Identification problems in graphs

selected topics

Florent Foucaud

LiMÖs
 いの
 université Clermont Auvergne

IPM, April 2024

Locating a burglar

Locating a burglar

Locating a burglar

Locating a burglar

Detectors can detect movement in their room and adjacent rooms

Detectors can detect movement in their room and adjacent rooms

Detectors can detect movement in their room and adjacent rooms

Detectors can detect movement in their room and adjacent rooms

Separating sets in hypergraphs

Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961)
Hypergraph (X, \mathscr{E}). A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

$$
\begin{aligned}
& X=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} \\
& \mathscr{E}=\left\{\left\{v_{1}\right\},\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{4}, v_{5}\right\}\right\}
\end{aligned}
$$

Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961
Hypergraph (X, \mathscr{E}). A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

Equivalently:
for any pair e, f of edges, there is a vertex in C contained in exactly one of e, f.

$$
\begin{aligned}
& X=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} \\
& \mathscr{E}=\left\{\left\{v_{1}\right\},\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{4}, v_{5}\right\}\right\}
\end{aligned}
$$

Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961 은)

Hypergraph (X, \mathscr{E}). A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

Equivalently: for any pair e,f of edges, there is a vertex in C contained in exactly one of e,f.

$$
\begin{aligned}
& X=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} \\
& \mathscr{E}=\left\{\left\{v_{1}\right\},\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{4}, v_{5}\right\}\right\} \\
& C=\left\{v_{5}\right\} \\
& e_{1} \cap C=\emptyset \\
& e_{2} \cap C=\emptyset \\
& e_{3} \cap C=\emptyset \\
& e_{4} \cap C=\left\{v_{5}\right\}
\end{aligned}
$$

Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961 은)

Hypergraph (X, \mathscr{E}). A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

Equivalently: for any pair e,f of edges, there is a vertex in C contained in exactly one of e,f.

$$
\begin{aligned}
& X=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} \\
& \mathscr{E}=\left\{\left\{v_{1}\right\},\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{4}, v_{5}\right\}\right\} \\
& C=\left\{v_{5}, v_{2}\right\} \\
& e_{1} \cap C=\emptyset \\
& e_{2} \cap C=\left\{v_{2}\right\} \\
& e_{3} \cap C=\emptyset \\
& e_{4} \cap C=\left\{v_{5}\right\}
\end{aligned}
$$

Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961 은)

Hypergraph (X, \mathscr{E}). A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

Equivalently: for any pair e,f of edges, there is a vertex in C contained in exactly one of e,f.

$$
\begin{aligned}
& X=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} \\
& \mathscr{E}=\left\{\left\{v_{1}\right\},\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{4}, v_{5}\right\}\right\} \\
& C=\left\{v_{5}, v_{2}, v_{3}\right\} \\
& e_{1} \cap C=\emptyset \\
& e_{2} \cap C=\left\{v_{2}, v_{3}\right\} \\
& e_{3} \cap C=\left\{v_{3}\right\} \\
& e_{4} \cap C=\left\{v_{3}, v_{5}\right\}
\end{aligned}
$$

Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961 은)

Hypergraph (X, \mathscr{E}). A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

Equivalently:
for any pair e,f of edges, there is a vertex in C contained in exactly one of e,f.

$$
\begin{aligned}
& X=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} \\
& \mathscr{E}=\left\{\left\{v_{1}\right\},\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{4}, v_{5}\right\}\right\} \\
& C=\left\{v_{5}, v_{1}, v_{3}\right\} \\
& e_{1} \cap C=\left\{v_{1}\right\} \\
& e_{2} \cap C=\left\{v_{1}, v_{3}\right\} \\
& e_{3} \cap C=\left\{v_{3}\right\} \\
& e_{4} \cap C=\left\{v_{3}, v_{5}\right\}
\end{aligned}
$$

Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961)
Hypergraph (X, \mathscr{E}). A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

Equivalently:
for any pair e,f of edges, there is a vertex in C contained in exactly one of e,f.

$$
\begin{aligned}
& X=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} \\
& \mathscr{E}=\left\{\left\{v_{1}\right\},\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{4}, v_{5}\right\}\right\} \\
& C=\left\{v_{5}, v_{1}, v_{3}\right\} \\
& e_{1} \cap C=\left\{v_{1}\right\} \\
& e_{2} \cap C=\left\{v_{1}, v_{3}\right\} \\
& e_{3} \cap C=\left\{v_{3}\right\} \\
& e_{4} \cap C=\left\{v_{3}, v_{5}\right\}
\end{aligned}
$$

Also known as Separating system, Distinguishing set, Test cover, Distinguishing transversal, Discriminating code...

Applications

- network-monitoring, fault detection (burglar)
- medical diagnostics: testing samples for diseases (test cover)
- biological identification (attributes of individuals)
- learning theory: teaching dimension
- machine learning: V-C dimension (Vapnik, Červonenkis, 1971)
- graph isomorphism: canonical representation of graphs (Babai, 1982)
- logic definability of graphs (Kim, Pikhurko, Spencer, Verbitsky, 2005)

General bounds, Bondy's theorem

Proposition

For a hypergraph (X, \mathscr{E}), a separating set C has size at least $\log _{2}(|\mathscr{E}|)$.
Proof: Must assign to each edge, a distinct subset of $C:|\mathscr{E}| \leq 2^{|C|}$.

General bounds, Bondy's theorem

Proposition

For a hypergraph (X, \mathscr{E}), a separating set C has size at least $\log _{2}(|\mathscr{E}|)$.
Proof: Must assign to each edge, a distinct subset of $C:|\mathscr{E}| \leq 2^{|C|}$.
Theorem (Bondy's theorem, 1972)
A minimal separating set of hypergraph (X, \mathscr{E}) has size at most $|\mathscr{E}|-1$.

General bounds, Bondy's theorem

Proposition

For a hypergraph (X, \mathscr{E}), a separating set C has size at least $\log _{2}(|\mathscr{E}|)$.
Proof: Must assign to each edge, a distinct subset of $C:|\mathscr{E}| \leq 2^{|C|}$.
Theorem (Bondy's theorem, 1972 ($)$
A minimal separating set of hypergraph (X, \mathscr{E}) has size at most $|\mathscr{E}|-1$.

Proof:

General bounds, Bondy's theorem

Proposition

For a hypergraph (X, \mathscr{E}), a separating set C has size at least $\log _{2}(|\mathscr{E}|)$.
Proof: Must assign to each edge, a distinct subset of $C:|\mathscr{E}| \leq 2^{|C|}$.
Theorem (Bondy's theorem, 1972 8)
A minimal separating set of hypergraph (X, \mathscr{E}) has size at most $|\mathscr{E}|-1$.

Proof:

Which are the "problematic" vertices?

General bounds, Bondy's theorem

Proposition

For a hypergraph (X, \mathscr{E}), a separating set C has size at least $\log _{2}(|\mathscr{E}|)$.
Proof: Must assign to each edge, a distinct subset of $C:|\mathscr{E}| \leq 2^{|C|}$.
Theorem (Bondy's theorem, 1972)
A minimal separating set of hypergraph (X, \mathscr{E}) has size at most $|\mathscr{E}|-1$.

Proof:

$$
\mathrm{e}_{2} \quad \text { Build graph } G \text { on vertex set } V(G)=\mathscr{E} .
$$

\square
e_{1}

- e_{3}
e_{m}
- e_{4}
e_{5}

General bounds, Bondy's theorem

Proposition

For a hypergraph (X, \mathscr{E}), a separating set C has size at least $\log _{2}(|\mathscr{E}|)$.
Proof: Must assign to each edge, a distinct subset of $C:|\mathscr{E}| \leq 2^{|C|}$.
Theorem (Bondy's theorem, 1972 (2)
A minimal separating set of hypergraph (X, \mathscr{E}) has size at most $|\mathscr{E}|-1$.

Proof:

General bounds, Bondy's theorem

Proposition

For a hypergraph (X, \mathscr{E}), a separating set C has size at least $\log _{2}(|\mathscr{E}|)$.
Proof: Must assign to each edge, a distinct subset of $C:|\mathscr{E}| \leq 2^{|C|}$.
Theorem (Bondy's theorem, 1972)
A minimal separating set of hypergraph (X, \mathscr{E}) has size at most $|\mathscr{E}|-1$.

Proof:

Build graph G on vertex set $V(G)=\mathscr{E}$.
Join e_{i} to e_{j} iff $e_{i}=e_{j} \cup\{x\}$ for some $x \in X$, label it " x "

General bounds, Bondy's theorem

Proposition

For a hypergraph (X, \mathscr{E}), a separating set C has size at least $\log _{2}(|\mathscr{E}|)$.
Proof: Must assign to each edge, a distinct subset of $C:|\mathscr{E}| \leq 2^{|C|}$.
Theorem (Bondy's theorem, 1972 ()
A minimal separating set of hypergraph (X, \mathscr{E}) has size at most $|\mathscr{E}|-1$.

Proof:

Build graph G on vertex set $V(G)=\mathscr{E}$.

Join e_{i} to e_{j} iff $e_{i}=e_{j} \cup\{x\}$ for some $x \in X$,
label it "x"
If an edge labeled x appears multiple times,
keep only one of them.

$\mathrm{e}_{\mathrm{m}}$$\quad \rightarrow$ forest

General bounds, Bondy's theorem

Proposition

For a hypergraph (X, \mathscr{E}), a separating set C has size at least $\log _{2}(|\mathscr{E}|)$.
Proof: Must assign to each edge, a distinct subset of $C:|\mathscr{E}| \leq 2^{|C|}$.
Theorem (Bondy's theorem, 1972 ()
A minimal separating set of hypergraph (X, \mathscr{E}) has size at most $|\mathscr{E}|-1$.

Proof:

Build graph G on vertex set $V(G)=\mathscr{E}$.
Join e_{i} to e_{j} iff $e_{i}=e_{j} \cup\{x\}$ for some $x \in X$, label it " x "

If an edge labeled x appears multiple times, keep only one of them.

This destroys all cycles in $G!\quad \rightarrow$ forest
So, at most $|\mathscr{E}|-1$ "problematic" vertices.
\rightarrow Find "non-problematic vertex", omit it.

Some example problems

Special cases of separating sets in hypergraphs (graph-based):

- identifying codes
- open identifying codes
- path/cycle identifying covers, separating path systems

Some example problems

Special cases of separating sets in hypergraphs (graph-based):

- identifying codes
- open identifying codes
- path/cycle identifying covers, separating path systems

A variation:

- locating-dominating sets
- locating-total dominating sets

Some example problems

Special cases of separating sets in hypergraphs (graph-based):

- identifying codes
- open identifying codes
- path/cycle identifying covers, separating path systems

A variation:

- locating-dominating sets
- locating-total dominating sets

Geometric versions: e.g. seperating points using disks in Euclidean space

Some example problems

Special cases of separating sets in hypergraphs (graph-based):

- identifying codes
- open identifying codes
- path/cycle identifying covers, separating path systems

A variation:

- locating-dominating sets
- locating-total dominating sets

Geometric versions: e.g. seperating points using disks in Euclidean space
Distance-based identification:

- resolving sets (metric dimension)
- strongly resolving sets
- centroidal locating sets
- tracking paths problem

Some example problems

Special cases of separating sets in hypergraphs (graph-based):

- identifying codes
- open identifying codes
- path/cycle identifying covers, separating path systems

A variation:

- locating-dominating sets
- locating-total dominating sets

Geometric versions: e.g. seperating points using disks in Euclidean space
Distance-based identification:

- resolving sets (metric dimension)
- strongly resolving sets
- centroidal locating sets
- tracking paths problem

Coloring-based identification

- Adjacent vertex-distinguishing edge-coloring
- locally identifying coloring
- locating coloring
- neighbor-locating coloring

Open identifying codes in graphs

(a.k.a. open locating-dominating sets)

Open identifying codes

G : undirected graph $\quad N(u)$: set of neighbours of v
Definition - open identifying code (Seo, Slater, 2010 会)
Subset D of $V(G)$ such that:

- D is a total dominating set: $\forall u \in V(G), N(u) \cap D \neq \emptyset$, and
- D is a separating code: $\forall u \neq v$ of $V(G), N(u) \cap D \neq N(v) \cap D$

Notation. $\operatorname{OID}(G)$: open identifying code number of G, minimum size of an open identifying code in G

Open identifying codes

G : undirected graph $\quad N(u)$: set of neighbours of v
Definition - open identifying code (Seo, Slater, 2010 会)
Subset D of $V(G)$ such that:

- D is a total dominating set: $\forall u \in V(G), N(u) \cap D \neq \emptyset$, and
- D is a separating code: $\forall u \neq v$ of $V(G), N(u) \cap D \neq N(v) \cap D$

Notation. $\operatorname{OID}(G)$: open identifying code number of G, minimum size of an open identifying code in G

Separating code of $G=$ separating set of open neighbourhood hypergraph of G

Open identifying codes

G : undirected graph $\quad N(u)$: set of neighbours of v
Definition - open identifying code (Seo, Slater, 2010 会)
Subset D of $V(G)$ such that:

- D is a total dominating set: $\forall u \in V(G), N(u) \cap D \neq \emptyset$, and
- D is a separating code: $\forall u \neq v$ of $V(G), N(u) \cap D \neq N(v) \cap D$

Notation. $\operatorname{OID}(G)$: open identifying code number of G, minimum size of an open identifying code in G

Separating code of $G=$ separating set of open neighbourhood hypergraph of G

Open identifying codes

G : undirected graph $\quad N(u)$: set of neighbours of v
Definition - open identifying code (Seo, Slater, 2010 会)
Subset D of $V(G)$ such that:

- D is a total dominating set: $\forall u \in V(G), N(u) \cap D \neq \emptyset$, and
- D is a separating code: $\forall u \neq v$ of $V(G), N(u) \cap D \neq N(v) \cap D$

Notation. $\operatorname{OID}(G)$: open identifying code number of G, minimum size of an open identifying code in G

Separating code of $G=$ separating set of open neighbourhood hypergraph of G

Locatable graphs

Remark
Not all graphs have an open identifying code!

An isolated vertex cannot be totally dominated.

Locatable graphs

Remark

Not all graphs have an open identifying code!

An isolated vertex cannot be totally dominated.

Open twins $=$ pair u, v such that $N(u)=N(v)$.

Locatable graphs

Remark

Not all graphs have an open identifying code!

An isolated vertex cannot be totally dominated.

Open twins $=$ pair u, v such that $N(u)=N(v)$.

Proposition

A graph is locatable if and only if it has no isolated vertices and open twins.

Lower bound on $\operatorname{OID}(G)$

Definition - open identifying code
Subset D of $V(G)$ such that:

- D is a total dominating set: $\forall u \in V(G), N(u) \cap D \neq \emptyset$, and
- D is a separating code: $\forall u \neq v$ of $V(G), N(u) \cap D \neq N(v) \cap D$

Proposition

G locatable graph on n vertices: $\left\lceil\log _{2}(n+1)\right\rceil \leq O I D(G)$. (Tight.)

Lower bound on $\operatorname{OID}(G)$

Definition - open identifying code

Subset D of $V(G)$ such that:

- D is a total dominating set: $\forall u \in V(G), N(u) \cap D \neq \emptyset$, and
- D is a separating code: $\forall u \neq v$ of $V(G), N(u) \cap D \neq N(v) \cap D$

Proposition

G locatable graph on n vertices: $\left\lceil\log _{2}(n+1)\right\rceil \leq O I D(G)$. (Tight.)

Proof: For any open identifying code D, we must assign to each vertex, a distinct non-empty subset of $D: n \leq 2^{|D|}-1$.

Lower bound on $\operatorname{OID}(G)$

Definition - open identifying code

Subset D of $V(G)$ such that:

- D is a total dominating set: $\forall u \in V(G), N(u) \cap D \neq \emptyset$, and
- D is a separating code: $\forall u \neq v$ of $V(G), N(u) \cap D \neq N(v) \cap D$

Proposition

G locatable graph on n vertices: $\left\lceil\log _{2}(n+1)\right\rceil \leq O I D(G)$. (Tight.)

Proof: For any open identifying code D, we must assign to each vertex, a distinct non-empty subset of $D: n \leq 2^{|D|}-1$.
$\operatorname{OID}(G)=\log _{2}(n+1)$

$$
O I D(G)=\log _{2}(n+1)
$$

Upper bound on $\operatorname{OID}(G)$?

Definition - Half-graph H_{k} (Erdős, Hajnal, 1983)
Bipartite graph on vertex sets $\left\{v_{1}, \ldots, v_{k}\right\}$ and $\left\{w_{1}, \ldots, w_{k}\right\}$, with an edge $\left\{v_{i}, w_{j}\right\}$ if and only if $i \leq j$.

$\underbrace{v_{1}}_{w_{1}}$

$H_{2}=P_{4}$

H_{5}
$H_{1}=P_{2}$

Upper bound on $\operatorname{OID}(G)$?

Definition - Half-graph H_{k} (Erdős, Hajnal, 1983)
Bipartite graph on vertex sets $\left\{v_{1}, \ldots, v_{k}\right\}$ and $\left\{w_{1}, \ldots, w_{k}\right\}$, with an edge $\left\{v_{i}, w_{j}\right\}$ if and only if $i \leq j$.

Some vertices forced in any open identifying code because of domination

Upper bound on $\operatorname{OID}(G)$?

Definition - Half-graph H_{k} (Erdős, Hajnal, 1983)
Bipartite graph on vertex sets $\left\{v_{1}, \ldots, v_{k}\right\}$ and $\left\{w_{1}, \ldots, w_{k}\right\}$, with an edge $\left\{v_{i}, w_{j}\right\}$ if and only if $i \leq j$.

$H_{1}=P_{2}$

$$
H_{2}=P_{4}
$$

Some vertices forced in any open identifying code because of domination

Upper bound on $\operatorname{OID}(G)$?

Definition - Half-graph H_{k} (Erdős, Hajnal, 1983)
Bipartite graph on vertex sets $\left\{v_{1}, \ldots, v_{k}\right\}$ and $\left\{w_{1}, \ldots, w_{k}\right\}$, with an edge $\left\{v_{i}, w_{j}\right\}$ if and only if $i \leq j$.

$H_{1}=P_{2}$

$$
H_{2}=P_{4}
$$

Some vertices forced in any open identifying code because of domination or location

Upper bound on $\operatorname{OID}(G)$?

Definition - Half-graph H_{k} (Erdős, Hajnal, 1983)
Bipartite graph on vertex sets $\left\{v_{1}, \ldots, v_{k}\right\}$ and $\left\{w_{1}, \ldots, w_{k}\right\}$, with an edge $\left\{v_{i}, w_{j}\right\}$ if and only if $i \leq j$.

$H_{1}=P_{2}$

$H_{2}=P_{4}$

H_{5}

Some vertices forced in any open identifying code because of domination or location

Upper bound on $\operatorname{OID}(G)$?

Definition - Half-graph H_{k} (Erdős, Hajnal, 1983 (19)
Bipartite graph on vertex sets $\left\{v_{1}, \ldots, v_{k}\right\}$ and $\left\{w_{1}, \ldots, w_{k}\right\}$, with an edge $\left\{v_{i}, w_{j}\right\}$ if and only if $i \leq j$.

$H_{1}=P_{2}$

$H_{2}=P_{4}$

\square \square

Some vertices forced in any open identifying code because of domination or location
Proposition
For every half-graph H_{k} of order $n=2 k, O I D\left(H_{k}\right)=n$.

Characterizing "bad graphs" for open identifying codes

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 (inin
Let G be a connected locatable graph of order n.
Then, $\operatorname{OID}(G)=n$ if and only if G is a half-graph.

Characterizing "bad graphs" for open identifying codes

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 Q
Let G be a connected locatable graph of order n.
Then, $\operatorname{OID}(G)=n$ if and only if G is a half-graph.

Proof:

- Such a graph has only forced vertices: location-forced or domination-forced.

Characterizing "bad graphs" for open identifying codes

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 (an (1)
Let G be a connected locatable graph of order n.
Then, $O I D(G)=n$ if and only if G is a half-graph.

Proof:

- Such a graph has only forced vertices: location-forced or domination-forced.
- By Bondy's theorem, there is at least one vertex x that is not location-forced: it is domination-forced. \rightarrow Its neighbour y is of degree 1 .

Characterizing "bad graphs" for open identifying codes

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 Q (an in (in)
Let G be a connected locatable graph of order n.
Then, $O I D(G)=n$ if and only if G is a half-graph.

Proof:

- Such a graph has only forced vertices: location-forced or domination-forced.
- By Bondy's theorem, there is at least one vertex x that is not location-forced: it is domination-forced. \rightarrow Its neighbour y is of degree 1 .
- $G^{\prime}=G-\{x, y\}$ is locatable, connected.

Characterizing "bad graphs" for open identifying codes

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 (ilin
Let G be a connected locatable graph of order n.
Then, $O I D(G)=n$ if and only if G is a half-graph.

Proof:

- Such a graph has only forced vertices: location-forced or domination-forced.
- By Bondy's theorem, there is at least one vertex x that is not location-forced: it is domination-forced. \rightarrow Its neighbour y is of degree 1 .
- $G^{\prime}=G-\{x, y\}$ is locatable, connected.
- We have $\operatorname{OID}\left(G^{\prime}\right)=n-2$: By contradiction, if $O I D\left(G^{\prime}\right)<n-2$, we could add two vertices to a solution and obtain $\operatorname{OID}(G)<n$, a contradiction.

Characterizing "bad graphs" for open identifying codes

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 Q
Let G be a connected locatable graph of order n.
Then, $O I D(G)=n$ if and only if G is a half-graph.

Proof:

- Such a graph has only forced vertices: location-forced or domination-forced.
- By Bondy's theorem, there is at least one vertex x that is not location-forced: it is domination-forced. \rightarrow Its neighbour y is of degree 1 .
- $G^{\prime}=G-\{x, y\}$ is locatable, connected.
- We have $\operatorname{OID}\left(G^{\prime}\right)=n-2$: By contradiction, if $O I D\left(G^{\prime}\right)<n-2$, we could add two vertices to a solution and obtain $\operatorname{OID}(G)<n$, a contradiction.
- By induction, G^{\prime} is a half-graph. We can conclude that G is a half-graph too, after some case analysis.

Location-domination in graphs

Location-domination

Definition - Locating-dominating set (Slater, 1980's)
$D \subseteq V(G)$ locating-dominating set of G :

- for every $u \in V, N[v] \cap D \neq \emptyset$ (domination).
- $\forall u \neq v$ of $V(G) \backslash D, N(u) \cap D \neq N(v) \cap D$ (location).

Notation. location-domination number $L D(G)$, smallest size of a locating-dominating set of G

Upper bounds

Theorem (Domination bound, Ore, 1960's $\mathbf{\text { ili }}$)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Tight examples:

Upper bounds

Theorem (Domination bound, Ore, 1960's il)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Tight examples:

Proof: Consider an inclusionwise minimal dominating set D of G.
\rightarrow its complement set $V(G) \backslash D$ is also a dominating set!
Thus, either D or $V(G) \backslash D$ has size at most $\frac{n}{2}$.

Upper bounds

Theorem (Domination bound, Ore, 1960's iil)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Tight examples:

Theorem (Location-domination bound, Slater, 1980's
G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Tight examples:

Remark: tight examples contain many twin-vertices!!

Upper bound: a conjecture

Theorem (Domination bound, Ore, 1960's iil)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.
Theorem (Location-domination bound, Slater, 1980's
G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Upper bound: a conjecture

Theorem (Domination bound, Ore, 1960's $\mathbf{i l}$)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's
G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Conjecture (Garijo, González \& Márquez, 2014 园 (1)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Upper bound: a conjecture

Theorem (Domination bound, Ore, 1960's $\mathbf{\text { il }}$)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.
Theorem (Location-domination bound, Slater, 1980's
G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.
Conjecture (Garijo, González \& Márquez, 2014 国 (V)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Remark:

- twins are easy to detect
- twins have a trivial behaviour w.r.t. location-domination

Upper bound: a conjecture

Theorem (Domination bound, Ore, 1960's iil)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.
Theorem (Location-domination bound, Slater, 1980's 图)
G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.
Conjecture (Garijo, González \& Márquez, 2014 国
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
If true, tight: 1. domination-extremal graphs

Upper bound: a conjecture

Theorem (Domination bound, Ore, 1960's ili)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's
G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Conjecture (Garijo, González \& Márquez, 2014 国
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
If true, tight: 2. a similar construction

Upper bound: a conjecture

Theorem (Domination bound, Ore, 1960's iil)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's
G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Conjecture (Garijo, González \& Márquez, 2014 B)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
If true, tight: 3. a family with domination number 2

Upper bound: a conjecture

Theorem (Domination bound, Ore, 1960's $\mathbf{i l}$)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.
Theorem (Location-domination bound, Slater, 1980's 图)
G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.
Conjecture (Garijo, González \& Márquez, 2014 国 (V)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
If true, tight:
4. family with dom. number 2: complements of half-graphs

Upper bound: a conjecture - special graph classes

Conjecture (Garijo, González \& Márquez, 2014 图 (1)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Theorem (Garijo, González \& Márquez, 201410 IV)
Conjecture true if G has independence number $\geq n / 2$. (e.g. bipartite)

Proof: every vertex cover of a twin-free graph is a locating-dominating set

Upper bound: a conjecture - special graph classes

Conjecture (Garijo, González \& Márquez, 2014 国 (P)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
$\alpha^{\prime}(G)$: matching number of G
Theorem (Garijo, González \& Márquez, 2014 (3)
If G has no 4 -cycles, then $L D(G) \leq \alpha^{\prime}(G) \leq \frac{n}{2}$.

Proof:

- Consider special maximum matching M
- Select one vertex in each edge of M

Upper bound: a conjecture - special graph classes

Conjecture (Garijo, González \& Márquez, 2014 国 (P)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
$\alpha^{\prime}(G)$: matching number of G
Theorem (Garijo, González \& Márquez, 2014 (1)
If G has no 4 -cycles, then $L D(G) \leq \alpha^{\prime}(G) \leq \frac{n}{2}$.

Proof:

- Consider special maximum matching M
- Select one vertex in each edge of M

Upper bound: a conjecture - special graph classes

Conjecture (Garijo, González \& Márquez, 2014 国 (P)

$$
G \text { graph of order } n \text {, no isolated vertices, no twins. Then } L D(G) \leq \frac{n}{2} \text {. }
$$

Theorem (F., Henning, 2016 (供)
Conjecture true if G is cubic.

Proof: Involved argument using maximum matching and Tutte-Berge theorem.

$$
\alpha^{\prime}(G)=\min _{X \subseteq V(G)} \frac{1}{2}(|V(G)|+|X|-o c(G-X))
$$

Upper bound: a conjecture - special graph classes

Conjecture (Garijo, González \& Márquez, 2014 国 PV)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Theorem (F., Henning, 2016 (t)
Conjecture true if G is cubic.
Bound is tight for cubic graphs:

Question
Do we have $L D(G)=\frac{n}{2}$ for other cubic graphs?

Upper bound: a conjecture - special graph classes

Conjecture (Garijo, González \& Márquez, 2014 图 (P)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Theorem (F., Henning, 2016)
Conjecture true if G is cubic.
$\alpha^{\prime}(G)$: matching number of G
Question
Are there twin-free (cubic) graphs with $L D(G)>\alpha^{\prime}(G)$?
(if not, conjecture is true)

Upper bound: a conjecture - special graph classes

Theorem (Garijo, González \& Márquez, 2014 圈 (V)
Conjecture true if G has independence number $\geq n / 2$. (e.g. bipartite)

Theorem (Garijo, González \& Márquez, 2014 (3)
If G has no 4 -cycles, then $L D(G) \leq \alpha^{\prime}(G) \leq \frac{n}{2}$.

Theorem (F., Henning, 2016 会)
Conjecture true if G is cubic.

Theorem (F., Henning, Löwenstein, Sasse, 2016 (a)
Conjecture true if G is split graph or complement of bipartite graph.

Theorem (Chakraborty, F., Parreau, Wagler, 2023 ? (?)
Conjecture true if G is a block graph.

Upper bound: a conjecture - general bound

Conjecture (Garijo, González \& Márquez, 2014 B)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2016)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{2}{3} n$.

Upper bound: a conjecture - general bound

Conjecture (Garijo, González \& Márquez, 2014 国 (P)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2016

G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{2}{3} n$.
Proof: - There exists a dominating set D such that each vertex has a private neighbour, thus $|D| \leq n_{1}+n_{2}$. Take such D that is inclusionwise maximal.

Upper bound: a conjecture - general bound

Conjecture (Garijo, González \& Márquez, 2014 国 (P)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2016

G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{2}{3} n$.
Proof: - There exists a dominating set D such that each vertex has a private neighbour, thus $|D| \leq n_{1}+n_{2}$. Take such D that is inclusionwise maximal.

- there is a LD-set of size $n-n_{1}-n_{2}$

Upper bound: a conjecture - general bound

Conjecture (Garijo, González \& Márquez, 2014 图 (D)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2016

G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{2}{3} n$.
Proof: - There exists a dominating set D such that each vertex has a private neighbour, thus $|D| \leq n_{1}+n_{2}$. Take such D that is inclusionwise maximal.

- there is a LD-set of size $n-n_{1}-n_{2}$
- there is a LD-set of size $|D|+n_{1}$ because D is maximal

Upper bound: a conjecture - general bound

Conjecture (Garijo, González \& Márquez, 2014 国 PV)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2016

G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{2}{3} n$.
Proof: - There exists a dominating set D such that each vertex has a private neighbour, thus $|D| \leq n_{1}+n_{2}$. Take such D that is inclusionwise maximal.

- there is a LD-set of size $n-n_{1}-n_{2}$
- there is a LD-set of size $|D|+n_{1}$ because D is maximal
- $\min \left\{|D|+n_{1}, n-n_{1}-n_{2}\right\} \leq \frac{2}{3} n$

Lower bounds
 (neighbourhood complexity)

Lower bounds

Proposition

G graph, n vertices, $L D(G)=k$. Then, $n \leq 2^{k}+k-1$.

Lower bounds

Proposition

G graph, n vertices, $L D(G)=k$. Then, $n \leq 2^{k}+k-1 . \rightarrow L D(G) \geq\left\lceil\log _{2}(n+1)-1\right\rceil$

Lower bounds

Proposition

G graph, n vertices, $L D(G)=k$. Then, $n \leq 2^{k}+k-1 . \rightarrow L D(G) \geq\left\lceil\log _{2}(n+1)-1\right\rceil$

Tight example $(k=4)$:

Lower bounds

Proposition

G graph, n vertices, $L D(G)=k$. Then, $n \leq 2^{k}+k-1 . \rightarrow L D(G) \geq\left\lceil\log _{2}(n+1)-1\right\rceil$

Theorem (Slater, 1980's reis)

$$
G \text { tree of order } n, L D(G)=k . \text { Then } n \leq 3 k-1 \rightarrow L D(G) \geq \frac{n+1}{3} .
$$

Tight examples:
FIG. 2. Tree T2

Lower bounds

Proposition

G graph, n vertices, $L D(G)=k$. Then, $n \leq 2^{k}+k-1 . \rightarrow L D(G) \geq\left\lceil\log _{2}(n+1)-1\right\rceil$

Theorem (Slater, 1980's 18)

$$
G \text { tree of order } n, L D(G)=k . \text { Then } n \leq 3 k-1 \rightarrow L D(G) \geq \frac{n+1}{3}
$$

Theorem (Rall \& Slater, 1980's \&
G planar graph, order $n, L D(G)=k$. Then $n \leq 7 k-10 \rightarrow L D(G) \geq \frac{n+10}{7}$.

Tight examples:

Neighbourhood complexity

Neighbourhood complexity of a graph G :

maximum number $|\{N(v) \cap X\}|$ of neighbourhoods inside any set X of k vertices, as a function of k

Neighbourhood complexity

Neighbourhood complexity of a graph G:
maximum number $|\{N(v) \cap X\}|$ of neighbourhoods inside any set X of k vertices, as a function of k

$$
|\{N(v) \cap X\}|=9
$$

- General graphs : exponential neighbourhood complexity 2^{k}
- Trees/planar graphs: linear neighbourhood complexity $O(k)$

Interval graphs

Definition - Interval graph
Intersection graph of intervals of the real line.

Lower bound for interval graphs

G interval graph of order $n, L D(G)=k$.

$$
\text { Then } n \leq \frac{k(k+1)}{2} \text {, i.e. } L D(G)=\Omega(\sqrt{n}) \text {. }
$$

Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 Dibun (1)
G interval graph of order $n, L D(G)=k$.

$$
\text { Then } n \leq \frac{k(k+1)}{2} \text {, i.e. } L D(G)=\Omega(\sqrt{n}) \text {. }
$$

- Identifying code D of size k.
- Define zones using the right points of intervals in D.

Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 OTMa ? (1)
G interval graph of order $n, L D(G)=k$.

$$
\text { Then } n \leq \frac{k(k+1)}{2} \text {, i.e. } L D(G)=\Omega(\sqrt{n}) \text {. }
$$

- Identifying code D of size k.
- Define zones using the right points of intervals in D.
- Each vertex intersects a consecutive set of intervals of D when ordered by left points.

Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 OTMa ? (1)
G interval graph of order $n, L D(G)=k$.

$$
\text { Then } n \leq \frac{k(k+1)}{2} \text {, i.e. } L D(G)=\Omega(\sqrt{n}) \text {. }
$$

- Identifying code D of size k.
- Define zones using the right points of intervals in D.
- Each vertex intersects a consecutive set of intervals of D when ordered by left points.

$$
\rightarrow n \leq \sum_{i=1}^{k}(k-i)=\frac{k(k+1)}{2} .
$$

Lower bound for interval graphs

G interval graph of order $n, L D(G)=k$.

$$
\text { Then } n \leq \frac{k(k+1)}{2} \text {, i.e. } L D(G)=\Omega(\sqrt{n}) \text {. }
$$

Tight:

Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X, \mathscr{E}) (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered:
for every subset $S^{\prime} \subseteq S$, there is an edge e with $e \cap S=S^{\prime}$.

V-C dimension of H : maximum size of a shattered set in H

Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X, \mathscr{E}) (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered:
for every subset $S^{\prime} \subseteq S$, there is an edge e with $e \cap S=S^{\prime}$.

V-C dimension of H : maximum size of a shattered set in H

Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X, \mathscr{E}) (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered:

$$
\text { for every subset } S^{\prime} \subseteq S \text {, there is an edge } e \text { with } e \cap S=S^{\prime} .
$$

V-C dimension of H : maximum size of a shattered set in H

Typically bounded for geometric hypergraphs:

Vapnik-Červonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph

Vapnik-Červonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:
\rightarrow interval graphs $(d=2), C_{4}$-free graphs $(d=2)$, line graphs $(d=4)$, permutation graphs $(d=3)$, unit disk graphs $(d=3)$, planar graphs $(d=4) \ldots$

Vapnik-Červonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:
\rightarrow interval graphs $(d=2), C_{4}$-free graphs $(d=2)$, line graphs $(d=4)$, permutation graphs $(d=3)$, unit disk graphs $(d=3)$, planar graphs $(d=4) \ldots$

Let H be a hypergraph of V-C dimension at most d. Then, any set S of vertices has at most $|S|^{d}$ distinct traces.

Vapnik-Červonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:
\rightarrow interval graphs $(d=2), C_{4}$-free graphs $(d=2)$, line graphs $(d=4)$, permutation graphs $(d=3)$, unit disk graphs $(d=3)$, planar graphs $(d=4) \ldots$

Theorem (Sauer-Shelah Lemma, 1972 国 웁)
Let H be a hypergraph of V-C dimension at most d. Then, any set S of vertices has at most $|S|^{d}$ distinct traces.

Corollary

G graph of order $n, L D(G)=k, \mathrm{~V}-\mathrm{C}$ dimension $\leq d$. Then $n=O\left(k^{d}\right)$.

Vapnik-Červonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:
\rightarrow interval graphs $(d=2), C_{4}$-free graphs $(d=2)$, line graphs $(d=4)$, permutation graphs $(d=3)$, unit disk graphs $(d=3)$, planar graphs $(d=4) \ldots$

Theorem (Sauer-Shelah Lemma, 1972 国 셥)
Let H be a hypergraph of V-C dimension at most d. Then, any set S of vertices has at most $|S|^{d}$ distinct traces.

Corollary

$$
G \text { graph of order } n, L D(G)=k, \mathrm{~V}-\mathrm{C} \text { dimension } \leq d \text {. Then } n=O\left(k^{d}\right) \text {. }
$$

$O\left(k^{2}\right)$: interval, permutation, line...
$O(k)$: cographs, unit interval, bipartite permutation, block...

Sparse/structured graphs

Graph classes of bounded expansion: all shallow minors of its members have bounded average degree $\quad \rightarrow$ e.g. planar graphs, minor-closed classes, bounded degree...

Theorem (Reidl, Sánchez-Villaamil, Stavropoulos, 2019 이 (A)
Let \mathscr{C} be a graph class of bounded expansion. Let G in \mathscr{C}, order n, and $L D(G)=k$. Then, $n \leq f(\mathscr{C}) k$.

Graph classes of bounded expansion: all shallow minors of its members have bounded average degree $\quad \rightarrow$ e.g. planar graphs, minor-closed classes, bounded degree...

Theorem (Reidl, Sánchez-Villaamil, Stavropoulos, 2019 国
Let \mathscr{C} be a graph class of bounded expansion. Let G in \mathscr{C}, order n, and $L D(G)=k$. Then, $n \leq f(\mathscr{C}) k$.

Recently introduced structural measure: twin-width.

Theorem (Bonnet, F., Lehtilä, Parreau, 2024
Let G be a graph of twin-width at most d and order n, and $L D(G)=k$.
Then, $n \leq(d+2) 2^{d+1} k$.

Metric dimension

Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them

Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:

need to know the exact position of 4 satellites + distance to them

Question

Does the "GPS" approach also work in undirected unweighted graphs?

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$
Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976) 1
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$
Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976) 1
$R \subseteq V(G)$ resolving set of G :

$$
\forall u \neq v \text { in } V(G), \text { there exists } w \in R \text { that distinguishes }\{u, v\} .
$$

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$
Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976) 1
$R \subseteq V(G)$ resolving set of G :

$$
\forall u \neq v \text { in } V(G), \text { there exists } w \in R \text { that distinguishes }\{u, v\} .
$$

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$
Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976) 1
$R \subseteq V(G)$ resolving set of G :

$$
\forall u \neq v \text { in } V(G), \text { there exists } w \in R \text { that distinguishes }\{u, v\} .
$$

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$
Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976) 1
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$
Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976) 1
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$
Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976) 1
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$
Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976) 1
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

$$
\begin{aligned}
& R=\left\{r_{1}, r_{2}\right\} \\
& M D(G)=2
\end{aligned}
$$

Every vertex receives a unique distance-vector w.r.t. to the solution vertices.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$
Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)

```
R\subseteqV(G) resolving set of G:
    \forallu\not=v in V(G), there exists w}\inR\mathrm{ that distinguishes {u,v}.
```


$$
R=\left\{r_{1}, r_{2}\right\}
$$

$$
M D(G)=2
$$

Every vertex receives a unique distance-vector w.r.t. to the solution vertices. $M D(G)$: metric dimension of G, minimum size of a resolving set of G.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$
Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976) 1
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Every vertex receives a unique distance-vector w.r.t. to the solution vertices. $M D(G)$: metric dimension of G, minimum size of a resolving set of G.

Remark

- Any locating-dominating set is a resolving set, hence $M D(G) \leq L D(G)$.
- A locating-dominating set can be seen as a "distance-1-resolving set".

Examples

Examples

Proposition

$$
M D(G)=1 \Leftrightarrow G \text { is a path }
$$

Examples

Proposition

$$
M D(G)=1 \Leftrightarrow G \text { is a path }
$$

Proposition

For any square grid $G, M D(G)=2$.

Trees

Leg: path with all inner-vertices of degree 2 , endpoints of degree ≥ 3 and 1 .

Trees

Leg: path with all inner-vertices of degree 2 , endpoints of degree ≥ 3 and 1 .

Trees

Leg: path with all inner-vertices of degree 2 , endpoints of degree ≥ 3 and 1 .

Observation

R resolving set. If v has k legs, at least $k-1$ legs contain a vertex of R.

Simple leg rule: if v has $k \geq 2$ legs, select $k-1$ leg endpoints.

Trees

Leg: path with all inner-vertices of degree 2 , endpoints of degree ≥ 3 and 1 .

Observation

R resolving set. If v has k legs, at least $k-1$ legs contain a vertex of R.

Simple leg rule: if v has $k \geq 2$ legs, select $k-1$ leg endpoints.
Theorem (Slater, 1975 园)
For any tree, the simple leg rule produces an optimal resolving set.

Trees

Leg: path with all inner-vertices of degree 2 , endpoints of degree ≥ 3 and 1 .

Observation

R resolving set. If v has k legs, at least $k-1$ legs contain a vertex of R.

Simple leg rule: if v has $k \geq 2$ legs, select $k-1$ leg endpoints.

Theorem (Slater, 1975 园)
For any tree, the simple leg rule produces an optimal resolving set.

Bounds with diameter

Example of path: no bound $n \leq f(M D(G))$ possible.

Bounds with diameter

$$
\text { Example of path: no bound } n \leq f(M D(G)) \text { possible. }
$$

Theorem (Khuller, Raghavachari \& Rosenfeld, 2002 (8)

$$
G \text { of order } n \text {, diameter } D, M D(G)=k . \text { Then } n \leq D^{k}+k
$$

(diameter D : maximum distance between two vertices)
Proof: Every vertex not in the solution R is assigned to a unique vector of length k, with values in $\{1, \ldots, D\}: D^{k}$ possibilities, plus the k ones in R.

Bounds with diameter

Example of path: no bound $n \leq f(M D(G))$ possible.
Theorem (Khuller, Raghavachari \& Rosenfeld, 2002 (8)
G of order n, diameter $D, M D(G)=k$. Then $n \leq D^{k}+k$.
(diameter D : maximum distance between two vertices)
Proof: Every vertex not in the solution R is assigned to a unique vector of length k, with values in $\{1, \ldots, D\}: D^{k}$ possibilities, plus the k ones in R.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 刻
G interval graph of order $n, M D(G)=k$, diameter D. Then $n=O\left(D k^{2}\right)$ i.e.

$$
\left.k=\Omega\left(\sqrt{\frac{n}{D}}\right) . \text { (Tight. }\right)
$$

Bounds with diameter

$$
\text { Example of path: no bound } n \leq f(M D(G)) \text { possible. }
$$

Theorem (Khuller, Raghavachari \& Rosenfeld, 2002 (8)

$$
G \text { of order } n \text {, diameter } D, M D(G)=k . \text { Then } n \leq D^{k}+k
$$

(diameter D : maximum distance between two vertices)
Proof: Every vertex not in the solution R is assigned to a unique vector of length k, with values in $\{1, \ldots, D\}: D^{k}$ possibilities, plus the k ones in R.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 Ohen (R)
G interval graph of order $n, M D(G)=k$, diameter D. Then $n=O\left(D k^{2}\right)$ i.e.

$$
k=\Omega\left(\sqrt{\frac{n}{D}}\right) . \text { (Tight.) }
$$

\rightarrow Proof is similar as that for locating-dominating sets.

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 是 园)
T a tree with diameter D and $M D(T)=k$, then

$$
n \leq\left\{\begin{array}{cc}
\frac{1}{8}(k D+4)(D+2) & \text { if } D \text { even, } \\
\frac{1}{8}(k D-k+8)(D+1) & \text { if } D \text { odd. }
\end{array}=\Theta\left(k D^{2}\right)\right.
$$

Bounds are tight.

Planar graphs

Using the concept of distance-VC-dimension:
Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018
G planar with diameter D and $M D(G)=k$, then $n=O\left(k^{4} D^{4}\right)$.

Planar graphs

Using the concept of distance-VC-dimension:
Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018
G planar with diameter D and $M D(G)=k$, then $n=O\left(k^{4} D^{4}\right)$.

Using the concept of profiles and r-neighbourhood complexity:
Theorem (Joret, Rambaud, 2023+ 度)
G planar with diameter D and $M D(G)=k$, then $n=O\left(k D^{4}\right)$.

Planar graphs

Using the concept of distance-VC-dimension:
Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 (
G planar with diameter D and $M D(G)=k$, then $n=O\left(k^{4} D^{4}\right)$.

Using the concept of profiles and r-neighbourhood complexity:
Theorem (Joret, Rambaud, 2023+ 霊)
G planar with diameter D and $M D(G)=k$, then $n=O\left(k D^{4}\right)$.

Tight? Planar example with $k=3$ and $n=\Theta\left(D^{3}\right)$:

Planar graphs

Using the concept of distance-VC-dimension:
Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018
G planar with diameter D and $M D(G)=k$, then $n=O\left(k^{4} D^{4}\right)$.

Using the concept of profiles and r-neighbourhood complexity:
Theorem (Joret, Rambaud, 2023+ (1)
G planar with diameter D and $M D(G)=k$, then $n=O\left(k D^{4}\right)$.

Tight? Planar example with treewidth 2 and $n=\Theta\left(k D^{3}\right)$:

Selected open questions

- Characterize graphs G of order n with $\operatorname{OID}(G)=n-1$?
- Conjecture: $L D(G) \leq n / 2$ in the absence of twins
- Analogue of $L D(G) \leq n / 2$ conjecture for digraphs?
- Find tight bounds for Metric Dimension of planar graphs of diameter D (and other classes)
- Neighbourhood complexity at distance r
\rightarrow graphs of bounded twin-width, planar graphs...
- Algorithms : efficient algorithms for unit interval graphs?

Selected open questions

- Characterize graphs G of order n with $\operatorname{OID}(G)=n-1$?
- Conjecture: $L D(G) \leq n / 2$ in the absence of twins
- Analogue of $L D(G) \leq n / 2$ conjecture for digraphs?
- Find tight bounds for Metric Dimension of planar graphs of diameter D (and other classes)
- Neighbourhood complexity at distance r
\rightarrow graphs of bounded twin-width, planar graphs...
- Algorithms : efficient algorithms for unit interval graphs?

THANKS FOR YOUR ATTENTION!

