path.

Lemma [Aigner & Fromme, 1983]
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Context: pursuit-evasion problems
Cops and robber game: k cops and one robber are placed on a
graph, and alternate their moves (along edges of the graph). The
cops win if they can eventually catch the robber.

In cops and robber, one cop can "protect" a shortest path.

Lemma [Aigner & Fromme, 1983]

⇒ The minimum size of an Isometric Path Cover is an upper
bound for the number of cops required to catch the robber
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Formal problem statement

Isometric Path Cover (IPC) g
Input : A graph G and an integer k.
Question : Is there a set of k shortest paths of G , such that each
vertex of G belongs to at least one of the shortest paths?

shortest paths ?
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with terminals

Isometric Path Cover with Terminals (IPC with
Terminals)
Input :A graph G , and k pairs of vertices (s1, t1), . . . , (sk , tk), the
terminals.
Question : Is there a set of k shortest paths of G , the ith path
being an si -ti shortest path, such that each vertex of G belongs to
at least one of the shortest paths ?
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Algorithmic questions

A c-approximation algorithm for a given problem is a
polynomial-time algorithm producing a feasible solution whose
value is at most c times the optimum.

A problem with parameter k is called FPT (fixed-parameter
tractable) if it has an algorithm of complexity f (k) · nO(1).
It is called XP if it has an algorithm with running time nf (k).

Questions
▶ Is IPC polynomial-time solvable?
▶ If not, is it approximable?
▶ Are IPC and IPC with terminals FPT? Or at least XP ?
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Related problems

Covering:
▶ Path Cover (NP-c for 1 path : Hamiltonian Path)

Packing (with terminals):
▶ k Disjoint Paths (NP-c [Karp, 1975],

FPT algorithm: f (k)n3 [Robertson & Seymour, 1995])
▶ k Disjoint Shortest Paths (W[1]-hard,

XP algorithm: O(kn16k·k!+k+1) [Bentert et al., 2021])

Partitioning:
▶ Isometric Path Partition (NP-c [Manuel, 2021])
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State of the art on Isometric Path Cover

Surprisingly few results!

Exact values
▶ Trees, cycles, complete bipartite graphs, several cartesian

products of paths [Fitzpatrick, 1997 & 1999]
▶ Some hypercubes [Fitzpatrick et al, 2001]
▶ Complete k-partite graphs [Pan & Chang, 2006]
▶ Some cartesian products [Manuel, 2018]

Algorithms
▶ Linear-time algorithm for block graphs [Pan & Chang, 2005]
▶ poly-time log(d)-approximation for graphs of diameter d

[Thiessen & Gaertner, 2021]
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Our results

Isometric Path Cover is NP-complete, even on chordal
graphs with a dominating vertex.

NP-hardness

Polynomial-time 4-approximation algorithm on chordal graphs.

Approximation for chordal graphs (and beyond)

Exact algorithm in 2k2O(w)n and 22O(k)n on chordal graphs
(k = solution size, w = treewidth).

FPT for chordal graphs

Structural result: IPC = k ⇒ w ≤ f (k). This implies a g(k)nk

XP algorithm for Isometric Path Cover.

XP algorithm in general
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NP-completeness
chordal graph: every cycle of length at least 4 has a chord

Isometric Path Cover is NP-complete, even on chordal
graphs with a dominating vertex.

Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]

Proof
Reduction from Induced P3-Partition (NP-complete even on
chordal graphs with 3k vertices [van Bevern et al., 2017])

G
chordal

3k vertices

u

We are looking for an Isometric Path Cover of size k + 1.
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Part 1: approximation algorithm
for chordal graphs and beyond
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Approximation algorithm for chordal graphs

Algorithm

1. Do a Breadth-First Search (BFS) of G

2. Search graph ≡ Hasse diagram of a poset

⇒ Chain covering of the poset Cmin
[Fulkerson, 1956]

3. |Cmin| = |Amax| [Dilworth, 1950]

4. Main Idea: If any isometric path can
contain at most ℓ vertices of any
antichain, then the algorithm gives an
ℓ-approximation.

••
•
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Approximation for chordal graphs: proof idea
No shortest path can contain 5 antichain vertices

(proof by contradiction)

Case 1: a shortest path contains 5 vertices of an antichain on the
same level of the search graph

u1 u2 u3 u4 u5

Impossible since u1, . . . , u5 in a shortest pathImpossible since the graph is chordalImpossible to have a common ancestor ⇒ contradiction
→ Other cases follow a similar reasoning
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Approximation: Extension

The algorithm yields the following approximation ratios:
▶ 4 on chordal graphs

→ tight
▶ 3 on interval graphs

→ tight

▶ 2 on proper interval graphs

→ tight

▶ k + 7 on k-chordal graphs (with k ≥ 4)
▶ 6ℓ + 2 on graphs of treelength at most ℓ

Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]

General graphs (n vertices): the algorithm can yield Ω (
√

n)-factor
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A new graph parameter: IPCO

Minimum integer k such that there exists v ∈ V (G) s.t:
the vertices of any isometric path P of G can be covered by k
many v -rooted isometric paths. → Denoted ipco(G)

isometric path complexity of graph G

Equal to max. number of antichain vertices in an isometric path!

ipco(G) can be computed in time O(n2m)

Theorem [Chakraborty, Chalopin, F, Vaxès 2023]

ipco(G) is bounded for:
▶ graphs of bounded hyperbolicity
▶ outerstring graphs
▶ (theta, prism, pyramid)-free graphs

Theorem [Chakraborty, Chalopin, F, Vaxès 2023]
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ipco(G) can be computed in time O(n2m)
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Graph classes where IPC is constant-factor approximable

bounded isometric path complexity

bounded hyperbolicity

bounded treelength

bounded chordalitybounded diameter

outerstring (theta,prism,pyramid)-free

Asteroidal triple-free

co-comparability

chordal

split

interval permutation

proper interval

block

tree

poly-time

NP-c
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Part 2: relation with tree-width
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Graphs of bounded tree-width

Graphs of tree-width k: look like a tree where each edge is
replaced by a set of k vertices

For graphs of treewidth k and n vertices, many problems can be
solved in time f (k)poly(n), for some (potentially exponential)
function k.

→ dynamic programming on the tree-like structure
→ Courcelle’s theorem (1990)
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FPT algorithm for chordal graphs using tree-width

IPC can be solved in time 2k2O(w)n and 22O(k)n on chordal graphs
(k = solution size, w = treewidth).

Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]

▶ Dynamic programming on tree decomposition. For chordal
graphs: TW = Clique Number-1.

▶ Each solution path can contain at most 2 vertices from each
clique. So k ≥ TW +1

2 .
▶ Hence, FPT algorithm by TW implies FPT algorithm by

solution size.

▶ close(X , y): vertices in X which are closer to y .
▶ Main idea: P is isometric ⇐⇒ for every vertex v of P and

clique X intersecting P, P contains exactly one vertex from
V (P) ∩ X in close(X , v)

▶ For each bag X and vertex y , the DP table maintains:
▶ the intersection between each path and X (at most 2 vertices

per path)
▶ for each path intersecting X , if it continues “above” or

“below” X
▶ for each path, if it has already been used entierly “below” or

not
▶ for each path Pi and each subset S of X , if there is a vertex y

“above” and ”below” with close(X , y) = S
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Combinatorial result

If G is coverable by k shortest paths then, for any vertex a and
any fixed distance D, the number of vertices at distance exactly
D from a is upper bounded by some function g(k).

▶ Edge coverable : g(k) = O(3k).
▶ Vertex coverable : g(k) = O(k · 3k).

Theorem [Dumas, F, Perez, Todinca 2022]

G is of treewidth at most 2 · g(k).

Corollary

▶ Decomposition based on a
breadth-first search (BFS).

▶ Each bag: two consecutive
layers.

X1

X2

X3

X4

X5

L(1)

L(2)

L(0)

L(3)

a

L(4)
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Algorithmic consequences

IPC with Terminals is FPT, with running time O(f (k) · n).

Theorem [Dumas, F, Perez, Todinca 2022]

▶ Yes-instances have bounded treewidth by the corollary
▶ Courcelle’s theorem to solve this problem on bounded

treewidth graphs.

IPC is XP for parameter k: f (k) · nO(k).

Corollary

▶ Brute force: try all possible pairs of k terminals + above
theorem
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IPC with Terminals is FPT

Every problem expressible in MSOL2 can be solved in f (w) · n
time on graphs of treewidth at most w .

Theorem [Courcelle, 1990]

▶ Compute a tree decomposition by BFS. If w > 2g(k) return
false.

▶ Express in MSOL2 : "find paths P1, . . . , Pk s.t. ∀i , si , ti ∈ Pi ,
each vertex of G is covered". Minimize sum of paths’ lengths.

▶ Use Courcelle’s theorem to solve the problem (optimization
version).

▶ If ∀i , |Pi | = dist(si , ti) then answer true, else answer false.
24/34



Proof sketch: base paths colouring
Base paths : the k shortest paths µ1, . . . , µk that cover the graph
To each base path µc we give :
▶ A colour c, 1 ≤ c ≤ k,
▶ An arbitrary direction.

µc1

µc2

µc3

µc6µc5µc4

Each edge of the graph receives a set of colours
colours(e) ⊆ {1, . . . , k}.
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Colouring of a path
Given a path P from a to b, we can pick for each edge one of its
possible colours, it is a colouring col of P.
(P, col) is a coloured path Àµ) .
▶ Une couleur c, 1 ≤ c ≤ k,

µc1

µc2

µc3

µc6µc5µc4

a

b

Each edge of the graph receives a set of colours
colours(e) ⊆ {1, . . . , k}
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Colours-signs word
(P, col) can be divided in monochromatic subpaths. These
subpaths induce either a ” + ” sign or a ” − ” sign w.r.t. the
direction of the base path.
We associate to (P, col) with colours {c1, . . . , cℓ} a colours-signs
word ω = ((c1, s1), . . . , (cℓ, sℓ)) on the alphabet
{1, . . . , k} × {+, −}.

µc1

µc2

µc3

µc6µc5µc4

a

b

ω = ((c3, +), (c5, −), (c1, +))
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Good colouring of a path

(P, col) is well-coloured if the set of edges using a colour c form a
connected subpath of P.

A path well-coloured :

A path not well-coloured :
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Good colouring of a path

Good colouring Lemma
For every pair of vertices a, b of G , there exists a shortest
well-coloured a-b path.

If a a-b shortest path (P, col) isn’t well-coloured :

µc

a bx y

|µc[x, y]| ≤ |P [x, y]|

⇒ Replace P[x , y ] by µc [x , y ].
The constructed path is still a shortest path
(|µc [x , y ]| ≤ |P[x , y ]|).

The number of possible colours-signs words is upper-bounded by
g(k) = O(3k).
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The bound for isometric path edge-covers
Multiple shortest paths of same length may have the same
colours-signs word :

a

Colours-signs word Lemma
The shortest paths starting at a vertex a, of length D and
colours-signs word ω all end at the same vertex b.

For any vertex a and any fixed distance D, the number of vertices
at distance exactly D from a is upper bounded by g(k) (the
number of colours-signs words).

Theorem [Dumas, F, Perez, Todinca 2022]

29/34



The bound for isometric path edge-covers
Multiple shortest paths of same length may have the same
colours-signs word :

a

Colours-signs word Lemma
The shortest paths starting at a vertex a, of length D and
colours-signs word ω all end at the same vertex b.

For any vertex a and any fixed distance D, the number of vertices
at distance exactly D from a is upper bounded by g(k) (the
number of colours-signs words).

Theorem [Dumas, F, Perez, Todinca 2022]

29/34



The bound for isometric path edge-covers
Multiple shortest paths of same length may have the same
colours-signs word :

a

Colours-signs word Lemma
The shortest paths starting at a vertex a, of length D and
colours-signs word ω all end at the same vertex b.

For any vertex a and any fixed distance D, the number of vertices
at distance exactly D from a is upper bounded by g(k) (the
number of colours-signs words).

Theorem [Dumas, F, Perez, Todinca 2022]

29/34



Proof of the Colours-signs word Lemma

Let b and c be vertices at distance D from vertex a. Let (P, col),
(P ′, col′) be two well-coloured shortest a-b and a-c paths.

Claim : If they have the same colours-signs word, then b = c.

Proof by induction on the number of letters ℓ of the colours-signs
word.
If ℓ = 1 >

P
P ′

a b

c

dist(a, b) = dist(a, c) thus b = c.
regardez ping pong the animation)
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P
P ′

a x

x′

b

c

Take P the path with the longest subpath of the colour c1.
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Proof of the Colours-signs word Lemma

Let b and c be vertices at distance D from vertex a. Let (P, col),
(P ′, col′) be two well-coloured shortest a-b and a-c paths.

Claim : If they have the same colours-signs word, then b = c.

Proof by induction on the number of letters ℓ of the colours-signs
word.
If ℓ > 1

P
P ′

a x′
x b

c

The vertex x ′ is in the path µc1 [a, x ], thus in the path P
regardez ping pong the animation)
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Proof of the Colours-signs word Lemma
Let b and c be vertices at distance D from vertex a. Let (P, col),
(P ′, col′) be two well-coloured shortest a-b and a-c paths.

Claim : If they have the same colours-signs word, then b = c.

Proof by induction on the number of letters ℓ of the colours-signs
word.
If ℓ > 1

P
P ′

a x′
x b

c

Replace P[x ′, x ] by µc2 [x ′, x ].
P[x ′, b] and P ′[x ′, c] have ℓ − 1 colours, by the induction
hypothesis, b = c.
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Vertex-covering case: colouring of a path

A colour and a direction given to each base path.

µc1

µc2

µc3

µc4

A colouring col associate to each vertex v ∈ P a colour
c ∈ colours(v).
Colours-signs words are defined the same way as in the edge case.
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Problem

Colours-signs word Lemma
The shortest paths starting at vertex a, of length D and
colours-signs word ω all end in the same vertex b.

⇒ FALSE in the vertex case

a

b c

P

P ′

▶ BUT: number of vertices at distance D from a that share the
same colours-signs word is at most 2k.

▶ There are at most g(k) = O(k · 3k) vertices at a given
distance of vertex a.
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Lower bound
In a graph vertex-coverable by k shortest paths, the number of
vertices at same distance of a source is upper bounded by g(k).
▶ We have shown that g(k) = O(k · 3k).
▶ Lower bound : g(k) ≥ 2k

µ1

µ1

µ1

µ4

a

2k−1

2k−22k−2

2k−1

2k−3

2k−2
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Conclusion
▶ NP-completeness on chordal graphs
▶ Approximation algorithm on several classes
▶ FPT algorithm by solution size on chordal graphs
▶ Bounding the treewidth by a function of solution size
▶ FPT algorithm by solution size when terminals fixed
▶ XP algorithm by solution size when terminals free

Open problems
▶ Complexity on interval graphs, split graphs... Planar graphs?
▶ Constant factor approximation algorithm for all graphs?
▶ Is Isometric Path Cover FPT or W[1]-hard? (sol. size)
▶ Can we improve the bound on the treewidth? Polynomial?
▶ Approximation for Isometric Path Partition?

THANK YOU!
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