Covering a graph using shortest paths

Florent Foucaud¹

joint work with:

Dibyayan Chakraborty², Antoine Dailly¹, Sandip Das³, Harmender Gahlawat⁴, Subir Kumar Ghosh⁵
AND

Maël Dumas⁶, Anthony Perez⁶, Ioan Todinca⁶
AND

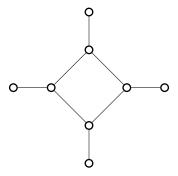
Dibyayan Chakraborty², Jérémie Chalopin⁷, Yann Vaxès⁷

¹ LIMOS, Université Clermont-Auvergne, Clermont-Ferrand, France
 ² University of Leeds, United Kingdom
 ³ Indian Statistical Institute, Kolkata, India
 ⁴ G-SCOP, Université Grenoble-Alpes, France
 ⁵ Ramakrishna Mission Vivekananda Edu. and Res. Institute, Kolkata, India
 ⁶ LIFO, Université d'Orléans, Orléans, France
 ⁷ LIS. Université d'Aix-Marseille, France

isometric path = shortest path between its endpoints

Isometric Path Cover

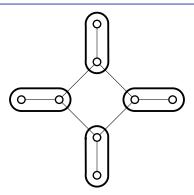
A set of shortest paths covering every vertex from a graph.



isometric path = shortest path between its endpoints

Isometric Path Cover

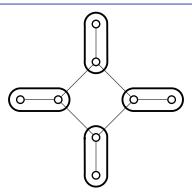
A set of shortest paths covering every vertex from a graph.



isometric path = shortest path between its endpoints

Isometric Path Cover

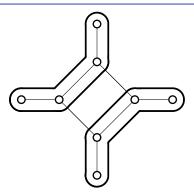
A set of shortest paths covering every vertex from a graph. We want to minimize the number of paths.



isometric path = shortest path between its endpoints

Isometric Path Cover

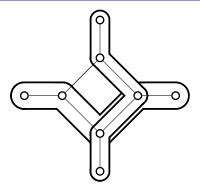
A set of shortest paths covering every vertex from a graph. We want to minimize the number of paths.



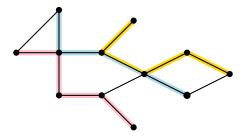
isometric path = shortest path between its endpoints

Isometric Path Cover

A set of shortest paths covering every vertex from a graph. We want to minimize the number of paths.



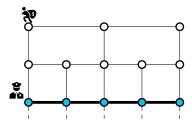
Covering a city by bus routes



ightarrow The shortest paths represent optimal bus routes

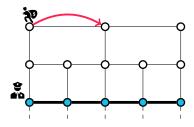
Cops and robber game: k cops and one robber are placed on a graph, and alternate their moves (along edges of the graph). The cops win if they can eventually catch the robber.

Lemma [Aigner & Fromme, 1983]



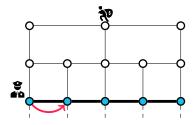
Cops and robber game: k cops and one robber are placed on a graph, and alternate their moves (along edges of the graph). The cops win if they can eventually catch the robber.

Lemma [Aigner & Fromme, 1983]



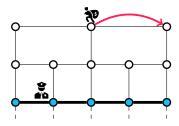
Cops and robber game: k cops and one robber are placed on a graph, and alternate their moves (along edges of the graph). The cops win if they can eventually catch the robber.

Lemma [Aigner & Fromme, 1983]



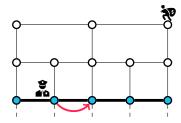
Cops and robber game: k cops and one robber are placed on a graph, and alternate their moves (along edges of the graph). The cops win if they can eventually catch the robber.

Lemma [Aigner & Fromme, 1983]



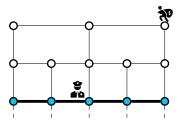
Cops and robber game: k cops and one robber are placed on a graph, and alternate their moves (along edges of the graph). The cops win if they can eventually catch the robber.

Lemma [Aigner & Fromme, 1983]



Cops and robber game: k cops and one robber are placed on a graph, and alternate their moves (along edges of the graph). The cops win if they can eventually catch the robber.

Lemma [Aigner & Fromme, 1983]



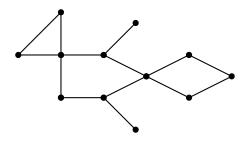
Cops and robber game: k cops and one robber are placed on a graph, and alternate their moves (along edges of the graph). The cops win if they can eventually catch the robber.

Lemma [Aigner & Fromme, 1983]

In cops and robber, one cop can "protect" a shortest path.

⇒ The minimum size of an Isometric Path Cover is an upper bound for the number of cops required to catch the robber

Formal problem statement

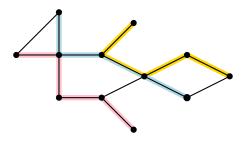


ISOMETRIC PATH COVER (IPC)

Input: A graph G and an integer k.

Question : Is there a set of k shortest paths of G, such that each vertex of G belongs to at least one of the shortest paths?

Formal problem statement



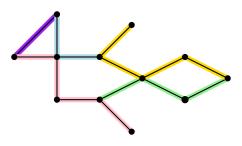
ISOMETRIC PATH COVER (IPC)

Input: A graph G and an integer k.

Question: Is there a set of k shortest paths of G, such that each

vertex of G belongs to at least one of the shortest paths?

Formal problem statement



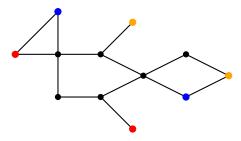
ISOMETRIC PATH COVER (IPC)

Input: A graph G and an integer k.

Question: Is there a set of k shortest paths of G, such that each vertex of G belongs to at least one of the shortest raths?

vertex of G belongs to at least one of the shortest paths?

with terminals



ISOMETRIC PATH COVER WITH TERMINALS (IPC WITH TERMINALS)

Input: A graph G, and k pairs of vertices $(s_1, t_1), \ldots, (s_k, t_k)$, the terminals.

Question : Is there a set of k shortest paths of G, the ith path being an s_i - t_i shortest path, such that each vertex of G belongs to at least one of the shortest paths ?

Algorithmic questions

A c-approximation algorithm for a given problem is a polynomial-time algorithm producing a feasible solution whose value is at most c times the optimum.

A problem with parameter k is called **FPT** (fixed-parameter tractable) if it has an algorithm of complexity $f(k) \cdot n^{O(1)}$. It is called **XP** if it has an algorithm with running time $n^{f(k)}$.

Questions

- ► Is IPC polynomial-time solvable?
- ► If not, is it approximable?
- ► Are IPC and IPC WITH TERMINALS FPT? Or at least XP?

Related problems

Covering:

► PATH COVER (NP-c for 1 path : HAMILTONIAN PATH)

Related problems

Covering:

► PATH COVER (NP-c for 1 path : HAMILTONIAN PATH)

Packing (with terminals):

- ▶ k DISJOINT PATHS (NP-c [Karp, 1975], FPT algorithm: $f(k)n^3$ [Robertson & Seymour, 1995])
- ▶ k DISJOINT SHORTEST PATHS (W[1]-hard, XP algorithm: $O(kn^{16k \cdot k! + k + 1})$ [Bentert *et al.*, 2021])

Related problems

Covering:

► PATH COVER (NP-c for 1 path : HAMILTONIAN PATH)

Packing (with terminals):

- ▶ k DISJOINT PATHS (NP-c [Karp, 1975], FPT algorithm: $f(k)n^3$ [Robertson & Seymour, 1995])
- ▶ k DISJOINT SHORTEST PATHS (W[1]-hard, XP algorithm: $O(kn^{16k \cdot k! + k + 1})$ [Bentert *et al.*, 2021])

Partitioning:

► ISOMETRIC PATH PARTITION (NP-c [Manuel, 2021])

State of the art on ISOMETRIC PATH COVER

Surprisingly few results!

State of the art on ISOMETRIC PATH COVER

Surprisingly few results!

Exact values

- ► Trees, cycles, complete bipartite graphs, several cartesian products of paths [Fitzpatrick, 1997 & 1999]
- ► Some hypercubes [Fitzpatrick et al, 2001]
- ► Complete *k*-partite graphs [Pan & Chang, 2006]
- ► Some cartesian products [Manuel, 2018]

State of the art on ISOMETRIC PATH COVER

Surprisingly few results!

Exact values

- ► Trees, cycles, complete bipartite graphs, several cartesian products of paths [Fitzpatrick, 1997 & 1999]
- ► Some hypercubes [Fitzpatrick et al, 2001]
- ► Complete *k*-partite graphs [Pan & Chang, 2006]
- ► Some cartesian products [Manuel, 2018]

Algorithms

- ► Linear-time algorithm for block graphs [Pan & Chang, 2005]
- ▶ poly-time log(d)-approximation for graphs of diameter d [Thiessen & Gaertner, 2021]

NP-hardness

 $\label{eq:sometric} {\rm Isometric} \ \ {\rm Path} \ \ {\rm Cover} \ \ \mbox{is NP-complete, even on chordal} \\ {\rm graphs \ with \ a \ dominating \ vertex}.$

NP-hardness

 $\label{eq:sometric} {\rm Isometric} \ \ {\rm Path} \ \ {\rm Cover} \ \ \mbox{is NP-complete, even on chordal} \\ {\rm graphs \ with \ a \ dominating \ vertex}.$

Approximation for chordal graphs (and beyond)

Polynomial-time 4-approximation algorithm on chordal graphs.

NP-hardness

 $\label{eq:sometric} {\rm Isometric} \ \ {\rm Path} \ \ {\rm Cover} \ \ \mbox{is NP-complete, even on chordal} \\ {\rm graphs \ with \ a \ dominating \ vertex}.$

Approximation for chordal graphs (and beyond)

Polynomial-time 4-approximation algorithm on chordal graphs.

FPT for chordal graphs

Exact algorithm in $2^{k2^{\mathcal{O}(tw)}}n$ and $2^{2^{\mathcal{O}(k)}}n$ on chordal graphs $(k=\text{solution size},\ tw=\text{treewidth}).$

NP-hardness

Approximation for chordal graphs (and beyond)

Polynomial-time 4-approximation algorithm on chordal graphs.

FPT for chordal graphs

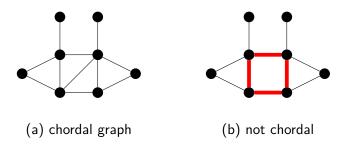
Exact algorithm in $2^{k2^{\mathcal{O}(\mathsf{tw})}}n$ and $2^{2^{\mathcal{O}(k)}}n$ on chordal graphs $(k = \mathsf{solution} \ \mathsf{size}, \ tw = \mathsf{treewidth}).$

XP algorithm in general

Structural result: $IPC = k \Rightarrow tw \le f(k)$. This implies a $g(k)n^k$ XP algorithm for ISOMETRIC PATH COVER.

Chordal graphs

chordal graph: every cycle of length \geq 4 has a chord



Important graph class in structural graph theory (perfect graphs, treewidth)

- \rightarrow efficient algorithms
- \rightarrow applications : biology (perfect phylogeny), hollow matrices, semidefinite program optimisation...

NP-completeness

chordal graph: every cycle of length at least 4 has a chord

Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]

ISOMETRIC PATH COVER is NP-complete, even on chordal graphs with a dominating vertex.

NP-completeness

chordal graph: every cycle of length at least 4 has a chord

Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]

ISOMETRIC PATH COVER is NP-complete, even on chordal graphs with a dominating vertex.

Proof

Reduction from INDUCED P_3 -Partition (NP-complete even on chordal graphs with 3k vertices [van Bevern et al., 2017])

NP-completeness

chordal graph: every cycle of length at least 4 has a chord

Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]

ISOMETRIC PATH COVER is NP-complete, even on chordal graphs with a dominating vertex.

Proof

Reduction from INDUCED P_3 -Partition (NP-complete even on chordal graphs with 3k vertices [van Bevern et al., 2017])

We are looking for an ISOMETRIC PATH COVER of size k + 1.

A general approximation algorithm

Theorem [Gärtner-Thiessen, NeurIPS 2021]

log *n*-approximation algorithm for ISOMETRIC PATH COVER. (Motivation: "active learning of convex halfspaces")

A general approximation algorithm

Theorem [Gärtner-Thiessen, NeurIPS 2021]

log *n*-approximation algorithm for ISOMETRIC PATH COVER. (Motivation: "active learning of convex halfspaces")

SET COVER (cover a set X of n elements with a minimum-size subset of sets from a collection S) has an $O(\log n)$ -approximation.

 $Reduction\ idea:\ sets = shortest\ paths,\ elements = graph's\ vertices.$

BUT: a direct reduction to ${\rm SET}\ {\rm COVER}$ would require exponential time, since there may be exponentially many shortest paths.

A general approximation algorithm

Theorem [Gärtner-Thiessen, NeurIPS 2021]

 $\log n$ -approximation algorithm for ISOMETRIC PATH COVER. (Motivation: "active learning of convex halfspaces")

SET COVER (cover a set X of n elements with a minimum-size subset of sets from a collection S) has an $O(\log n)$ -approximation.

 $Reduction\ idea:\ sets = shortest\ paths,\ elements = graph's\ vertices.$

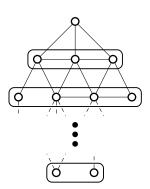
BUT: a direct reduction to Set Cover would require exponential time, since there may be exponentially many shortest paths.

Proof of theorem: Emulate the greedy Set Cover approximation algorithm:

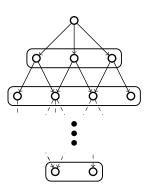
- ▶ While there remain some uncovered vertices do:
 - ► Find shortest path covering the most uncovered vertices (use modified Dijkstra algorithm)
 - Add it to the solution

Part 1: approximation algorithm for chordal graphs and beyond

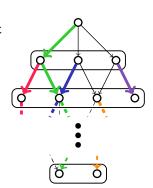
 Do a Breadth-First Search (BFS) of G (from any vertex)



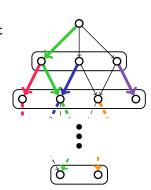
- Do a Breadth-First Search (BFS) of G (from any vertex)
- 2. Search graph \equiv Hasse diagram of a **poset**



- Do a Breadth-First Search (BFS) of G (from any vertex)
- 2. Search graph \equiv Hasse diagram of a **poset** \Rightarrow Optimal **chain covering** \mathcal{C}_{min} of poset \mathcal{C}_{min} can be computed optimally in polytime using flows [Fulkerson, 1956]



- Do a Breadth-First Search (BFS) of G (from any vertex)
- 2. Search graph \equiv Hasse diagram of a **poset** \Rightarrow Optimal **chain covering** \mathcal{C}_{min} of poset \mathcal{C}_{min} can be computed optimally in polytime using flows [Fulkerson, 1956]
- 3. $|\mathcal{C}_{\min}| = |A_{\max}|$ [Dilworth, 1950] where A_{max} is a largest **poset antichain**



- Do a Breadth-First Search (BFS) of G (from any vertex)
- 2. Search graph \equiv Hasse diagram of a **poset** \Rightarrow Optimal **chain covering** \mathcal{C}_{min} of poset \mathcal{C}_{min} can be computed optimally in polytime using flows [Fulkerson, 1956]
- 3. $|\mathcal{C}_{\min}| = |A_{\max}|$ [Dilworth, 1950] where A_{max} is a largest **poset antichain**
- 4. **Our main idea:** If any isometric path can contain at most ℓ vertices of any antichain, then the algorithm gives an ℓ -approximation: $OPT \geq \frac{|A_{\max}|}{\ell}$.

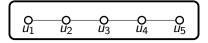
So,
$$|SOL| = |C_{min}| = |A_{max}| \le \ell \cdot OPT$$
.



No shortest path can contain 5 antichain vertices (proof by contradiction)

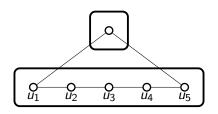
No shortest path can contain 5 antichain vertices

(proof by contradiction)



No shortest path can contain 5 antichain vertices

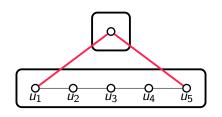
(proof by contradiction)



No shortest path can contain 5 antichain vertices

(proof by contradiction)

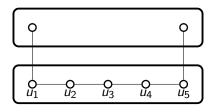
Case 1: a shortest path contains 5 vertices of an antichain on the same level of the search graph



Impossible since u_1, \ldots, u_5 in a shortest path

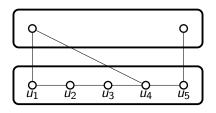
No shortest path can contain 5 antichain vertices

(proof by contradiction)



No shortest path can contain 5 antichain vertices

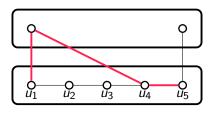
(proof by contradiction)



No shortest path can contain 5 antichain vertices

(proof by contradiction)

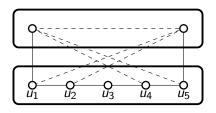
Case 1: a shortest path contains 5 vertices of an antichain on the same level of the search graph



Impossible since u_1, \ldots, u_5 in a shortest path

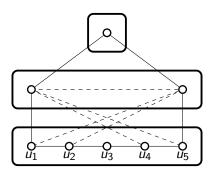
No shortest path can contain 5 antichain vertices

(proof by contradiction)



No shortest path can contain 5 antichain vertices

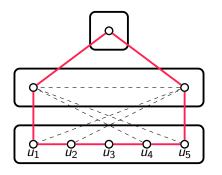
(proof by contradiction)



No shortest path can contain 5 antichain vertices

(proof by contradiction)

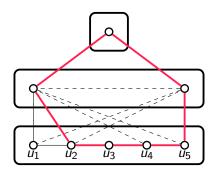
Case 1: a shortest path contains 5 vertices of an antichain on the same level of the search graph



Impossible since the graph is chordal

No shortest path can contain 5 antichain vertices

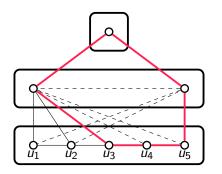
(proof by contradiction)



Impossible since the graph is chordal

No shortest path can contain 5 antichain vertices

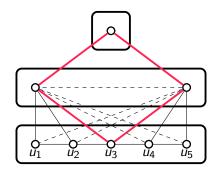
(proof by contradiction)



Impossible since the graph is chordal

No shortest path can contain 5 antichain vertices

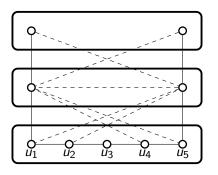
(proof by contradiction)



Impossible since the graph is chordal

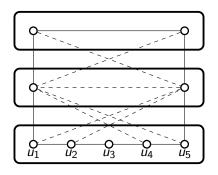
No shortest path can contain 5 antichain vertices

(proof by contradiction)



No shortest path can contain 5 antichain vertices

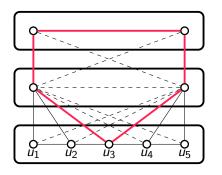
(proof by contradiction)



No shortest path can contain 5 antichain vertices

(proof by contradiction)

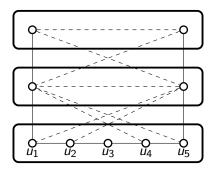
Case 1: a shortest path contains 5 vertices of an antichain on the same level of the search graph



Impossible since the graph is chordal

No shortest path can contain 5 antichain vertices

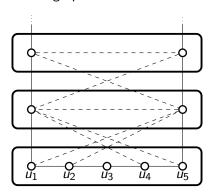
(proof by contradiction)



No shortest path can contain 5 antichain vertices

(proof by contradiction)

Case 1: a shortest path contains 5 vertices of an antichain on the same level of the search graph

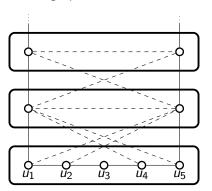


Impossible to have a common ancestor \Rightarrow contradiction

No shortest path can contain 5 antichain vertices

(proof by contradiction)

Case 1: a shortest path contains 5 vertices of an antichain on the same level of the search graph



Impossible to have a common ancestor \Rightarrow contradiction

→ Other cases follow a similar reasoning

Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]

The algorithm yields the following approximation ratios:

▶ 4 on chordal graphs

Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]

The algorithm yields the following approximation ratios:

- ► 4 on chordal graphs
- ► 3 on interval graphs
- ► 2 on proper interval graphs

Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]

The algorithm yields the following approximation ratios:

- ► 4 on chordal graphs
- ► 3 on interval graphs
- ▶ 2 on proper interval graphs
- ▶ k + 7 on k-chordal graphs (with $k \ge 4$)
- ▶ $6\ell + 2$ on graphs of treelength at most ℓ

Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]

The algorithm yields the following approximation ratios:

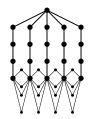
- ► 4 on chordal graphs → tight
- ► 3 on interval graphs → tight
- ► 2 on proper interval graphs → tight
- ▶ k + 7 on k-chordal graphs (with $k \ge 4$)
- ▶ $6\ell + 2$ on graphs of treelength at most ℓ

Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]

The algorithm yields the following approximation ratios:

- ► 4 on chordal graphs → tight
- ▶ 3 on interval graphs \rightarrow tight
- ► 2 on proper interval graphs → tight
- \blacktriangleright k+7 on k-chordal graphs (with $k \ge 4$)
- ▶ $6\ell + 2$ on graphs of treelength at most ℓ

General graphs (*n* vertices): the algorithm can yield $\Omega(\sqrt{n})$ -factor



A new graph parameter: IPCO

isometric path complexity of graph G

Minimum integer k such that there exists $v \in V(G)$ s.t: the vertices of any isometric path P of G can be covered by k many v-rooted isometric paths. \rightarrow Denoted ipco(G)

A new graph parameter: IPCO

isometric path complexity of graph ${\mathcal G}$

Minimum integer k such that there exists $v \in V(G)$ s.t: the vertices of any isometric path P of G can be covered by k many v-rooted isometric paths. \rightarrow Denoted ipco(G)

Equal to max. number of antichain vertices in an isometric path!

A new graph parameter: IPCO

isometric path complexity of graph G

Minimum integer k such that there exists $v \in V(G)$ s.t: the vertices of any isometric path P of G can be covered by k many v-rooted isometric paths. \rightarrow Denoted ipco(G)

Equal to max. number of antichain vertices in an isometric path!

Theorem [Chakraborty, Chalopin, F, Vaxès 2023]

ipco(G) can be computed in time $O(n^2m)$

A new graph parameter: IPCO

isometric path complexity of graph G

Minimum integer k such that there exists $v \in V(G)$ s.t: the vertices of any isometric path P of G can be covered by k many v-rooted isometric paths. \rightarrow Denoted ipco(G)

Equal to max. number of antichain vertices in an isometric path!

Theorem [Chakraborty, Chalopin, F, Vaxès 2023]

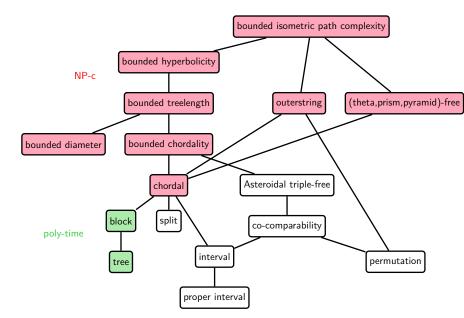
ipco(G) can be computed in time $O(n^2m)$

Theorem [Chakraborty, Chalopin, F, Vaxès 2023]

ipco(G) is bounded for:

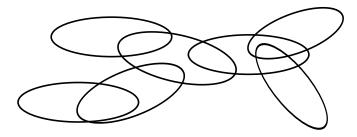
- ► graphs of bounded hyperbolicity
- outerstring graphs
- ► (theta, prism, pyramid)-free graphs

Graph classes where IPC is constant-factor approximable

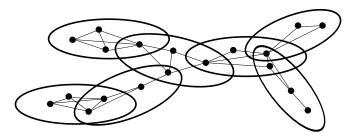


Part 2: relation with tree-width

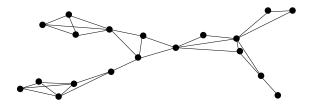
Graphs of tree-width k: look like a tree where each edge is replaced by a set of k vertices



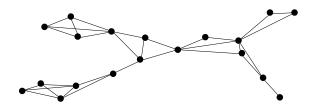
Graphs of tree-width k: look like a tree where each edge is replaced by a set of k vertices



Graphs of tree-width k: look like a tree where each edge is replaced by a set of k vertices



Graphs of tree-width k: look like a tree where each edge is replaced by a set of k vertices



For graphs of treewidth k and n vertices, many problems can be solved in time f(k)poly(n), for some (potentially exponential) function k

 \rightarrow dynamic programming on the tree-like structure \rightarrow Courcelle's theorem (1990)

FPT algorithm for chordal graphs using tree-width

Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]

IPC can be solved in time $2^{k2^{\mathcal{O}(w)}}n$ and $2^{2^{\mathcal{O}(k)}}n$ on chordal graphs $(k = \text{solution size}, \ w = \text{treewidth}).$

- ▶ Dynamic programming on tree decomposition. For chordal graphs: *TW* = Clique Number-1.
- ► Each solution path can contain at most 2 vertices from each clique. So $k \ge \frac{TW+1}{2}$.
- ► Hence, FPT algorithm by *TW* implies FPT algorithm by solution size.

FPT algorithm for chordal graphs using tree-width

Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]

IPC can be solved in time $2^{k2^{\mathcal{O}(w)}}n$ and $2^{2^{\mathcal{O}(k)}}n$ on chordal graphs $(k=\text{solution size},\ w=\text{treewidth}).$

- ightharpoonup close(X, y): vertices in X which are closer to y.
- ▶ Main idea: P is isometric \iff for every vertex v of P and clique X intersecting P, P contains exactly one vertex from $V(P) \cap X$ in close(X, v)

FPT algorithm for chordal graphs using tree-width

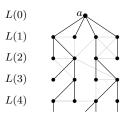
Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]

IPC can be solved in time $2^{k2^{\mathcal{O}(w)}}n$ and $2^{2^{\mathcal{O}(k)}}n$ on chordal graphs $(k = \text{solution size}, \ w = \text{treewidth}).$

- ightharpoonup close(X, y): vertices in X which are closer to y.
- ▶ Main idea: P is isometric \iff for every vertex v of P and clique X intersecting P, P contains exactly one vertex from $V(P) \cap X$ in close(X, v)
- \blacktriangleright For each bag X and vertex y, the DP table maintains:
 - ► the intersection between each path and *X* (at most 2 vertices per path)
 - for each path intersecting X, if it continues "above" or "below" X
 - for each path, if it has already been used entierly "below" or not
 - for each path P_i and each subset S of X, if there is a vertex y "above" and "below" with close(X, y) = S

Theorem [Dumas, F, Perez, Todinca 2022]

If G is coverable by k shortest paths then, for any vertex a and any fixed distance D, the number of vertices at distance exactly D from a is upper bounded by $g(k) = O(k \cdot 3^k)$.



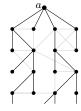
Theorem [Dumas, F, Perez, Todinca 2022]

If G is coverable by k shortest paths then, for any vertex a and any fixed distance D, the number of vertices at distance exactly D from a is upper bounded by $g(k) = O(k \cdot 3^k)$.

Corollary

G is of **treewidth** at most $2 \cdot g(k)$.

- L(0)
- L(1)
 - L(2)
- L(3)
- L(4)



Theorem [Dumas, F, Perez, Todinca 2022]

If G is coverable by k shortest paths then, for any vertex a and any fixed distance D, the number of vertices at distance exactly D from a is upper bounded by $g(k) = O(k \cdot 3^k)$.

Corollary

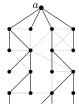
G is of **treewidth** at most $2 \cdot g(k)$.

 $L(0) \\ L(1)$

L(1) L(2)

 Decomposition based on a breadth-first search (BFS). L(3)

L(4)



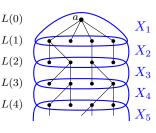
Theorem [Dumas, F, Perez, Todinca 2022]

If G is coverable by k shortest paths then, for any vertex a and any fixed distance D, the number of vertices at distance exactly D from a is upper bounded by $g(k) = O(k \cdot 3^k)$.

Corollary

G is of **treewidth** at most $2 \cdot g(k)$.

- Decomposition based on a breadth-first search (BFS).
- ► Each bag: two consecutive layers.



Algorithmic consequences

Theorem [Dumas, F, Perez, Todinca 2022]

IPC WITH TERMINALS is **FPT**, with running time $O(f(k) \cdot n)$.

Algorithmic consequences

Theorem [Dumas, F, Perez, Todinca 2022]

IPC WITH TERMINALS is **FPT**, with running time $O(f(k) \cdot n)$.

- ► Yes-instances have bounded treewidth by the corollary
- Courcelle's theorem to solve this problem on bounded treewidth graphs.

Algorithmic consequences

Theorem [Dumas, F, Perez, Todinca 2022]

IPC WITH TERMINALS is **FPT**, with running time $O(f(k) \cdot n)$.

- Yes-instances have bounded treewidth by the corollary
- Courcelle's theorem to solve this problem on bounded treewidth graphs.

Corollary

IPC is **XP** for parameter k: $f(k) \cdot n^{O(k)}$.

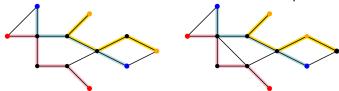
► Brute force: try all possible pairs of *k* terminals + above theorem

IPC with Terminals is FPT

Theorem [Courcelle, 1990]

Every problem expressible in $MSOL_2$ can be solved in $f(w) \cdot n$ time on graphs of treewidth at most w.

- ► Compute a tree decomposition by BFS. If w > 2g(k) return false.
- ▶ Express in MSOL₂: "find paths $P_1, ..., P_k$ s.t. $\forall i, s_i, t_i \in P_i$, each vertex of G is covered". Minimize sum of paths' lengths.

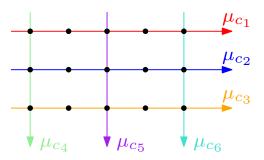


- ► Use Courcelle's theorem to solve the problem (optimization version).
- ▶ If $\forall i, |P_i| = dist(s_i, t_i)$ then answer true, else answer false.

Proof sketch: base paths colouring

Base paths : the k shortest paths μ_1, \ldots, μ_k that cover the graph To each base path μ_c we give :

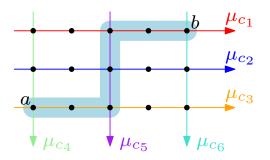
- ► A colour c, $1 \le c \le k$,
- ► An arbitrary direction.



Each edge of the graph receives a set of colours colours(e) $\subseteq \{1, ..., k\}$.

Colouring of a path

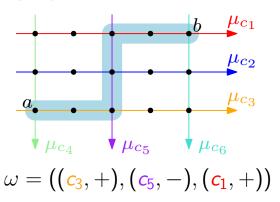
Given a path P from a to b, we can pick for each edge one of its possible colours, it is a colouring col of P. (P, col) is a coloured path



Colours-signs word

 (P, col) can be divided in monochromatic subpaths. These subpaths induce either a " + " sign or a " - " sign w.r.t. the direction of the base path.

We associate to (P, col) with colours $\{c_1, \ldots, c_\ell\}$ a colours-signs word $\omega = ((c_1, s_1), \ldots, (c_\ell, s_\ell))$ on the alphabet $\{1, \ldots, k\} \times \{+, -\}$.



(P, col) is well-coloured if the set of edges using a colour c form a **connected subpath** of P.

A path well-coloured:

A path not well-coloured :

Good colouring Lemma

For every pair of vertices a, b of G, there exists a **shortest** well-coloured a-b path.

Good colouring Lemma

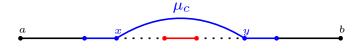
For every pair of vertices a, b of G, there exists a **shortest** well-coloured a-b path.

If a a-b shortest path (P, col) isn't well-coloured :

Good colouring Lemma

For every pair of vertices a, b of G, there exists a **shortest** well-coloured a-b path.

If a a-b shortest path (P, col) isn't well-coloured :

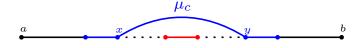


 \Rightarrow Replace P[x, y] by $\mu_c[x, y]$.

Good colouring Lemma

For every pair of vertices a, b of G, there exists a **shortest** well-coloured a-b path.

If a a-b shortest path (P, col) isn't well-coloured :

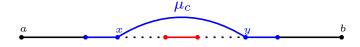


 \Rightarrow Replace P[x,y] by $\mu_c[x,y]$. The constructed path is still a shortest path $(|\mu_c[x,y]| \leq |P[x,y]|)$.

Good colouring Lemma

For every pair of vertices a, b of G, there exists a **shortest** well-coloured a-b path.

If a a-b shortest path (P, col) isn't well-coloured :



 \Rightarrow Replace P[x,y] by $\mu_c[x,y]$. The constructed path is still a shortest path $(|\mu_c[x,y]| \le |P[x,y]|)$.

The number of possible colours-signs words is upper-bounded by $g(k) = O(3^k)$.

The bound for isometric path edge-covers

Multiple shortest paths of same length may have the same colours-signs word :

The bound for isometric path edge-covers

Multiple shortest paths of same length may have the same colours-signs word :

Colours-signs word Lemma

The shortest paths starting at a vertex a, of length D and colours-signs word ω all end at the same vertex b.

The bound for isometric path edge-covers

Multiple shortest paths of same length may have the same colours-signs word :

Colours-signs word Lemma

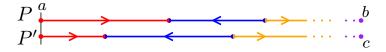
The shortest paths starting at a vertex a, of length D and colours-signs word ω all end at the same vertex b.

Theorem [Dumas, F, Perez, Todinca 2022]

For any vertex a and any fixed distance D, the number of vertices at distance exactly D from a is upper bounded by g(k) (the number of colours-signs words).

Let b and c be vertices at distance D from vertex a. Let (P, col), (P', col') be two well-coloured shortest a-b and a-c paths.

Claim: If they have the same colours-signs word, then b = c.

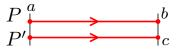


Let b and c be vertices at distance D from vertex a. Let (P, col), (P', col') be two well-coloured shortest a-b and a-c paths.

Claim: If they have the same colours-signs word, then b = c.

Proof by induction on the number of letters ℓ of the colours-signs word.

If $\ell=1$



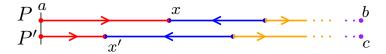
dist(a, b) = dist(a, c) thus b = c.

Let b and c be vertices at distance D from vertex a. Let (P, col), (P', col') be two well-coloured shortest a-b and a-c paths.

Claim: If they have the same colours-signs word, then b = c.

Proof by induction on the number of letters ℓ of the colours-signs word.

If $\ell > 1$



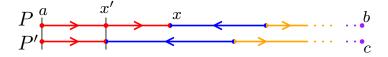
Take P the path with the longest subpath of the colour c_1 .

Let b and c be vertices at distance D from vertex a. Let (P, col), (P', col') be two well-coloured shortest a-b and a-c paths.

Claim: If they have the same colours-signs word, then b = c.

Proof by induction on the number of letters ℓ of the colours-signs word.

If $\ell > 1$



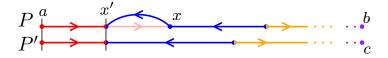
The vertex x' is in the path $\mu_{c_1}[a,x]$, thus in the path P

Let b and c be vertices at distance D from vertex a. Let (P, col), (P', col') be two well-coloured shortest a-b and a-c paths.

Claim: If they have the same colours-signs word, then b = c.

Proof by induction on the number of letters ℓ of the colours-signs word.

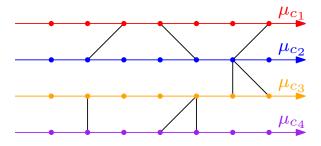
If $\ell > 1$



Replace P[x',x] by $\mu_{c_2}[x',x]$. P[x',b] and P'[x',c] have $\ell-1$ colours, by the induction hypothesis, b=c.

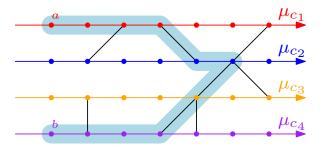
Vertex-covering case: colouring of a path

A colour and a direction given to each base path.



Vertex-covering case: colouring of a path

A colour and a direction given to each base path.



A colouring **col** associate to each vertex $v \in P$ a colour $c \in \text{colours}(v)$.

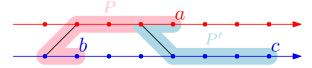
Colours-signs words are defined the same way as in the edge case.

Colours-signs word Lemma

The shortest paths starting at vertex a, of length D and colours-signs word ω all end in the same vertex b.

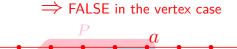
Colours-signs word Lemma

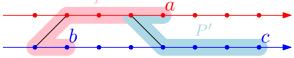
The shortest paths starting at vertex a, of length D and colours-signs word ω all end in the same vertex b.



Colours-signs word Lemma

The shortest paths starting at vertex a, of length D and colours-signs word ω all end in the same vertex b.



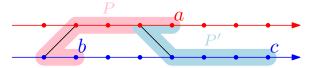


▶ BUT: number of vertices at distance D from a that share the same colours-signs word is at most 2k.

Colours-signs word Lemma

The shortest paths starting at vertex a, of length D and colours-signs word ω all end in the same vertex b.

 \Rightarrow FALSE in the vertex case

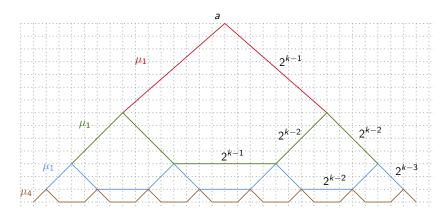


- ▶ BUT: number of vertices at distance D from a that share the same colours-signs word is at most 2k.
- ► There are at most $g(k) = O(k \cdot 3^k)$ vertices at a given distance of vertex a.

Lower bound

In a graph vertex-coverable by k shortest paths, the number of vertices at same distance of a source is upper bounded by g(k).

- ▶ We have shown that $g(k) = O(k \cdot 3^k)$.
- ▶ Lower bound : $g(k) \ge 2^k$



Conclusion

- ► NP-completeness on chordal graphs
- ► Approximation algorithm on several classes
- ► FPT algorithm by solution size on chordal graphs
- ► Bounding the treewidth by a function of solution size
- ► FPT algorithm by solution size when terminals fixed
- ► XP algorithm by solution size when terminals free

Conclusion

- ► NP-completeness on chordal graphs
- ► Approximation algorithm on several classes
- ► FPT algorithm by solution size on chordal graphs
- ▶ Bounding the treewidth by a function of solution size
- ► FPT algorithm by solution size when terminals fixed
- ► XP algorithm by solution size when terminals free

Open problems

- ► Complexity on interval graphs, split graphs... Planar graphs?
- ► Constant factor approximation algorithm for all graphs?
- ► Is ISOMETRIC PATH COVER FPT or W[1]-hard? (sol. size)
- ► Can we improve the bound on the treewidth? Polynomial?
- ► Approximation for ISOMETRIC PATH PARTITION?

Conclusion

- ► NP-completeness on chordal graphs
- ► Approximation algorithm on several classes
- ► FPT algorithm by solution size on chordal graphs
- ▶ Bounding the treewidth by a function of solution size
- ► FPT algorithm by solution size when terminals fixed
- ► XP algorithm by solution size when terminals free

Open problems

- ► Complexity on interval graphs, split graphs... Planar graphs?
- ► Constant factor approximation algorithm for all graphs?
- ► Is ISOMETRIC PATH COVER FPT or W[1]-hard? (sol. size)
- ► Can we improve the bound on the treewidth? Polynomial?
- ► Approximation for ISOMETRIC PATH PARTITION?

THANK YOU!