Covering a graph using shortest paths

Florent Foucaud ${ }^{1}$

joint work with:
Dibyayan Chakraborty ${ }^{2}$, Antoine Dailly ${ }^{1}$, Sandip Das ${ }^{3}$, Harmender Gahlawat ${ }^{4}$, Subir Kumar Ghosh ${ }^{5}$ AND
Maël Dumas ${ }^{6}$, Anthony Perez ${ }^{6}$, Ioan Todinca ${ }^{6}$ AND
Dibyayan Chakraborty ${ }^{2}$, Jérémie Chalopin ${ }^{7}$, Yann Vaxès ${ }^{7}$
${ }^{1}$ LIMOS, Université Clermont-Auvergne, Clermont-Ferrand, France
2 University of Leeds, United Kingdom
3 Indian Statistical Institute, Kolkata, India
${ }^{4}$ G-SCOP, Université Grenoble-Alpes, France
${ }^{5}$ Ramakrishna Mission Vivekananda Edu. and Res. Institute, Kolkata, India
${ }^{6}$ LIFO, Université d'Orléans, Orléans, France
${ }^{7}$ LIS, Université d'Aix-Marseille, France

Definitions

isometric path $=$ shortest path between its endpoints

Isometric Path Cover

A set of shortest paths covering every vertex from a graph.

Definitions

isometric path $=$ shortest path between its endpoints

Isometric Path Cover

A set of shortest paths covering every vertex from a graph.

Definitions

isometric path $=$ shortest path between its endpoints

Isometric Path Cover

A set of shortest paths covering every vertex from a graph. We want to minimize the number of paths.

Definitions

isometric path $=$ shortest path between its endpoints

Isometric Path Cover

A set of shortest paths covering every vertex from a graph. We want to minimize the number of paths.

Definitions

isometric path $=$ shortest path between its endpoints

Isometric Path Cover

A set of shortest paths covering every vertex from a graph. We want to minimize the number of paths.

Covering a city by bus routes

\rightarrow The shortest paths represent optimal bus routes

Context: pursuit-evasion problems

Cops and robber game: k cops and one robber are placed on a graph, and alternate their moves (along edges of the graph). The cops win if they can eventually catch the robber.

Lemma [Aigner \& Fromme, 1983]

In cops and robber, one cop can "protect" a shortest path.

Context: pursuit-evasion problems

Cops and robber game: k cops and one robber are placed on a graph, and alternate their moves (along edges of the graph). The cops win if they can eventually catch the robber.

Lemma [Aigner \& Fromme, 1983]

In cops and robber, one cop can "protect" a shortest path.

Context: pursuit-evasion problems

Cops and robber game: k cops and one robber are placed on a graph, and alternate their moves (along edges of the graph). The cops win if they can eventually catch the robber.

Lemma [Aigner \& Fromme, 1983]

In cops and robber, one cop can "protect" a shortest path.

Context: pursuit-evasion problems

Cops and robber game: k cops and one robber are placed on a graph, and alternate their moves (along edges of the graph). The cops win if they can eventually catch the robber.

Lemma [Aigner \& Fromme, 1983]

In cops and robber, one cop can "protect" a shortest path.

Context: pursuit-evasion problems

Cops and robber game: k cops and one robber are placed on a graph, and alternate their moves (along edges of the graph). The cops win if they can eventually catch the robber.

Lemma [Aigner \& Fromme, 1983]

In cops and robber, one cop can "protect" a shortest path.

Context: pursuit-evasion problems

Cops and robber game: k cops and one robber are placed on a graph, and alternate their moves (along edges of the graph). The cops win if they can eventually catch the robber.

Lemma [Aigner \& Fromme, 1983]

In cops and robber, one cop can "protect" a shortest path.

Context: pursuit-evasion problems

Cops and robber game: k cops and one robber are placed on a graph, and alternate their moves (along edges of the graph). The cops win if they can eventually catch the robber.

Lemma [Aigner \& Fromme, 1983]
In cops and robber, one cop can "protect" a shortest path.
\Rightarrow The minimum size of an Isometric Path Cover is an upper bound for the number of cops required to catch the robber

Formal problem statement

Isometric Path Cover (IPC)

Input: A graph G and an integer k.
Question : Is there a set of k shortest paths of G, such that each vertex of G belongs to at least one of the shortest paths?

Formal problem statement

Isometric Path Cover (IPC)

Input: A graph G and an integer k.
Question : Is there a set of k shortest paths of G, such that each vertex of G belongs to at least one of the shortest paths?

Formal problem statement

Isometric Path Cover (IPC)

Input: A graph G and an integer k.
Question : Is there a set of k shortest paths of G, such that each vertex of G belongs to at least one of the shortest paths?

with terminals

Isometric Path Cover with Terminals (IPC with Terminals)
Input :A graph G, and k pairs of vertices $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$, the terminals.
Question : Is there a set of k shortest paths of G, the i th path being an $s_{i}-t_{i}$ shortest path, such that each vertex of G belongs to at least one of the shortest paths ?

Algorithmic questions

A c-approximation algorithm for a given problem is a polynomial-time algorithm producing a feasible solution whose value is at most c times the optimum.
A problem with parameter k is called FPT (fixed-parameter tractable) if it has an algorithm of complexity $f(k) \cdot n^{O(1)}$. It is called XP if it has an algorithm with running time $n^{f(k)}$.

Questions

- Is IPC polynomial-time solvable?
- If not, is it approximable?
- Are IPC and IPC with terminals FPT? Or at least XP ?

Related problems

Covering:

- Path Cover (NP-c for 1 path: Hamiltonian Path)

Related problems

Covering:

- Path Cover (NP-c for 1 path: Hamiltonian Path)

Packing (with terminals):

- k Disjoint Paths (NP-c [Karp, 1975],

FPT algorithm: $f(k) n^{3}$ [Robertson \& Seymour, 1995])

- k Disjoint Shortest Paths (W[1]-hard, XP algorithm: $O\left(k n^{16 k \cdot k!+k+1}\right)$ [Bentert et al., 2021])

Related problems

Covering:

- Path Cover (NP-c for 1 path: Hamiltonian Path)

Packing (with terminals):

- k Disjoint Paths (NP-c [Karp, 1975],

FPT algorithm: $f(k) n^{3}$ [Robertson \& Seymour, 1995])

- k Disjoint Shortest Paths (W[1]-hard, XP algorithm: $O\left(k n^{16 k \cdot k!+k+1}\right)$ [Bentert et al., 2021])

Partitioning:

- Isometric Path Partition (NP-c [Manuel, 2021])

State of the art on Isometric Path Cover

Surprisingly few results!

State of the art on Isometric Path Cover

Surprisingly few results!

Exact values

- Trees, cycles, complete bipartite graphs, several cartesian products of paths [Fitzpatrick, 1997 \& 1999]
- Some hypercubes [Fitzpatrick et al, 2001]
- Complete k-partite graphs [Pan \& Chang, 2006]
- Some cartesian products [Manuel, 2018]

State of the art on Isometric Path Cover

Surprisingly few results!

Exact values

- Trees, cycles, complete bipartite graphs, several cartesian products of paths [Fitzpatrick, 1997 \& 1999]
- Some hypercubes [Fitzpatrick et al, 2001]
- Complete k-partite graphs [Pan \& Chang, 2006]
- Some cartesian products [Manuel, 2018]

Algorithms

- Linear-time algorithm for block graphs [Pan \& Chang, 2005]
- poly-time $\log (d)$-approximation for graphs of diameter d [Thiessen \& Gaertner, 2021]

Our results

Our results

NP-hardness

Isometric Path Cover is NP-complete, even on chordal graphs with a dominating vertex.

Our results

NP-hardness

Isometric Path Cover is NP-complete, even on chordal graphs with a dominating vertex.

Approximation for chordal graphs (and beyond)
Polynomial-time 4-approximation algorithm on chordal graphs.

Our results

NP-hardness

Isometric Path Cover is NP-complete, even on chordal graphs with a dominating vertex.

Approximation for chordal graphs (and beyond)

Polynomial-time 4-approximation algorithm on chordal graphs.

FPT for chordal graphs

Exact algorithm in $2^{k 2^{\mathcal{O}(w)}} n$ and $2^{2^{\mathcal{O}(k)}} n$ on chordal graphs ($k=$ solution size, $w=$ treewidth).

Our results

NP-hardness

Isometric Path Cover is NP-complete, even on chordal graphs with a dominating vertex.

Approximation for chordal graphs (and beyond)

Polynomial-time 4-approximation algorithm on chordal graphs.

FPT for chordal graphs

Exact algorithm in $2^{k 2^{\mathcal{O}(w)}} n$ and $2^{2^{\mathcal{O}(k)}} n$ on chordal graphs ($k=$ solution size, $w=$ treewidth).

XP algorithm in general

Structural result: $I P C=k \Rightarrow w \leq f(k)$. This implies a $g(k) n^{k}$ XP algorithm for Isometric Path Cover.

NP-completeness

chordal graph: every cycle of length at least 4 has a chord

Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]
Isometric Path Cover is NP-complete, even on chordal graphs with a dominating vertex.

NP-completeness

chordal graph: every cycle of length at least 4 has a chord

Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]

Isometric Path Cover is NP-complete, even on chordal graphs with a dominating vertex.

Proof

Reduction from Induced P_{3}-Partition (NP-complete even on chordal graphs with $3 k$ vertices [van Bevern et al., 2017])

NP-completeness

chordal graph: every cycle of length at least 4 has a chord

Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]

Isometric Path Cover is NP-complete, even on chordal graphs with a dominating vertex.

Proof

Reduction from Induced P_{3}-Partition (NP-complete even on chordal graphs with $3 k$ vertices [van Bevern et al., 2017])

We are looking for an Isometric Path Cover of size $k+1$.

Part 1: approximation algorithm for chordal graphs and beyond

Approximation algorithm for chordal graphs

Approximation algorithm for chordal graphs

Algorithm

1. Do a Breadth-First Search (BFS) of G

Approximation algorithm for chordal graphs

Algorithm

1. Do a Breadth-First Search (BFS) of G
2. Search graph \equiv Hasse diagram of a poset

Approximation algorithm for chordal graphs

Algorithm

1. Do a Breadth-First Search (BFS) of G
2. Search graph \equiv Hasse diagram of a poset \Rightarrow Chain covering of the poset $\mathcal{C}_{\text {min }}$ [Fulkerson, 1956]

Approximation algorithm for chordal graphs

Algorithm

1. Do a Breadth-First Search (BFS) of G
2. Search graph \equiv Hasse diagram of a poset \Rightarrow Chain covering of the poset $\mathcal{C}_{\text {min }}$ [Fulkerson, 1956]
3. $\left|\mathcal{C}_{\text {min }}\right|=\left|A_{\max }\right| \quad$ [Dilworth, 1950]

Approximation algorithm for chordal graphs

Algorithm

1. Do a Breadth-First Search (BFS) of G
2. Search graph \equiv Hasse diagram of a poset \Rightarrow Chain covering of the poset $\mathcal{C}_{\text {min }}$ [Fulkerson, 1956]
3. $\left|\mathcal{C}_{\text {min }}\right|=\left|A_{\max }\right| \quad$ [Dilworth, 1950]
4. Main Idea: If any isometric path can contain at most ℓ vertices of any antichain, then the algorithm gives an ℓ-approximation.

Approximation for chordal graphs: proof idea
No shortest path can contain 5 antichain vertices
(proof by contradiction)

Approximation for chordal graphs: proof idea

No shortest path can contain 5 antichain vertices
(proof by contradiction)
Case 1: a shortest path contains 5 vertices of an antichain on the same level of the search graph

Approximation for chordal graphs: proof idea

No shortest path can contain 5 antichain vertices
(proof by contradiction)
Case 1: a shortest path contains 5 vertices of an antichain on the same level of the search graph

Approximation for chordal graphs: proof idea

No shortest path can contain 5 antichain vertices
(proof by contradiction)
Case 1: a shortest path contains 5 vertices of an antichain on the same level of the search graph

Impossible since u_{1}, \ldots, u_{5} in a shortest path

Approximation for chordal graphs: proof idea

No shortest path can contain 5 antichain vertices
(proof by contradiction)
Case 1: a shortest path contains 5 vertices of an antichain on the same level of the search graph

Approximation for chordal graphs: proof idea

No shortest path can contain 5 antichain vertices
(proof by contradiction)
Case 1: a shortest path contains 5 vertices of an antichain on the same level of the search graph

Approximation for chordal graphs: proof idea

No shortest path can contain 5 antichain vertices
(proof by contradiction)
Case 1: a shortest path contains 5 vertices of an antichain on the same level of the search graph

Impossible since u_{1}, \ldots, u_{5} in a shortest path

Approximation for chordal graphs: proof idea

No shortest path can contain 5 antichain vertices
(proof by contradiction)
Case 1: a shortest path contains 5 vertices of an antichain on the same level of the search graph

Approximation for chordal graphs: proof idea

No shortest path can contain 5 antichain vertices

> (proof by contradiction)

Case 1: a shortest path contains 5 vertices of an antichain on the same level of the search graph

Approximation for chordal graphs: proof idea

No shortest path can contain 5 antichain vertices
(proof by contradiction)
Case 1: a shortest path contains 5 vertices of an antichain on the same level of the search graph

Impossible since the graph is chordal

Approximation for chordal graphs: proof idea

No shortest path can contain 5 antichain vertices
(proof by contradiction)
Case 1: a shortest path contains 5 vertices of an antichain on the same level of the search graph

Impossible since the graph is chordal

Approximation for chordal graphs: proof idea

No shortest path can contain 5 antichain vertices
(proof by contradiction)
Case 1: a shortest path contains 5 vertices of an antichain on the same level of the search graph

Impossible since the graph is chordal

Approximation for chordal graphs: proof idea

No shortest path can contain 5 antichain vertices
(proof by contradiction)
Case 1: a shortest path contains 5 vertices of an antichain on the same level of the search graph

Impossible since the graph is chordal

Approximation for chordal graphs: proof idea

No shortest path can contain 5 antichain vertices
(proof by contradiction)
Case 1: a shortest path contains 5 vertices of an antichain on the same level of the search graph

Approximation for chordal graphs: proof idea

No shortest path can contain 5 antichain vertices
(proof by contradiction)
Case 1: a shortest path contains 5 vertices of an antichain on the same level of the search graph

Approximation for chordal graphs: proof idea

No shortest path can contain 5 antichain vertices
(proof by contradiction)
Case 1: a shortest path contains 5 vertices of an antichain on the same level of the search graph

Impossible since the graph is chordal

Approximation for chordal graphs: proof idea

No shortest path can contain 5 antichain vertices
(proof by contradiction)
Case 1: a shortest path contains 5 vertices of an antichain on the same level of the search graph

Approximation for chordal graphs: proof idea

No shortest path can contain 5 antichain vertices

(proof by contradiction)

Case 1: a shortest path contains 5 vertices of an antichain on the same level of the search graph

Impossible to have a common ancestor \Rightarrow contradiction

Approximation for chordal graphs: proof idea

No shortest path can contain 5 antichain vertices

(proof by contradiction)

Case 1: a shortest path contains 5 vertices of an antichain on the same level of the search graph

Impossible to have a common ancestor \Rightarrow contradiction
\rightarrow Other cases follow a similar reasoning

Approximation: Extension

Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]
The algorithm yields the following approximation ratios:

- 4 on chordal graphs

Approximation: Extension

Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]
The algorithm yields the following approximation ratios:

- 4 on chordal graphs
- 3 on interval graphs
- 2 on proper interval graphs

Approximation: Extension

Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]
The algorithm yields the following approximation ratios:

- 4 on chordal graphs
- 3 on interval graphs
- 2 on proper interval graphs
- $k+7$ on k-chordal graphs (with $k \geq 4$)
- $6 \ell+2$ on graphs of treelength at most ℓ

Approximation: Extension

Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]
The algorithm yields the following approximation ratios:

- 4 on chordal graphs \rightarrow tight
- 3 on interval graphs \rightarrow tight
- 2 on proper interval graphs \rightarrow tight
- $k+7$ on k-chordal graphs (with $k \geq 4$)
- $6 \ell+2$ on graphs of treelength at most ℓ

Approximation: Extension

Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]

The algorithm yields the following approximation ratios:

- 4 on chordal graphs \rightarrow tight
- 3 on interval graphs \rightarrow tight
- 2 on proper interval graphs \rightarrow tight
- $k+7$ on k-chordal graphs (with $k \geq 4$)
- $6 \ell+2$ on graphs of treelength at most ℓ

General graphs (n vertices): the algorithm can yield $\Omega(\sqrt{n})$-factor

A new graph parameter: IPCO

isometric path complexity of graph G

Minimum integer k such that there exists $v \in V(G)$ s.t: the vertices of any isometric path P of G can be covered by k many v-rooted isometric paths. $\quad \rightarrow$ Denoted ipco(G)

A new graph parameter: IPCO

isometric path complexity of graph G

Minimum integer k such that there exists $v \in V(G)$ s.t: the vertices of any isometric path P of G can be covered by k many v-rooted isometric paths. $\quad \rightarrow$ Denoted $i p c o(G)$

Equal to max. number of antichain vertices in an isometric path!

A new graph parameter: IPCO

isometric path complexity of graph G

Minimum integer k such that there exists $v \in V(G)$ s.t: the vertices of any isometric path P of G can be covered by k many v-rooted isometric paths. $\quad \rightarrow$ Denoted ipco(G)

Equal to max. number of antichain vertices in an isometric path!
Theorem [Chakraborty, Chalopin, F, Vaxès 2023] $i p c o(G)$ can be computed in time $O\left(n^{2} m\right)$

A new graph parameter: IPCO

isometric path complexity of graph G

Minimum integer k such that there exists $v \in V(G)$ s.t: the vertices of any isometric path P of G can be covered by k many v-rooted isometric paths. \rightarrow Denoted $\operatorname{ipco}(G)$

Equal to max. number of antichain vertices in an isometric path!
Theorem [Chakraborty, Chalopin, F, Vaxès 2023]
$\operatorname{ipco}(G)$ can be computed in time $O\left(n^{2} m\right)$
Theorem [Chakraborty, Chalopin, F, Vaxès 2023]
$\operatorname{ipco}(G)$ is bounded for:

- graphs of bounded hyperbolicity
- outerstring graphs
- (theta, prism, pyramid)-free graphs

Graph classes where IPC is constant-factor approximable

Part 2: relation with tree-width

Graphs of bounded tree-width

Graphs of tree-width k : look like a tree where each edge is replaced by a set of k vertices

Graphs of bounded tree-width

Graphs of tree-width k : look like a tree where each edge is replaced by a set of k vertices

Graphs of bounded tree-width

Graphs of tree-width k : look like a tree where each edge is replaced by a set of k vertices

Graphs of bounded tree-width

Graphs of tree-width k : look like a tree where each edge is replaced by a set of k vertices

For graphs of treewidth k and n vertices, many problems can be solved in time $f(k)$ poly (n), for some (potentially exponential) function k.
\rightarrow dynamic programming on the tree-like structure \rightarrow Courcelle's theorem (1990)

FPT algorithm for chordal graphs using tree-width

Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]

 ($k=$ solution size, $w=$ treewidth).

- Dynamic programming on tree decomposition. For chordal graphs: $T W=$ Clique Number-1.
- Each solution path can contain at most 2 vertices from each clique. So $k \geq \frac{T W+1}{2}$.
- Hence, FPT algorithm by TW implies FPT algorithm by solution size.

FPT algorithm for chordal graphs using tree-width

Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]

 ($k=$ solution size, $w=$ treewidth) .

- close $(X, y):$ vertices in X which are closer to y.
- Main idea: P is isometric \Longleftrightarrow for every vertex v of P and clique X intersecting P, P contains exactly one vertex from $V(P) \cap X$ in $\operatorname{close}(X, v)$

FPT algorithm for chordal graphs using tree-width

Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]

 ($k=$ solution size, $w=$ treewidth) .

- close $(X, y):$ vertices in X which are closer to y.
- Main idea: P is isometric \Longleftrightarrow for every vertex v of P and clique X intersecting P, P contains exactly one vertex from $V(P) \cap X$ in close (X, v)
- For each bag X and vertex y, the DP table maintains:
- the intersection between each path and X (at most 2 vertices per path)
- for each path intersecting X, if it continues "above" or "below" X
- for each path, if it has already been used entierly "below" or not
- for each path P_{i} and each subset S of X, if there is a vertex y "above" and "below" with close $(X, y)=S$

Combinatorial result

Theorem [Dumas, F, Perez, Todinca 2022]

If G is coverable by k shortest paths then, for any vertex a and any fixed distance D, the number of vertices at distance exactly
D from a is upper bounded by some function $g(k)$.

Combinatorial result

Theorem [Dumas, F, Perez, Todinca 2022]

If G is coverable by k shortest paths then, for any vertex a and any fixed distance D, the number of vertices at distance exactly
D from a is upper bounded by some function $g(k)$.

- Edge coverable : $g(k)=O\left(3^{k}\right)$.

Combinatorial result

Theorem [Dumas, F, Perez, Todinca 2022]

If G is coverable by k shortest paths then, for any vertex a and any fixed distance D, the number of vertices at distance exactly
D from a is upper bounded by some function $g(k)$.

- Edge coverable : $g(k)=O\left(3^{k}\right)$.
- Vertex coverable : $g(k)=O\left(k \cdot 3^{k}\right)$.

Combinatorial result

Theorem [Dumas, F, Perez, Todinca 2022]

If G is coverable by k shortest paths then, for any vertex a and any fixed distance D, the number of vertices at distance exactly
D from a is upper bounded by some function $g(k)$.

- Edge coverable : $g(k)=O\left(3^{k}\right)$.
- Vertex coverable : $g(k)=O\left(k \cdot 3^{k}\right)$.

Corollary

G is of treewidth at most $2 \cdot g(k)$.

Combinatorial result

Theorem [Dumas, F, Perez, Todinca 2022]
If G is coverable by k shortest paths then, for any vertex a and any fixed distance D, the number of vertices at distance exactly
D from a is upper bounded by some function $g(k)$.

- Edge coverable : $g(k)=O\left(3^{k}\right)$.
- Vertex coverable : $g(k)=O\left(k \cdot 3^{k}\right)$.

Corollary

G is of treewidth at most $2 \cdot g(k)$.

Combinatorial result

Theorem [Dumas, F, Perez, Todinca 2022]
If G is coverable by k shortest paths then, for any vertex a and any fixed distance D, the number of vertices at distance exactly
D from a is upper bounded by some function $g(k)$.

- Edge coverable : $g(k)=O\left(3^{k}\right)$.
- Vertex coverable : $g(k)=O\left(k \cdot 3^{k}\right)$.

Corollary

G is of treewidth at most $2 \cdot g(k)$.

- Decomposition based on a breadth-first search (BFS).
- Each bag: two consecutive
 layers.

Algorithmic consequences

Theorem [Dumas, F, Perez, Todinca 2022]
IPC with Terminals is FPT, with running time $O(f(k) \cdot n)$.

Algorithmic consequences

Theorem [Dumas, F, Perez, Todinca 2022]
IPC with Terminals is FPT, with running time $O(f(k) \cdot n)$.

- Yes-instances have bounded treewidth by the corollary
- Courcelle's theorem to solve this problem on bounded treewidth graphs.

Algorithmic consequences

Theorem [Dumas, F, Perez, Todinca 2022]
IPC with Terminals is FPT, with running time $O(f(k) \cdot n)$.

- Yes-instances have bounded treewidth by the corollary
- Courcelle's theorem to solve this problem on bounded treewidth graphs.

Corollary

IPC is XP for parameter $k: f(k) \cdot n^{O(k)}$.

- Brute force: try all possible pairs of k terminals + above theorem

IPC with Terminals is FPT

Theorem [Courcelle, 1990]

Every problem expressible in MSOL_{2} can be solved in $f(w) \cdot n$ time on graphs of treewidth at most w.

- Compute a tree decomposition by BFS. If $w>2 g(k)$ return false.
- Express in MSOL_{2} : "find paths P_{1}, \ldots, P_{k} s.t. $\forall i, s_{i}, t_{i} \in P_{i}$, each vertex of G is covered". Minimize sum of paths' lengths.

- Use Courcelle's theorem to solve the problem (optimization version).
- If $\forall i,\left|P_{i}\right|=\operatorname{dist}\left(s_{i}, t_{i}\right)$ then answer true, else answer false.

Proof sketch: base paths colouring

Base paths: the k shortest paths μ_{1}, \ldots, μ_{k} that cover the graph To each base path μ_{c} we give :

- A colour $c, 1 \leq c \leq k$,
- An arbitrary direction.

Each edge of the graph receives a set of colours colours $(e) \subseteq\{1, \ldots, k\}$.

Colouring of a path

Given a path P from a to b, we can pick for each edge one of its possible colours, it is a colouring col of P.
(P, col) is a coloured path

Colours-signs word

(P, col) can be divided in monochromatic subpaths. These subpaths induce either a " + " sign or a " - " sign w.r.t. the direction of the base path.
We associate to (P, col) with colours $\left\{c_{1}, \ldots, c_{\ell}\right\}$ a colours-signs word $\omega=\left(\left(c_{1}, s_{1}\right), \ldots,\left(c_{\ell}, s_{\ell}\right)\right)$ on the alphabet $\{1, \ldots, k\} \times\{+,-\}$.

Good colouring of a path

(P, col) is well-coloured if the set of edges using a colour c form a connected subpath of P.

A path well-coloured :

A path not well-coloured :

Good colouring of a path

Good colouring Lemma
For every pair of vertices a, b of G, there exists a shortest well-coloured $a-b$ path.

Good colouring of a path

Good colouring Lemma
For every pair of vertices a, b of G, there exists a shortest well-coloured $a-b$ path.
If $a \operatorname{a}-b$ shortest path $(P, c o l)$ isn't well-coloured :

Good colouring of a path

Good colouring Lemma
For every pair of vertices a, b of G, there exists a shortest well-coloured $a-b$ path.
If a a - b shortest path $(P, c o l)$ isn't well-coloured :

\Rightarrow Replace $P[x, y]$ by $\mu_{c}[x, y]$.

Good colouring of a path

Good colouring Lemma
For every pair of vertices a, b of G, there exists a shortest well-coloured $a-b$ path.
If a a-b shortest path (P, col) isn't well-coloured :

\Rightarrow Replace $P[x, y]$ by $\mu_{c}[x, y]$.
The constructed path is still a shortest path $\left(\left|\mu_{c}[x, y]\right| \leq|P[x, y]|\right)$.

Good colouring of a path

Good colouring Lemma
For every pair of vertices a, b of G, there exists a shortest well-coloured $a-b$ path.
If a a - b shortest path $(P, c o l)$ isn't well-coloured :

\Rightarrow Replace $P[x, y]$ by $\mu_{c}[x, y]$.
The constructed path is still a shortest path $\left(\left|\mu_{c}[x, y]\right| \leq|P[x, y]|\right)$.

The number of possible colours-signs words is upper-bounded by $g(k)=O\left(3^{k}\right)$.

The bound for isometric path edge-covers

Multiple shortest paths of same length may have the same colours-signs word :

The bound for isometric path edge-covers

Multiple shortest paths of same length may have the same colours-signs word :

Colours-signs word Lemma
The shortest paths starting at a vertex a, of length D and colours-signs word ω all end at the same vertex b.

The bound for isometric path edge-covers

Multiple shortest paths of same length may have the same colours-signs word :

Colours-signs word Lemma
The shortest paths starting at a vertex a, of length D and colours-signs word ω all end at the same vertex b.

Theorem [Dumas, F, Perez, Todinca 2022]

For any vertex a and any fixed distance D, the number of vertices at distance exactly D from a is upper bounded by $g(k)$ (the number of colours-signs words).

Proof of the Colours-signs word Lemma

Let b and c be vertices at distance D from vertex a. Let (P, col), (P^{\prime}, col ${ }^{\prime}$) be two well-coloured shortest $a-b$ and $a-c$ paths.

Claim : If they have the same colours-signs word, then $b=c$.

Proof of the Colours-signs word Lemma

Let b and c be vertices at distance D from vertex a. Let (P, col), (P^{\prime}, col ${ }^{\prime}$) be two well-coloured shortest $a-b$ and $a-c$ paths.

Claim : If they have the same colours-signs word, then $b=c$.
Proof by induction on the number of letters ℓ of the colours-signs word.
If $\ell=1$

$\operatorname{dist}(a, b)=\operatorname{dist}(a, c)$ thus $b=c$.

Proof of the Colours-signs word Lemma

Let b and c be vertices at distance D from vertex a. Let (P, col), (P^{\prime}, col ${ }^{\prime}$) be two well-coloured shortest $a-b$ and $a-c$ paths.

Claim : If they have the same colours-signs word, then $b=c$.
Proof by induction on the number of letters ℓ of the colours-signs word.
If $\ell>1$

Take P the path with the longest subpath of the colour c_{1}.

Proof of the Colours-signs word Lemma

Let b and c be vertices at distance D from vertex a. Let (P, col), (P^{\prime}, col ${ }^{\prime}$) be two well-coloured shortest $a-b$ and $a-c$ paths.

Claim : If they have the same colours-signs word, then $b=c$.
Proof by induction on the number of letters ℓ of the colours-signs word.
If $\ell>1$

The vertex x^{\prime} is in the path $\mu_{c_{1}}[a, x]$, thus in the path P

Proof of the Colours-signs word Lemma

Let b and c be vertices at distance D from vertex a. Let (P, col), (P^{\prime}, col ${ }^{\prime}$) be two well-coloured shortest $a-b$ and $a-c$ paths.
Claim : If they have the same colours-signs word, then $b=c$.
Proof by induction on the number of letters ℓ of the colours-signs word.
If $\ell>1$

Replace $P\left[x^{\prime}, x\right]$ by $\mu_{c_{2}}\left[x^{\prime}, x\right]$. $P\left[x^{\prime}, b\right]$ and $P^{\prime}\left[x^{\prime}, c\right]$ have $\ell-1$ colours, by the induction hypothesis, $b=c$.

Vertex-covering case: colouring of a path

A colour and a direction given to each base path.

Vertex-covering case: colouring of a path

A colour and a direction given to each base path.

A colouring col associate to each vertex $v \in P$ a colour $c \in \operatorname{colours}(v)$.
Colours-signs words are defined the same way as in the edge case.

Problem

Colours-signs word Lemma
The shortest paths starting at vertex a, of length D and colours-signs word ω all end in the same vertex b.

Problem

Colours-signs word Lemma
The shortest paths starting at vertex a, of length D and colours-signs word ω all end in the same vertex b.
\Rightarrow FALSE in the vertex case

Problem

Colours-signs word Lemma
The shortest paths starting at vertex a, of length D and colours-signs word ω all end in the same vertex b.
\Rightarrow FALSE in the vertex case

- BUT: number of vertices at distance D from a that share the same colours-signs word is at most $2 k$.

Problem

Colours-signs word Lemma
The shortest paths starting at vertex a, of length D and colours-signs word ω all end in the same vertex b.
\Rightarrow FALSE in the vertex case

- BUT: number of vertices at distance D from a that share the same colours-signs word is at most $2 k$.
- There are at most $g(k)=O\left(k \cdot 3^{k}\right)$ vertices at a given distance of vertex a.

Lower bound

In a graph vertex-coverable by k shortest paths, the number of vertices at same distance of a source is upper bounded by $g(k)$.

- We have shown that $g(k)=O\left(k \cdot 3^{k}\right)$.
- Lower bound : $g(k) \geq 2^{k}$

Conclusion

- NP-completeness on chordal graphs
- Approximation algorithm on several classes
- FPT algorithm by solution size on chordal graphs
- Bounding the treewidth by a function of solution size
- FPT algorithm by solution size when terminals fixed
- XP algorithm by solution size when terminals free

Conclusion

- NP-completeness on chordal graphs
- Approximation algorithm on several classes
- FPT algorithm by solution size on chordal graphs
- Bounding the treewidth by a function of solution size
- FPT algorithm by solution size when terminals fixed
- XP algorithm by solution size when terminals free

Open problems

- Complexity on interval graphs, split graphs... Planar graphs?
- Constant factor approximation algorithm for all graphs?
- Is Isometric Path Cover FPT or W[1]-hard? (sol. size)
- Can we improve the bound on the treewidth? Polynomial?
- Approximation for Isometric Path Partition?

Conclusion

- NP-completeness on chordal graphs
- Approximation algorithm on several classes
- FPT algorithm by solution size on chordal graphs
- Bounding the treewidth by a function of solution size
- FPT algorithm by solution size when terminals fixed
- XP algorithm by solution size when terminals free

Open problems

- Complexity on interval graphs, split graphs... Planar graphs?
- Constant factor approximation algorithm for all graphs?
- Is Isometric Path Cover FPT or W[1]-hard? (sol. size)
- Can we improve the bound on the treewidth? Polynomial?
- Approximation for Isometric Path Partition?

