## Identification problems in graphs

 and other discrete structuresFlorent Foucaud

## LilMós UC月 UNiversité Clermont Auvergne

JPOC, June 2023


## Locating a burglar



## Locating a burglar



## Locating a burglar



## Locating a burglar



Detectors can detect movement in their room and adjacent rooms


Detectors can detect movement in their room and adjacent rooms


Detectors can detect movement in their room and adjacent rooms


Detectors can detect movement in their room and adjacent rooms

## Separating sets in hypergraphs

Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961 )
Hypergraph $(X, \mathscr{E})$. A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of $C$.


$$
\begin{aligned}
& X=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} \\
& \mathscr{E}=\left\{\left\{v_{1}\right\},\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{4}, v_{5}\right\}\right\}
\end{aligned}
$$

## Separating sets in hypergraphs

## Definition - Separating set (Rényi, 1961 융)

Hypergraph $(X, \mathscr{E})$. A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of $C$.


$$
\begin{aligned}
& X=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} \\
& \mathscr{E}=\left\{\left\{v_{1}\right\},\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{4}, v_{5}\right\}\right\} \\
& C=\left\{v_{5}\right\} \\
& e_{1} \cap C=\emptyset \\
& e_{2} \cap C=\emptyset \\
& e_{3} \cap C=\emptyset \\
& e_{4} \cap C=\left\{v_{5}\right\}
\end{aligned}
$$

## Separating sets in hypergraphs

## Definition - Separating set (Rényi, 1961 응)

Hypergraph $(X, \mathscr{E})$. A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of $C$.


$$
\begin{aligned}
& X=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} \\
& \mathscr{E}=\left\{\left\{v_{1}\right\},\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{4}, v_{5}\right\}\right\} \\
& C=\left\{v_{5}, v_{2}\right\} \\
& e_{1} \cap C=\emptyset \\
& e_{2} \cap C=\left\{v_{2}\right\} \\
& e_{3} \cap C=\emptyset \\
& e_{4} \cap C=\left\{v_{5}\right\}
\end{aligned}
$$

## Separating sets in hypergraphs

## Definition - Separating set (Rényi, 1961 응)

Hypergraph $(X, \mathscr{E})$. A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of $C$.


$$
\begin{aligned}
& X=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} \\
& \mathscr{E}=\left\{\left\{v_{1}\right\},\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{4}, v_{5}\right\}\right\} \\
& C=\left\{v_{5}, v_{2}, v_{3}\right\} \\
& e_{1} \cap C=\emptyset \\
& e_{2} \cap C=\left\{v_{2}, v_{3}\right\} \\
& e_{3} \cap C=\left\{v_{3}\right\} \\
& e_{4} \cap C=\left\{v_{3}, v_{5}\right\}
\end{aligned}
$$

## Separating sets in hypergraphs

## Definition - Separating set (Rényi, 1961 응)

Hypergraph $(X, \mathscr{E})$. A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of $C$.


$$
\begin{aligned}
& X=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} \\
& \mathscr{E}=\left\{\left\{v_{1}\right\},\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{4}, v_{5}\right\}\right\} \\
& C=\left\{v_{5}, v_{1}, v_{3}\right\} \\
& e_{1} \cap C=\left\{v_{1}\right\} \\
& e_{2} \cap C=\left\{v_{1}, v_{3}\right\} \\
& e_{3} \cap C=\left\{v_{3}\right\} \\
& e_{4} \cap C=\left\{v_{3}, v_{5}\right\}
\end{aligned}
$$

## Separating sets in hypergraphs

## Definition - Separating set (Rényi, 1961 ©

Hypergraph $(X, \mathscr{E})$. A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of $C$.


$$
\begin{aligned}
& X=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} \\
& \mathscr{E}=\left\{\left\{v_{1}\right\},\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{4}, v_{5}\right\}\right\} \\
& C=\left\{v_{5}, v_{1}, v_{3}\right\} \\
& e_{1} \cap C=\left\{v_{1}\right\} \\
& e_{2} \cap C=\left\{v_{1}, v_{3}\right\} \\
& e_{3} \cap C=\left\{v_{3}\right\} \\
& e_{4} \cap C=\left\{v_{3}, v_{5}\right\}
\end{aligned}
$$

Equivalently: for any pair e,f of edges, there is a vertex of $C$ in exactly one of $e, f$. $\rightarrow$ hitting set of the symmetric differences of all pairs of hyperedges

## Separating sets in hypergraphs

## Definition - Separating set (Rényi, 1961 융)

Hypergraph $(X, \mathscr{E})$. A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of $C$.


$$
\begin{aligned}
& X=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} \\
& \mathscr{E}=\left\{\left\{v_{1}\right\},\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{4}, v_{5}\right\}\right\} \\
& C=\left\{v_{5}, v_{1}, v_{3}\right\} \\
& e_{1} \cap C=\left\{v_{1}\right\} \\
& e_{2} \cap C=\left\{v_{1}, v_{3}\right\} \\
& e_{3} \cap C=\left\{v_{3}\right\} \\
& e_{4} \cap C=\left\{v_{3}, v_{5}\right\}
\end{aligned}
$$

Also known as Separating system, Distinguishing set, Test cover, Distinguishing transversal, Discriminating code...

## Applications

- network-monitoring, fault detection (burglar)
- medical diagnostics: testing samples for diseases (test cover)
- biological identification (attributes of individuals)
- learning theory: teaching dimension
- machine learning: V-C dimension (Vapnik, Červonenkis, 1971)
- graph isomorphism: canonical representation of graphs (Babai, 1982)
- logic definability of graphs (Kim, Pikhurko, Spencer, Verbitsky, 2005)


## General bounds, Bondy's theorem

## Proposition

For a hypergraph $(X, \mathscr{E})$, a separating set $C$ has size at least $\log _{2}(|\mathscr{E}|)$.
Proof: Must assign to each edge, a distinct subset of $C:|\mathscr{E}| \leq 2^{|C|}$.

## General bounds, Bondy's theorem

## Proposition

For a hypergraph $(X, \mathscr{E})$, a separating set $C$ has size at least $\log _{2}(|\mathscr{E}|)$.
Proof: Must assign to each edge, a distinct subset of $C:|\mathscr{E}| \leq 2^{|C|}$.
Theorem (Bondy's theorem, 1972 )
A minimal separating set of hypergraph $(X, \mathscr{E})$ has size at most $|\mathscr{E}|-1$.

## General bounds, Bondy's theorem

## Proposition

For a hypergraph $(X, \mathscr{E})$, a separating set $C$ has size at least $\log _{2}(|\mathscr{E}|)$.
Proof: Must assign to each edge, a distinct subset of $C:|\mathscr{E}| \leq 2^{|C|}$.
Theorem (Bondy's theorem, 1972 ( $)$
A minimal separating set of hypergraph $(X, \mathscr{E})$ has size at most $|\mathscr{E}|-1$.

## Proof:

## General bounds, Bondy's theorem

## Proposition

For a hypergraph $(X, \mathscr{E})$, a separating set $C$ has size at least $\log _{2}(|\mathscr{E}|)$.
Proof: Must assign to each edge, a distinct subset of $C:|\mathscr{E}| \leq 2^{|C|}$.
Theorem (Bondy's theorem, 1972 8)
A minimal separating set of hypergraph $(X, \mathscr{E})$ has size at most $|\mathscr{E}|-1$.

## Proof:

Which are the "problematic" vertices?


## General bounds, Bondy's theorem

## Proposition

For a hypergraph $(X, \mathscr{E})$, a separating set $C$ has size at least $\log _{2}(|\mathscr{E}|)$.
Proof: Must assign to each edge, a distinct subset of $C:|\mathscr{E}| \leq 2^{|C|}$.
Theorem (Bondy's theorem, 1972 )
A minimal separating set of hypergraph $(X, \mathscr{E})$ has size at most $|\mathscr{E}|-1$.

## Proof:

$\mathrm{e}_{2} \quad$ Build graph $G$ on vertex set $V(G)=\mathscr{E}$.

- $e_{3}$
$\stackrel{\bullet}{e_{m}}$
- $\mathrm{e}_{4}$
$\mathrm{e}_{5}$


## General bounds, Bondy's theorem

## Proposition

For a hypergraph $(X, \mathscr{E})$, a separating set $C$ has size at least $\log _{2}(|\mathscr{E}|)$.
Proof: Must assign to each edge, a distinct subset of $C:|\mathscr{E}| \leq 2^{|C|}$.
Theorem (Bondy's theorem, 1972 )
A minimal separating set of hypergraph $(X, \mathscr{E})$ has size at most $|\mathscr{E}|-1$.

## Proof:



Build graph $G$ on vertex set $V(G)=\mathscr{E}$.
Join $e_{i}$ to $e_{j}$ iff $e_{i}=e_{j} \cup\{x\}$ for some $x \in X$, label it " $x$ "

## General bounds, Bondy's theorem

## Proposition

For a hypergraph $(X, \mathscr{E})$, a separating set $C$ has size at least $\log _{2}(|\mathscr{E}|)$.
Proof: Must assign to each edge, a distinct subset of $C:|\mathscr{E}| \leq 2^{|C|}$.
Theorem (Bondy's theorem, 1972 )
A minimal separating set of hypergraph $(X, \mathscr{E})$ has size at most $|\mathscr{E}|-1$.

Proof:


Build graph $G$ on vertex set $V(G)=\mathscr{E}$.
Join $e_{i}$ to $e_{j}$ iff $e_{i}=e_{j} \cup\{x\}$ for some $x \in X$, label it " $x$ "

## General bounds, Bondy's theorem

## Proposition

For a hypergraph $(X, \mathscr{E})$, a separating set $C$ has size at least $\log _{2}(|\mathscr{E}|)$.
Proof: Must assign to each edge, a distinct subset of $C:|\mathscr{E}| \leq 2^{|C|}$.
Theorem (Bondy's theorem, 1972 ( )
A minimal separating set of hypergraph $(X, \mathscr{E})$ has size at most $|\mathscr{E}|-1$.

## Proof:



Build graph $G$ on vertex set $V(G)=\mathscr{E}$.
Join $e_{i}$ to $e_{j}$ iff $e_{i}=e_{j} \cup\{x\}$ for some $x \in X$, label it " $x$ "

If an edge labeled $x$ appears multiple times, keep only one of them.

This destroys all cycles in $G!\quad \rightarrow$ forest.

## General bounds, Bondy's theorem

## Proposition

For a hypergraph $(X, \mathscr{E})$, a separating set $C$ has size at least $\log _{2}(|\mathscr{E}|)$.
Proof: Must assign to each edge, a distinct subset of $C:|\mathscr{E}| \leq 2^{|C|}$.
Theorem (Bondy's theorem, 1972 ( )
A minimal separating set of hypergraph $(X, \mathscr{E})$ has size at most $|\mathscr{E}|-1$.

## Proof:



Build graph $G$ on vertex set $V(G)=\mathscr{E}$.
Join $e_{i}$ to $e_{j}$ iff $e_{i}=e_{j} \cup\{x\}$ for some $x \in X$, label it " $x$ "

If an edge labeled $x$ appears multiple times, keep only one of them.

This destroys all cycles in $G!\quad \rightarrow$ forest.
So, there are at most $|\mathscr{E}|-1$ "problematic" vertices. $\rightarrow$ Find one "non-problematic vertex" and omit it.

## Some example problems

- Special graph-based cases of separating sets in hypergraphs:
- identifying codes
- open neighbourhood locating-dominating sets
- path/cycle identifying covers
- separating path systems


## Some example problems

- Special graph-based cases of separating sets in hypergraphs:
- identifying codes
- open neighbourhood locating-dominating sets
- path/cycle identifying covers
- separating path systems
- A variation:
- locating-dominating sets
- locating-total dominating sets


## Some example problems

- Special graph-based cases of separating sets in hypergraphs:
- identifying codes
- open neighbourhood locating-dominating sets
- path/cycle identifying covers
- separating path systems
- A variation:
- locating-dominating sets
- locating-total dominating sets
- Geometric versions: e.g. seperating points using disks in Euclidean space


## Some example problems

- Special graph-based cases of separating sets in hypergraphs:
- identifying codes
- open neighbourhood locating-dominating sets
- path/cycle identifying covers
- separating path systems
- A variation:
- locating-dominating sets
- locating-total dominating sets
- Geometric versions: e.g. seperating points using disks in Euclidean space
- Distance-based identification:
- resolving sets (metric dimension)
- centroidal locating sets
- tracking paths problem


## Some example problems

- Special graph-based cases of separating sets in hypergraphs:
- identifying codes
- open neighbourhood locating-dominating sets
- path/cycle identifying covers
- separating path systems
- A variation:
- locating-dominating sets
- locating-total dominating sets
- Geometric versions: e.g. seperating points using disks in Euclidean space
- Distance-based identification:
- resolving sets (metric dimension)
- centroidal locating sets
- tracking paths problem
- Colouring-based identification:
- Locally identifying colourings
- Locating-colourings
- Neighbour-locating colourings


## Identifying codes in graphs

## Identifying codes

$G$ : undirected graph
$N[u]$ : set of vertices $v$ s.t. $d(u, v) \leq 1$
Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)
Subset $C$ of $V(G)$ such that:

- $C$ is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- $C$ is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$
$I D(G)$ : identifying code number of $G$, minimum size of an identifying code in $G$



## Identifying codes

$G$ : undirected graph
$N[u]$ : set of vertices $v$ s.t. $d(u, v) \leq 1$
Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)
Subset $C$ of $V(G)$ such that:

- $C$ is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- $C$ is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$


## $I D(G)$ : identifying code number of $G$,

 minimum size of an identifying code in $G$Separating set of $G=$ separating set of neighbourhood hypergraph of $G$


## Identifying codes

$G$ : undirected graph
$N[u]$ : set of vertices $v$ s.t. $d(u, v) \leq 1$
Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)
Subset $C$ of $V(G)$ such that:

- $C$ is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- $C$ is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$
$I D(G)$ : identifying code number of $G$, minimum size of an identifying code in $G$
Separating set of $G=$ separating set of neighbourhood hypergraph of $G$



## Identifying codes

$G$ : undirected graph
$N[u]$ : set of vertices $v$ s.t. $d(u, v) \leq 1$
Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)
Subset $C$ of $V(G)$ such that:

- $C$ is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- $C$ is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$
$I D(G)$ : identifying code number of $G$, minimum size of an identifying code in $G$
Separating set of $G=$ separating set of neighbourhood hypergraph of $G$


Definition - Identifying code
Subset $C$ of $V(G)$ such that:

- $C$ is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- $C$ is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$



## Examples: paths

## Definition - Identifying code

Subset $C$ of $V(G)$ such that:

- $C$ is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- $C$ is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$


Identifying code number: $I D\left(P_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$

## Identifiable graphs

## Remark

Not all graphs have an identifying code!

Closed twins $=$ pair $u, v$ such that $N[u]=N[v]$.


## Identifiable graphs

## Remark

Not all graphs have an identifying code!

Closed twins $=$ pair $u, v$ such that $N[u]=N[v]$.


## Proposition

A graph is identifiable if and only if it is closed twin-free (i.e. has no twins).

## Bounds on $I D(G)$

$n$ : number of vertices

## Proposition

$G$ identifiable graph on $n$ vertices: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G)$.

## Bounds on $I D(G)$

$n$ : number of vertices

## Proposition

$G$ identifiable graph on $n$ vertices: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G)$.

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)
$G$ identifiable graph on $n$ vertices with at least one edge:

$$
I D(G) \leq n-1
$$

## Bounds on $I D(G)$

$n$ : number of vertices

## Proposition

$G$ identifiable graph on $n$ vertices: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G)$.

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)
$G$ identifiable graph on $n$ vertices with at least one edge:

$$
I D(G) \leq n-1
$$

$$
I D(G)=n \Leftrightarrow G \text { has no edges }
$$

## Further examples

Definition - Identifying code
Subset $C$ of $V(G)$ such that:

- $C$ is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- $C$ is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$


## Theorem

$G$ identifiable, $n$ vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$

## Further examples

Definition - Identifying code
Subset $C$ of $V(G)$ such that:

- $C$ is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- $C$ is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$


## Theorem

$G$ identifiable, $n$ vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$


## Further examples

Definition - Identifying code
Subset $C$ of $V(G)$ such that:

- $C$ is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- $C$ is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$


## Theorem

$G$ identifiable, $n$ vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$


## Further examples

Definition - Identifying code
Subset $C$ of $V(G)$ such that:

- $C$ is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- $C$ is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$


## Theorem

$G$ identifiable, $n$ vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$


## Further examples

Definition - Identifying code
Subset $C$ of $V(G)$ such that:

- $C$ is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- $C$ is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$


## Theorem

$G$ identifiable, $n$ vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$


## Further examples

Definition - Identifying code
Subset $C$ of $V(G)$ such that:

- $C$ is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- $C$ is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$


## Theorem

$G$ identifiable, $n$ vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$


## Further examples

Definition - Identifying code
Subset $C$ of $V(G)$ such that:

- $C$ is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- $C$ is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$


## Theorem

$G$ identifiable, $n$ vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$


## Further examples

Definition - Identifying code
Subset $C$ of $V(G)$ such that:

- $C$ is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- $C$ is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$


## Theorem

$G$ identifiable, $n$ vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$


## Further examples

Definition - Identifying code
Subset $C$ of $V(G)$ such that:

- $C$ is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- $C$ is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$


## Theorem

$G$ identifiable, $n$ vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$


## Further examples

Definition - Identifying code
Subset $C$ of $V(G)$ such that:

- $C$ is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- $C$ is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$


## Theorem

$G$ identifiable, $n$ vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$


## Further examples

Definition - Identifying code
Subset $C$ of $V(G)$ such that:

- $C$ is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- $C$ is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$


## Theorem

$G$ identifiable, $n$ vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$


## Further examples

Definition - Identifying code
Subset $C$ of $V(G)$ such that:

- $C$ is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- $C$ is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$


## Theorem

$G$ identifiable, $n$ vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$


## Further examples

Definition - Identifying code
Subset $C$ of $V(G)$ such that:

- $C$ is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- $C$ is a separating set: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$


## Theorem

$G$ identifiable, $n$ vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$


## A question

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)
$G$ identifiable graph on $n$ vertices with at least one edge:

$$
I D(G) \leq n-1
$$

Question
What are the graphs $G$ with $n$ vertices and $I D(G)=n-1$ ?

## Forced vertices

$u, v$ such that $N[v] \ominus N[u]=\{f\}$ :
$f$ belongs to any identifying code
$\rightarrow f$ forced by $u, v$.


## Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$ (also called complements of half-graphs)

$A_{2}=P_{4}$

$A_{3}=P_{6}^{2}$

$A_{4}=P_{8}^{3}$

## Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$ (also called complements of half-graphs)

$A_{2}=P_{4}$

$A_{3}=P_{6}^{2}$

$A_{4}=P_{8}^{3}$

## Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$ (also called complements of half-graphs)

$A_{2}=P_{4}$

$A_{3}=P_{6}^{2}$

$A_{4}=P_{8}^{3}$

## Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$ (also called complements of half-graphs)

$A_{2}=P_{4}$

$A_{3}=P_{6}^{2}$

$A_{4}=P_{8}^{3}$

## Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$ (also called complements of half-graphs)

$A_{2}=P_{4}$

$A_{3}=P_{6}^{2}$

$A_{4}=P_{8}^{3}$

Proposition

$$
I D\left(A_{k}\right)=n-1
$$

## Constructions using joins



Two graphs $A_{k}$ and $A_{k^{\prime}}$

## Constructions using joins



Join: add all edges between them

## Constructions using joins



Join the new graph to two non-adjacent vertices ( $\overline{K_{2}}$ )

## Constructions using joins



Join the new graph to two non-adjacent vertices, again

## Constructions using joins



## Constructions using joins



Finally, add a universal vertex Proposition

$$
\text { At each step, the constructed graph has } I D=n-1
$$

## A characterization

(1) stars
(2) $A_{k}=P_{2 k}^{k-1}$
(3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_{2}}$
(4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)
$G$ connected identifiable graph, $n$ vertices:

$$
I D(G)=n-1 \Leftrightarrow G \in(1),(2),(3) \text { or (4) }
$$

## A characterization

(1) stars
(2) $A_{k}=P_{2 k}^{k-1}$
(3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_{2}}$
(4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)
$G$ connected identifiable graph, $n$ vertices:

$$
I D(G)=n-1 \Leftrightarrow G \in(1),(2),(3) \text { or (4) }
$$

- $G$ : minimum counterexample



## A characterization

(1) stars
(2) $A_{k}=P_{2 k}^{k-1}$
(3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_{2}}$
(4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)
$G$ connected identifiable graph, $n$ vertices:

$$
I D(G)=n-1 \Leftrightarrow G \in(1),(2),(3) \text { or (4) }
$$

- $G$ : minimum counterexample
- $v$ : vertex such that $G-v$ identifiable (exists)



## A characterization

(1) stars
(2) $A_{k}=P_{2 k}^{k-1}$
(3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_{2}}$
(4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)
$G$ connected identifiable graph, $n$ vertices:

$$
I D(G)=n-1 \Leftrightarrow G \in(1),(2),(3) \text { or (4) }
$$

- $G$ : minimum counterexample
- $v$ : vertex such that $G-v$ identifiable (exists)
- Lemma: $I D(G-v)=n^{\prime}-1$



## A characterization

(1) stars
(2) $A_{k}=P_{2 k}^{k-1}$
(3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_{2}}$
(4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)
$G$ connected identifiable graph, $n$ vertices:

$$
I D(G)=n-1 \Leftrightarrow G \in(1),(2),(3) \text { or (4) }
$$

- $G$ : minimum counterexample
- $v$ : vertex such that $G-v$ identifiable (exists)
- Lemma: $I D(G-v)=n^{\prime}-1$
$\Rightarrow$ By minimality of $G$ :


$$
G-v \in(1),(2),(3) \text { or }(4)
$$

## A characterization

(1) stars
(2) $A_{k}=P_{2 k}^{k-1}$
(3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_{2}}$
(4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)
$G$ connected identifiable graph, $n$ vertices:

$$
I D(G)=n-1 \Leftrightarrow G \in(1),(2),(3) \text { or (4) }
$$

- $G$ : minimum counterexample
- $v$ : vertex such that $G-v$ identifiable (exists)
- Lemma: $I D(G-v)=n^{\prime}-1$
$\Rightarrow$ By minimality of $G$ :


$$
G-v \in(1),(2),(3) \text { or }(4)
$$

- Put $v$ back $\Rightarrow$ contradiction: no counterexample exists!


## Location-domination in graphs

## Location-domination

Definition - Locating-dominating set (Slater, 1980's)
$D \subseteq V(G)$ locating-dominating set of $G$ :

- for every $u \in V, N[v] \cap D \neq \emptyset$ (domination).
- $\forall u \neq v$ of $\mathbf{V}(\mathbf{G}) \backslash \mathbf{D}, N(u) \cap D \neq N(v) \cap D$ (location).

Notation. location-domination number $L D(G)$, smallest size of a locating-dominating set of $G$

## Location-domination

Definition - Locating-dominating set (Slater, 1980's)
$D \subseteq V(G)$ locating-dominating set of $G$ :

- for every $u \in V, N[v] \cap D \neq \emptyset$ (domination).
- $\forall u \neq v$ of $\mathbf{V}(\mathbf{G}) \backslash \mathbf{D}, N(u) \cap D \neq N(v) \cap D$ (location).

Notation. location-domination number $L D(G)$, smallest size of a locating-dominating set of $G$

Domination number: $\operatorname{DOM}\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$


Identifying code number: $I D\left(P_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$


Location-domination number: $L D\left(P_{n}\right)=\left\lceil\frac{2 n}{5}\right\rceil$


## Upper bounds

Theorem (Domination bound, Ore, 1960's $\mathbf{\text { ili }}$ )
$G$ graph of order $n$, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Tight examples:


## Upper bounds

Theorem (Domination bound, Ore, 1960's iil)
$G$ graph of order $n$, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Tight examples:


Theorem (Location-domination bound, Slater, 1980's
$G$ graph of order $n$, no isolated vertices. Then $L D(G) \leq n-1$.

Tight examples:


## Upper bounds

Theorem (Domination bound, Ore, 1960's iil)
$G$ graph of order $n$, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Tight examples:


Theorem (Location-domination bound, Slater, 1980's
$G$ graph of order $n$, no isolated vertices. Then $L D(G) \leq n-1$.

Tight examples:


Remark: tight examples contain many twin-vertices!!

## Upper bound: a conjecture

Theorem (Domination bound, Ore, 1960's iil )
$G$ graph of order $n$, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.
Theorem (Location-domination bound, Slater, 1980's
$G$ graph of order $n$, no isolated vertices. Then $L D(G) \leq n-1$.

## Upper bound: a conjecture

Theorem (Domination bound, Ore, 1960's $\mathbf{i l}$ )
$G$ graph of order $n$, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's
$G$ graph of order $n$, no isolated vertices. Then $L D(G) \leq n-1$.

Conjecture (Garijo, González \& Márquez, 2014 园 (1)
$G$ graph of order $n$, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

## Upper bound: a conjecture

Theorem (Domination bound, Ore, 1960's $\mathbf{\text { il }}$ )
$G$ graph of order $n$, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.
Theorem (Location-domination bound, Slater, 1980's
$G$ graph of order $n$, no isolated vertices. Then $L D(G) \leq n-1$.
Conjecture (Garijo, González \& Márquez, 2014 国 (V)
$G$ graph of order $n$, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

## Remark:

- twins are easy to detect
- twins have a trivial behaviour w.r.t. location-domination


## Upper bound: a conjecture

Theorem (Domination bound, Ore, 1960's iil )
$G$ graph of order $n$, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.
Theorem (Location-domination bound, Slater, 1980's 图)
$G$ graph of order $n$, no isolated vertices. Then $L D(G) \leq n-1$.
Conjecture (Garijo, González \& Márquez, 2014 国
$G$ graph of order $n$, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
If true, tight: 1. domination-extremal graphs


## Upper bound: a conjecture

Theorem (Domination bound, Ore, 1960's ili)
$G$ graph of order $n$, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's
$G$ graph of order $n$, no isolated vertices. Then $L D(G) \leq n-1$.

Conjecture (Garijo, González \& Márquez, 2014 BI
$G$ graph of order $n$, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
If true, tight: 2. a similar construction


## Upper bound: a conjecture

Theorem (Domination bound, Ore, 1960's iil)
$G$ graph of order $n$, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's
$G$ graph of order $n$, no isolated vertices. Then $L D(G) \leq n-1$.

Conjecture (Garijo, González \& Márquez, 2014 B)
$G$ graph of order $n$, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
If true, tight: 3. a family with domination number 2


## Upper bound: a conjecture

Theorem (Domination bound, Ore, 1960's $\mathbf{i l}$ )
$G$ graph of order $n$, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.
Theorem (Location-domination bound, Slater, 1980's 图)
$G$ graph of order $n$, no isolated vertices. Then $L D(G) \leq n-1$.
Conjecture (Garijo, González \& Márquez, 2014 国 (V)
$G$ graph of order $n$, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
If true, tight:
4. family with dom. number 2: complements of half-graphs


## Upper bound: a conjecture - special graph classes

Conjecture (Garijo, González \& Márquez, 2014 国
$G$ graph of order $n$, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Theorem (Garijo, González \& Márquez, 2014 (a)
Conjecture true if $G$ has independence number $\geq n / 2$. (in particular, if bipartite)

Proof: every vertex cover of a twin-free graph is a locating-dominating set


## Upper bound: a conjecture - special graph classes

Conjecture (Garijo, González \& Márquez, 2014 B)
$G$ graph of order $n$, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
$\alpha^{\prime}(G)$ : matching number of $G$
Theorem (Garijo, González \& Márquez, 2014 (1)
If $G$ has no 4 -cycles, then $L D(G) \leq \alpha^{\prime}(G) \leq \frac{n}{2}$.

## Upper bound: a conjecture - special graph classes

Conjecture (Garijo, González \& Márquez, 2014 B)
$G$ graph of order $n$, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Theorem (F., Henning, 2016 )
Conjecture true if $G$ is cubic.

## Upper bound: a conjecture - special graph classes

Conjecture (Garijo, González \& Márquez, 2014 B)
$G$ graph of order $n$, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Theorem (F., Henning, 2016 )

## Conjecture true if $G$ is cubic.

Proof: Involved argument using maximum matching and Tutte-Berge theorem.


## Upper bound: a conjecture - special graph classes

Conjecture (Garijo, González \& Márquez, 2014 B)
$G$ graph of order $n$, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Theorem (F., Henning, 2016 )
Conjecture true if $G$ is cubic.

Bound is tight:


Question
Do we have $L D(G)=\frac{n}{2}$ for other cubic graphs?

## Upper bound: a conjecture - general bound

Conjecture (Garijo, González \& Márquez, 2014 B)
$G$ graph of order $n$, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

True for bipartite, split, co-bipartite, cubic, line...

## Upper bound: a conjecture - general bound

Conjecture (Garijo, González \& Márquez, 2014 (7)
$G$ graph of order $n$, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

True for bipartite, split, co-bipartite, cubic, line...
Theorem (F., Henning, Löwenstein, Sasse, 2016 (2)
$G$ graph of order $n$, no isolated vertices, no twins. Then $L D(G) \leq \frac{2}{3} n$.

## Upper bound: a conjecture - general bound

Conjecture (Garijo, González \& Márquez, 2014 BV)
$G$ graph of order $n$, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

True for bipartite, split, co-bipartite, cubic, line...

Theorem (F., Henning, Löwenstein, Sasse, 2016 (1)
$G$ graph of order $n$, no isolated vertices, no twins. Then $L D(G) \leq \frac{2}{3} n$.

But the conjecture remains open in the general case!

## Lower bounds

## Lower bounds

## Proposition

$G$ identifiable graph on $n$ vertices: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq L D(G)$.

## Lower bounds

## Proposition

$G$ identifiable graph on $n$ vertices: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq L D(G)$.

Tight examples:


$$
I D(G)=\log _{2}(n+1)
$$



## Lower bounds

## Proposition

$G$ identifiable graph on $n$ vertices: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq L D(G)$.

Theorem (Rall \& Slater, 1980's EN
$G$ planar graph, order $n, L D(G)=k$. Then $n \leq 7 k-10 \rightarrow L D(G) \geq \frac{n+10}{7}$.

## Lower bounds

## Proposition

$G$ identifiable graph on $n$ vertices: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq L D(G)$.

Theorem (Rall \& Slater, 1980's \&
$G$ planar graph, order $n, L D(G)=k$. Then $n \leq 7 k-10 \rightarrow L D(G) \geq \frac{n+10}{7}$.

Tight examples:


## Interval graphs

Definition - Interval graph
Intersection graph of intervals of the real line.


## Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 Print
$G$ interval graph of order $n, L D(G)=k$.

$$
\text { Then } n \leq \frac{k(k+1)}{2} \text {, i.e. } L D(G)=\Omega(\sqrt{n}) \text {. }
$$

## Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 Dibun (1)
$G$ interval graph of order $n, L D(G)=k$.

$$
\text { Then } n \leq \frac{k(k+1)}{2} \text {, i.e. } L D(G)=\Omega(\sqrt{n}) \text {. }
$$



- Identifying code $D$ of size $k$.
- Define zones using the right points of intervals in $D$.


## Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 OTMa ? (1)
$G$ interval graph of order $n, L D(G)=k$.

$$
\text { Then } n \leq \frac{k(k+1)}{2} \text {, i.e. } L D(G)=\Omega(\sqrt{n}) \text {. }
$$



- Identifying code $D$ of size $k$.
- Define zones using the right points of intervals in $D$.
- Each vertex intersects a consecutive set of intervals of $D$ when ordered by left points.


## Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 OTMa ? (1)
$G$ interval graph of order $n, L D(G)=k$.

$$
\text { Then } n \leq \frac{k(k+1)}{2} \text {, i.e. } L D(G)=\Omega(\sqrt{n}) \text {. }
$$



- Identifying code $D$ of size $k$.
- Define zones using the right points of intervals in $D$.
- Each vertex intersects a consecutive set of intervals of $D$ when ordered by left points.

$$
\rightarrow n \leq \sum_{i=1}^{k}(k-i)=\frac{k(k+1)}{2} .
$$

## Lower bound for interval graphs


$G$ interval graph of order $n, L D(G)=k$.

$$
\text { Then } n \leq \frac{k(k+1)}{2} \text {, i.e. } L D(G)=\Omega(\sqrt{n}) \text {. }
$$

Tight:


## Vapnik-Červonenkis dimension



Measure of intersection complexity of sets in a hypergraph ( $X, \mathscr{E}$ ) (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered:
for every subset $S^{\prime} \subseteq S$, there is an edge $e$ with $e \cap S=S^{\prime}$.


V-C dimension of H : maximum size of a shattered set in H

## Vapnik-Červonenkis dimension



Measure of intersection complexity of sets in a hypergraph ( $X, \mathscr{E}$ ) (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered:
for every subset $S^{\prime} \subseteq S$, there is an edge $e$ with $e \cap S=S^{\prime}$.


V-C dimension of H : maximum size of a shattered set in H

## Vapnik-Červonenkis dimension



Measure of intersection complexity of sets in a hypergraph $(X, \mathscr{E})$ (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered:

$$
\text { for every subset } S^{\prime} \subseteq S \text {, there is an edge } e \text { with } e \cap S=S^{\prime} \text {. }
$$



V-C dimension of $H$ : maximum size of a shattered set in $H$

Typically bounded for geometric hypergraphs:


## Vapnik-Červonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph


## Vapnik-Červonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:
$\rightarrow$ interval graphs $(d=2), C_{4}$-free graphs $(d=2)$, line graphs $(d=4)$, permutation graphs $(d=3)$, unit disk graphs $(d=3)$, planar graphs $(d=4) \ldots$

## Vapnik-Červonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:
$\rightarrow$ interval graphs $(d=2), C_{4}$-free graphs $(d=2)$, line graphs $(d=4)$, permutation graphs $(d=3)$, unit disk graphs $(d=3)$, planar graphs $(d=4) \ldots$

Theorem (Sauer-Shelah Lemma 国稫)
Let $H$ be a hypergraph of V -C dimension at most $d$. Then, any set $S$ of vertices has at most $|S|^{d}$ distinct traces.

## Vapnik-Červonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:
$\rightarrow$ interval graphs $(d=2), C_{4}$-free graphs $(d=2)$, line graphs $(d=4)$, permutation graphs $(d=3)$, unit disk graphs $(d=3)$, planar graphs $(d=4) \ldots$

Theorem (Sauer-Shelah Lemma ${ }^{2}$ 这)
Let $H$ be a hypergraph of V-C dimension at most $d$. Then, any set $S$ of vertices has at most $|S|^{d}$ distinct traces.

## Corollary

$G$ graph of order $n, L D(G)=k, \mathrm{~V}-\mathrm{C}$ dimension $\leq d$. Then $n=O\left(k^{d}\right)$.

# Metric dimension 

## Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them


## Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them


Does the "GPS" approach also work in undirected unweighted graphs?

## Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976) 1
$R \subseteq V(G)$ resolving set of $G$ :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

## Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976) 1
$R \subseteq V(G)$ resolving set of $G$ :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.


## Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976) 1 존
$R \subseteq V(G)$ resolving set of $G$ :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.


## Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976) 1 존
$R \subseteq V(G)$ resolving set of $G$ :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.


## Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976) 1
$R \subseteq V(G)$ resolving set of $G$ :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.


## Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976) 1
$R \subseteq V(G)$ resolving set of $G$ :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.


## Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976) 1 존
$R \subseteq V(G)$ resolving set of $G$ :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.


## Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976) 1
$R \subseteq V(G)$ resolving set of $G$ :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

$M D(G)$ : metric dimension of $G$, minimum size of a resolving set of $G$.

## Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976) 1 1
$R \subseteq V(G)$ resolving set of $G$ :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

$M D(G)$ : metric dimension of $G$, minimum size of a resolving set of $G$.

## Remark

- Any locating-dominating set is a resolving set, hence $M D(G) \leq L D(G)$.
- A locating-dominating set can be seen as a "distance-1-resolving set".


## Examples

## $\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}$

## Examples



## Examples



Proposition

$$
M D(G)=1 \Leftrightarrow G \text { is a path }
$$

## Examples



Proposition

$$
M D(G)=1 \Leftrightarrow G \text { is a path }
$$



## Examples



Proposition

$$
M D(G)=1 \Leftrightarrow G \text { is a path }
$$



## Proposition

For any square grid $G, M D(G)=2$.

## Trees

Leg: path with all inner-vertices of degree 2 , endpoints of degree $\geq 3$ and 1 .


## Trees

Leg: path with all inner-vertices of degree 2 , endpoints of degree $\geq 3$ and 1 .


## Trees

Leg: path with all inner-vertices of degree 2 , endpoints of degree $\geq 3$ and 1 .


## Observation

$R$ resolving set. If $v$ has $k$ legs, at least $k-1$ legs contain a vertex of $R$.

Simple leg rule: if $v$ has $k \geq 2$ legs, select $k-1$ leg endpoints.

## Trees

Leg: path with all inner-vertices of degree 2 , endpoints of degree $\geq 3$ and 1 .


## Observation

$R$ resolving set. If $v$ has $k$ legs, at least $k-1$ legs contain a vertex of $R$.

Simple leg rule: if $v$ has $k \geq 2$ legs, select $k-1$ leg endpoints.

Theorem (Slater, 1975 园)
For any tree, the simple leg rule produces an optimal resolving set.

## Bounds with diameter

## Example of path: no bound $n \leq f(M D(G))$ possible.

## Bounds with diameter

Example of path: no bound $n \leq f(M D(G))$ possible.
Theorem (Khuller, Raghavachari \& Rosenfeld, 2002 (i)
$G$ of order $n$, diameter $D, M D(G)=k$. Then $n \leq D^{k}+k$.
(diameter: maximum distance between two vertices)

## Bounds with diameter

Example of path: no bound $n \leq f(M D(G))$ possible.
Theorem (Khuller, Raghavachari \& Rosenfeld, 2002 (8)
$G$ of order $n$, diameter $D, M D(G)=k$. Then $n \leq D^{k}+k$.
(diameter: maximum distance between two vertices)

$G$ interval graph of order $n, M D(G)=k$, diameter $D$. Then $n=O\left(D k^{2}\right)$ i.e.

$$
\left.k=\Omega\left(\sqrt{\frac{n}{D}}\right) . \text { (Tight. }\right)
$$

## Bounds with diameter

Example of path: no bound $n \leq f(M D(G))$ possible.
Theorem (Khuller, Raghavachari \& Rosenfeld, 2002 (8)
$G$ of order $n$, diameter $D, M D(G)=k$. Then $n \leq D^{k}+k$.
(diameter: maximum distance between two vertices)
Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 明 OD
$G$ interval graph of order $n, M D(G)=k$, diameter $D$. Then $n=O\left(D k^{2}\right)$ i.e.

$$
\left.k=\Omega\left(\sqrt{\frac{n}{D}}\right) . \text { (Tight. }\right)
$$

$\rightarrow$ Proofs are similar as for identifying codes.

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 是 园)
$T$ a tree with diameter $D$ and $M D(T)=k$, then

$$
n \leq\left\{\begin{array}{cc}
\frac{1}{8}(k D+4)(D+2) & \text { if } D \text { even, } \\
\frac{1}{8}(k D-k+8)(D+1) & \text { if } D \text { odd. }
\end{array}=\Theta\left(k D^{2}\right)\right.
$$

Bounds are tight.


## Planar graphs

Using the concept of distance-VC-dimension:

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018
$G$ planar with diameter $D$ and $M D(G)=k$, then $n=O\left(k^{4} D^{4}\right)$.

## Planar graphs

Using the concept of distance-VC-dimension:

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018
$G$ planar with diameter $D$ and $M D(G)=k$, then $n=O\left(k^{4} D^{4}\right)$.

Using the concept of neighbourhood complexity:

Theorem (Joret, Rambaud, 2023+ 备)
$G$ planar with diameter $D$ and $M D(G)=k$, then $n=O\left(k D^{4}\right)$.

## Planar graphs

Using the concept of distance-VC-dimension:

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018
$G$ planar with diameter $D$ and $M D(G)=k$, then $n=O\left(k^{4} D^{4}\right)$.

Using the concept of neighbourhood complexity:

Theorem (Joret, Rambaud, 2023+ 会)
$G$ planar with diameter $D$ and $M D(G)=k$, then $n=O\left(k D^{4}\right)$.

Tight? Example with $k=3$ and $n=\Theta\left(D^{3}\right)$ :


## Two slides on complexity and algorithms

## Complexity of IDENTIFYING CODE / LOCATING-DOMINATING SET



## Complexity of METRIC DIMENSION



## Conclusion

Some of my favorite open problems:

- Conjecture: $L D(G) \leq n / 2$ in the absence of twins
- Find tight bounds for Metric Dimension in planar graphs of diameter $D$ (and other classes, e.g. graphs of bounded twin-width)
- Can we solve Identifying Code or Metric Dimension in polynomial time for unit interval graphs?
- Polyhedral questions : see e.g. the work of Annegret Wagler and others


## Conclusion

Some of my favorite open problems:

- Conjecture: $L D(G) \leq n / 2$ in the absence of twins
- Find tight bounds for Metric Dimension in planar graphs of diameter $D$
(and other classes, e.g. graphs of bounded twin-width)
- Can we solve Identifying Code or Metric Dimension in polynomial time for unit interval graphs?
- Polyhedral questions: see e.g. the work of Annegret Wagler and others


## THANKS FOR YOUR ATTENTION



