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Definitions
isometric path = shortest path between its endpoints

Isometric Path Cover]

A set of shortest paths covering every vertex from a graph.
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Covering a city by bus routes

— The shortest paths represent optimal bus routes
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Context: pursuit-evasion problems

Cops and robber game: k cops and one robber are placed on a
graph, and alternate their moves (along edges of the graph). The
cops win if they can eventually catch the robber.

Lemma [Aigner & Fromme, 1983]]

In cops and robber, one cop can "protect" a shortest path.
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Context: pursuit-evasion problems

Cops and robber game: k cops and one robber are placed on a
graph, and alternate their moves (along edges of the graph). The
cops win if they can eventually catch the robber.

Lemma [Aigner & Fromme, 1983]]

In cops and robber, one cop can "protect" a shortest path. ]

=> The minimum size of an Isometric Path Cover is an upper
bound for the number of cops required to catch the robber
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Formal problem statement

P

IsoMETRIC PATH COVER (IPC)

Input : A graph G and an integer k.
Question : Is there a set of k shortest paths of G, such that each
vertex of G belongs to at least one of the shortest paths?
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with terminals

ISOMETRIC PATH COVER WITH TERMINALS (IPC wiTH
TERMINALS)

Input :A graph G, and k pairs of vertices (si, t1),. .., (sk, tk), the
terminals.

Question : Is there a set of k shortest paths of G, the ith path
being an s;-t; shortest path, such that each vertex of G belongs to
at least one of the shortest paths ?
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Algorithmic questions

A c-approximation algorithm for a given problem is a
polynomial-time algorithm producing a feasible solution whose
value is at most ¢ times the optimum.

A problem with parameter k is called FPT (fixed-parameter
tractable) if it has an algorithm of complexity f(k) - n©(),

It is called XP if it has an algorithm with running time nf(¥).

Questions
» Is IPC polynomial-time solvable?
» If not, is it approximable?
» Are IPC and IPC wiTH TERMINALS FPT? Or at least XP 7

8/36



Related problems

Covering:
» PaTH COVER (NP-c for 1 path : HAMILTONIAN PATH)
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» k DISJOINT SHORTEST PaTHs (W[1]-hard,
XP algorithm: O(kn'6kk'+k+1) [Bentert et al., 2021])

Partitioning:
» ISOMETRIC PATH PARTITION (NP-c [Manuel, 2021])
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State of the art on ISOMETRIC PATH COVER

Surprisingly few results!
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Surprisingly few results!

Exact values

P Trees, cycles, complete bipartite graphs, several cartesian
products of paths [Fitzpatrick, 1997 & 1999]

» Some hypercubes [Fitzpatrick et al, 2001]
» Complete k-partite graphs [Pan & Chang, 2006]
» Some cartesian products [Manuel, 2018]

Algorithms

» Linear-time algorithm for block graphs [Pan & Chang, 2005]

» poly-time log(d)-approximation for graphs of diameter d
[Thiessen & Gaertner, 2021]
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(iFPT for chordal graphs]

9 9 O(tw O(k
Exact algorithm in 242 ™ 1 and 229"

(k = solution size, tw = treewidth).

|\ J

,iXP algorithm in general]

n on chordal graphs

Structural result: IPC = k = tw < f(k). This implies a g(k)n*
XP algorithm for ISOMETRIC PATH COVER.
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Chordal graphs

chordal graph: every cycle of length > 4 has a chord

(a) chordal graph (b) not chordal

Important graph class in structural graph theory (perfect graphs,
treewidth)

— efficient algorithms

— applications : biology (perfect phylogeny), hollow matrices,
semidefinite program optimisation...
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NP-completeness
chordal graph: every cycle of length at least 4 has a chord

Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]

IsoMETRIC PATH COVER is NP-complete, even on chordal
graphs with a dominating vertex.
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Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]

IsoMETRIC PATH COVER is NP-complete, even on chordal
graphs with a dominating vertex.

Proof
Reduction from INDUCED P3-PARTITION (NP-complete even on
chordal graphs with 3k vertices [van Bevern et al., 2017])

3k vertices

We are looking for an ISOMETRIC PATH COVER of size k + 1.
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A general approximation algorithm

Theorem [Gartner-Thiessen, NeurlPS 2021]]

log n-approximation algorithm for ISOMETRIC PATH COVER.
(Motivation: “active learning of convex halfspaces”)

SET COVER (cover a set X of n elements with a minimum-size
subset of sets from a collection §) has an O(log n)-approximation.

Reduction idea: sets = shortest paths, elements = graph's vertices.

BUT: a direct reduction to SET COVER would require exponential
time, since there may be exponentially many shortest paths.

Proof of theorem: Emulate the greedy SET COVER
approximation algorithm:
» While there remain some uncovered vertices do:
» Find shortest path covering the most uncovered vertices
(use modified Dijkstra algorithm)

> Add it to the solution
14/36



Part 1: approximation algorithm
for chordal graphs and beyond
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Approximation algorithm for chordal graphs
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2. Search graph = Hasse diagram of a poset
= Optimal chain covering Cp,i, of poset
Cmin can be computed optimally in

polytime using flows [Fulkerson, 1956] (¥ y \6j
L3}
L

3. |Cmin| = |Amax| [Dilworth, 1950] I
where Apn.x is a largest poset antichain

4. Our main idea: If any isometric path can pa
contain at most /¢ vertices of any (§ O)

antichain, then the algorithm gives an
(-approximation: OPT > %'

S0, |SOL| = [Cumin| = |Amax| < £+ OPT.
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Approximation for chordal graphs: proof idea

No shortest path can contain 5 antichain vertices
(proof by contradiction)
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Approximation for chordal graphs: proof idea

No shortest path can contain 5 antichain vertices
(proof by contradiction)

Case 1: a shortest path contains 5 vertices of an antichain on the
same level of the search graph

Impossible to have a common ancestor = contradiction
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Approximation for chordal graphs: proof idea

No shortest path can contain 5 antichain vertices
(proof by contradiction)

Case 1: a shortest path contains 5 vertices of an antichain on the
same level of the search graph

Impossible to have a common ancestor = contradiction

— Other cases follow a similar reasoning
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» 6/ + 2 on graphs of treelength at most ¢

|\ J

General graphs (n vertices): the algorithm can yield Q (1/n)-factor
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A new graph parameter: IPCO

isometric path complexity of graph G]

Minimum integer k such that there exists v € V(G) s.t:
the vertices of any isometric path P of G can be covered by k
many v-rooted isometric paths. — Denoted ipco(G)
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isometric path complexity of graph G]

Minimum integer k such that there exists v € V(G) s.t:

the vertices of any isometric path P of G can be covered by k
many v-rooted isometric paths. — Denoted ipco(G)

Equal to max. number of antichain vertices in an isometric path!

iTheorem [Chakraborty, Chalopin, F, Vaxes 2023] |

ipco(G) can be computed in time O(n?m)

(.

,_[Theorem [Chakraborty, Chalopin, F, Vaxés 2023]]

ipco(G) is bounded for:
» graphs of bounded hyperbolicity

P outerstring graphs

» (theta, prism, pyramid)-free graphs

J
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Graph classes where IPC is constant-factor approximable

[bounded isometric path complexity]

[ bounded hyperbolicity]

NP-c

bounded treelength [outerstring] [(theta,prism,pyramid)—free

[bounded diameter] [bounded chordality]

Asteroidal triple-free
co-comparability

poly-time

interval
proper interval

permutation
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Part 2: relation with tree-width
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Graphs of bounded tree-width

Graphs of tree-width k: look like a tree where each edge is
replaced by a set of k vertices
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Graphs of bounded tree-width

Graphs of tree-width k: look like a tree where each edge is
replaced by a set of k vertices

For graphs of treewidth k and n vertices, many problems can be
solved in time f(k)poly(n), for some (potentially exponential)
function k.
— dynamic programming on the tree-like structure
— Courcelle’s theorem (1990)

22/36



FPT algorithm for chordal graphs using tree-width

Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]

IPC can be solved in time 22°" n and 22°“ 5 on chordal graphs
(k = solution size, w = treewidth).

» Dynamic programming on tree decomposition. For chordal
graphs: TW = Clique Number-1.

» Each solution path can contain at most 2 vertices from each
clique. So k > %

» Hence, FPT algorithm by TW implies FPT algorithm by

solution size.
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FPT algorithm for chordal graphs using tree-width

Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]

IPC can be solved in time 22°" n and 22°“ 5 on chordal graphs
(k = solution size, w = treewidth).

» close(X,y): vertices in X which are closer to y.
» Main idea: P is isometric <= for every vertex v of P and

clique X intersecting P, P contains exactly one vertex from
V(P)N X in close(X,v)
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FPT algorithm for chordal graphs using tree-width

Theorem [Chakraborty, Dailly, Das, F, Gahlawat, Ghosh 2022]

IPC can be solved in time 22°" n and 22°“ 5 on chordal graphs
(k = solution size, w = treewidth).

» close(X,y): vertices in X which are closer to y.

» Main idea: P is isometric <= for every vertex v of P and
clique X intersecting P, P contains exactly one vertex from
V(P)N X in close(X,v)

» For each bag X and vertex y, the DP table maintains:

> the intersection between each path and X (at most 2 vertices

per path)

» for each path intersecting X, if it continues “above” or
“below” X

» for each path, if it has already been used entierly “below” or
not

» for each path P; and each subset S of X, if there is a vertex y

“above” and "below” with close(X,y) =S
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Combinatorial result

Theorem [Dumas, F, Perez, Todinca 2022]]

If G is coverable by k shortest paths then, for any vertex a and
any fixed distance D, the number of vertices at distance exactly
D from a is upper bounded by
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Combinatorial result

,iTheorem [Dumas, F, Perez, Todinca 2022]]

If G is coverable by k shortest paths then, for any vertex a and
any fixed distance D, the number of vertices at distance exactly
D from a is upper bounded by

|\

Corollary

G is of treewidth at most . ]

NS

~

» Decomposition based on a
breadth-first search (BFS).

» Each bag: two consecutive
layers.

~

~
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Algorithmic consequences
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Algorithmic consequences

Theorem [Dumas, F, Perez, Todinca 2022]]

IPC wiTH TERMINALS is FPT, with running time ) ]

» VYes-instances have bounded treewidth by the corollary

» Courcelle’s theorem to solve this problem on bounded
treewidth graphs.

Corollary

IPC is XP for parameter k: . ]

» Brute force: try all possible pairs of k terminals + above
theorem
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IPC with Terminals is FPT

Theorem [Courcelle, 1990]]

Every problem expressible in MSOL, can be solved in f(w) - n
time on graphs of treewidth at most w.

» Compute a tree decomposition by BFS. If w > 2g(k) return
false.

» Express in MSOL, : "find paths Pq,..., Py s.t. Vi,s;, tj € P;,
each vertex of G is covered". Minimize sum of paths’ lengths.

b ]

» Use Courcelle’s theorem to solve the problem (optimization
version).

» If Vi, |P;| = dist(s;, t;) then answer true, else answer false.
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Proof sketch: base paths colouring

Base paths : the k shortest paths 1, ..., ux that cover the graph
To each base path p. we give :

» A colour ¢, 1 <c <k,
» An arbitrary direction.

Heq

Heco

Each edge of the graph receives a set of colours
colours(e) C {1,..., k}.
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Colouring of a path

Given a path P from a to b, we can pick for each edge one of its
possible colours, it is a colouring col of P.
(P,col) is a coloured path

b Her
Heo
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Colours-signs word
(P, col) can be divided in monochromatic subpaths. These

subpaths induce either a " 4+ " sign or a " — " sign w.r.t. the
direction of the base path.
We associate to (P, col) with colours {c1,..., ¢/} a colours-signs
word w = ((c1,51), .-, (ce,s¢)) on the alphabet
{1,...,k} x {+,—}.
b He
——9o—9¢ —o —o >
Heo
——o—9¢—0o—0o— P
a. ° L L L

29/36



Good colouring of a path

(P, col) is well-coloured if the set of edges using a colour ¢ form a
connected subpath of P.

A path well-coloured :

A path not well-coloured :
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Good colouring of a path

Good colouring Lemma

For every pair of vertices a, b of G, there exists a shortest
well-coloured a-b path.
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Good colouring of a path

Good colouring Lemma

For every pair of vertices a, b of G, there exists a shortest
well-coloured a-b path.

If a a-b shortest path (P, col) isn't well-coloured :

= Replace P[x,y] by pc[x,y].
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Good colouring of a path

Good colouring Lemma

For every pair of vertices a, b of G, there exists a shortest
well-coloured a-b path.

If a a-b shortest path (P, col) isn't well-coloured :

= Replace P[x,y] by pc[x,y].
The constructed path is still a shortest path

(lelx, y1I < [P[x, y1I)-

The number of possible colours-signs words is upper-bounded by
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The bound for isometric path edge-covers

Multiple shortest paths of same length may have the same
colours-signs word :
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The bound for isometric path edge-covers

Multiple shortest paths of same length may have the same
colours-signs word :

Colours-signs word Lemma

The shortest paths starting at a vertex a, of length D and
colours-signs word w all end at the same vertex b.
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The bound for isometric path edge-covers

Multiple shortest paths of same length may have the same
colours-signs word :

Colours-signs word Lemma

The shortest paths starting at a vertex a, of length D and
colours-signs word w all end at the same vertex b.

Theorem [Dumas, F, Perez, Todinca 2022]]

For any vertex a and any fixed distance D, the number of vertices
at distance exactly D from a is upper bounded by (the
number of colours-signs words).
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Proof of the Colours-signs word Lemma

Let b and c be vertices at distance D from vertex a. Let (P, col),
(P’,col’) be two well-coloured shortest a-b and a-c paths.

Claim : If they have the same colours-signs word, then b = c.

a
P . - . b
Pl > < > .. .C
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Proof of the Colours-signs word Lemma

Let b and c be vertices at distance D from vertex a. Let (P, col),
(P’,col’) be two well-coloured shortest a-b and a-c paths.

Claim : If they have the same colours-signs word, then b = c.

Proof by induction on the number of letters ¢ of the colours-signs

word.

Ife=1
P! S b
P’ > c

dist(a, b) = dist(a, c) thus b = c.
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Proof of the Colours-signs word Lemma

Let b and c be vertices at distance D from vertex a. Let (P, col),
(P’,col’) be two well-coloured shortest a-b and a-c paths.

Claim : If they have the same colours-signs word, then b = c.

Proof by induction on the number of letters ¢ of the colours-signs

word.
Ifé>1
P S T . , Db
/ ~ & -0
P r x/ < C

Take P the path with the longest subpath of the colour c;.
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Proof of the Colours-signs word Lemma

Let b and c be vertices at distance D from vertex a. Let (P, col),
(P’,col’) be two well-coloured shortest a-b and a-c paths.

Claim : If they have the same colours-signs word, then b = c.

Proof by induction on the number of letters ¢ of the colours-signs

word.
Ifé>1
a x’ T
P R - . , b
/ S < -0

The vertex x’ is in the path p,[a, x], thus in the path P
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Proof of the Colours-signs word Lemma

Let b and c be vertices at distance D from vertex a. Let (P, col),
(P', col’) be two well-coloured shortest a-b and a-c paths.

Claim : If they have the same colours-signs word, then b = c.

Proof by induction on the number of letters £ of the colours-signs

word.
If¢>1
a x’
P N - < > - ..b
/ >. < > - -0
P T Ty C

Replace P[x’, x] by pc,[x, x].
P[x’, b] and P'[x’, c] have £ — 1 colours, by the induction
hypothesis,
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Vertex-covering case: colouring of a path

A colour and a direction given to each base path.

Heo

Hey
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Vertex-covering case: colouring of a path

A colour and a direction given to each base path.

a ,LLCl
Heo
b Hey

A colouring col associate to each vertex v € P a colour
¢ € colours(v).

Colours-signs words are defined the same way as in the edge case.
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Problem

Colours-signs word Lemma

The shortest paths starting at vertex a, of length D and
colours-signs word w all end in the same vertex b.
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Problem

Colours-signs word Lemma

The shortest paths starting at vertex a, of length D and
colours-signs word w all end in the same vertex b.

=—> FALSE in the vertex case

a

N
A

<
<
<
<
q
q
q
q
v
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Problem
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The shortest paths starting at vertex a, of length D and
colours-signs word w all end in the same vertex b.

=—> FALSE in the vertex case

a

N
A

<
<
<
<
q
q
q
q
v

» BUT: number of vertices at distance D from a that share the
same colours-signs word is at most 2k.
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Problem

Colours-signs word Lemma

The shortest paths starting at vertex a, of length D and
colours-signs word w all end in the same vertex b.

=—> FALSE in the vertex case

a

\
A

<
<
<
<
q
q
q
q
v

» BUT: number of vertices at distance D from a that share the
same colours-signs word is at most 2k.

» There are at most vertices at a given
distance of vertex a.
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Lower bound

In a graph vertex-coverable by k shortest paths, the number of
vertices at same distance of a source is upper bounded by g(k).

> We have shown that g(k) = O(k - 3%).
> Lower bound : g(k) > 2k
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Conclusion

vVvyvVvYyvyy

NP-completeness on chordal graphs

Approximation algorithm on several classes

FPT algorithm by solution size on chordal graphs
Bounding the treewidth by a function of solution size
FPT algorithm by solution size when terminals fixed

XP algorithm by solution size when terminals free
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Complexity on interval graphs, split graphs... Planar graphs?
Constant factor approximation algorithm for all graphs?

Is IsoMETRIC PATH COVER FPT or W[1]-hard? (sol. size)
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Approximation for ISOMETRIC PATH PARTITION?
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NP-completeness on chordal graphs

Approximation algorithm on several classes

FPT algorithm by solution size on chordal graphs
Bounding the treewidth by a function of solution size
FPT algorithm by solution size when terminals fixed

XP algorithm by solution size when terminals free

Open problems

>

>
>
4
>

Complexity on interval graphs, split graphs... Planar graphs?
Constant factor approximation algorithm for all graphs?

Is IsoMETRIC PATH COVER FPT or W[1]-hard? (sol. size)
Can we improve the bound on the treewidth? Polynomial?

Approximation for ISOMETRIC PATH PARTITION?

THANK YOU!
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