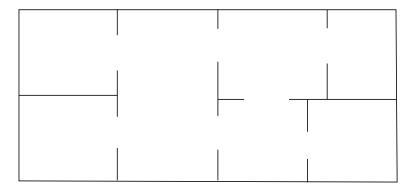
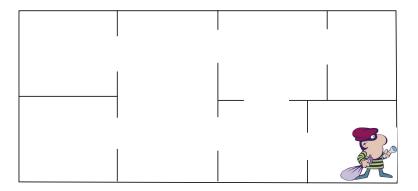
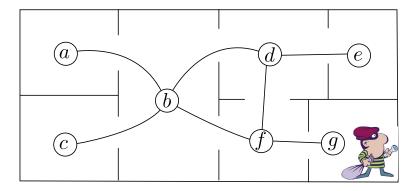
Identification problems in graphs and other discrete structures

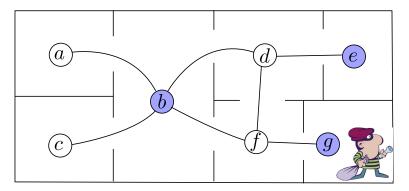
Florent Foucaud

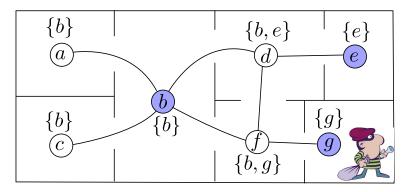
JPOC, June 2023

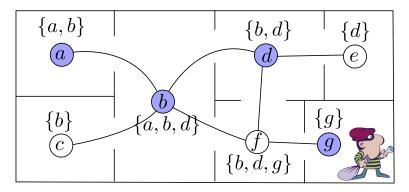


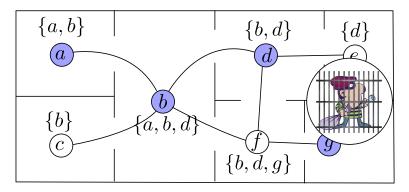








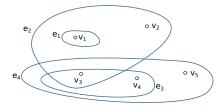




Separating sets in hypergraphs

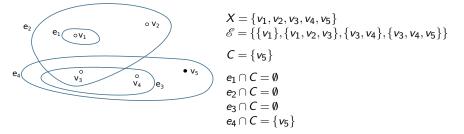
Separating sets in hypergraphs

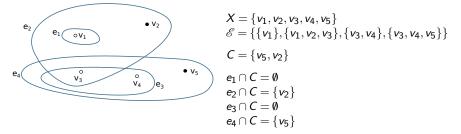
Definition - Separating set (Rényi, 1961 🗟)

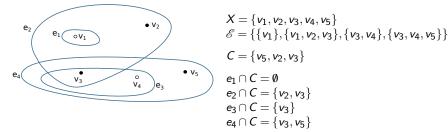


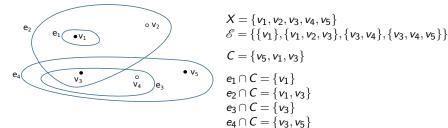
$$X = \{v_1, v_2, v_3, v_4, v_5\}$$

$$\mathscr{E} = \{\{v_1\}, \{v_1, v_2, v_3\}, \{v_3, v_4\}, \{v_3, v_4, v_5\}\}$$

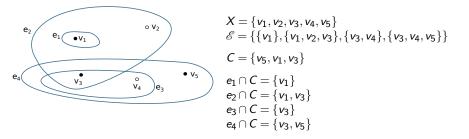






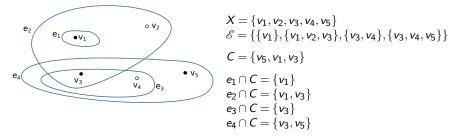


Hypergraph (X, \mathscr{E}) . A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.



Equivalently: for any pair e, f of edges, there is a vertex of C in exactly one of e, f. \rightarrow hitting set of the symmetric differences of all pairs of hyperedges

Hypergraph (X, \mathscr{E}) . A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.



Also known as Separating system, Distinguishing set, Test cover, Distinguishing transversal, Discriminating code...

- network-monitoring, fault detection (burglar)
- medical diagnostics: testing samples for diseases (test cover)
- biological identification (attributes of individuals)
- learning theory: teaching dimension
- machine learning: V-C dimension (Vapnik, Červonenkis, 1971)
- graph isomorphism: canonical representation of graphs (Babai, 1982)
- logic definability of graphs (Kim, Pikhurko, Spencer, Verbitsky, 2005)

Proposition

For a hypergraph (X, \mathscr{E}) , a separating set C has size at least $\log_2(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|C|}$.

Proposition

For a hypergraph (X, \mathscr{E}) , a separating set C has size at least $\log_2(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|C|}$.

Theorem (Bondy's theorem, 1972)

A minimal separating set of hypergraph (X, \mathscr{E}) has size at most $|\mathscr{E}| - 1$.

Proposition

For a hypergraph (X, \mathscr{E}) , a separating set C has size at least $\log_2(|\mathscr{E}|)$.

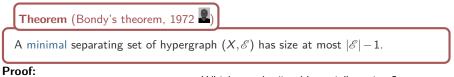
Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|C|}$.

Proof:

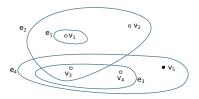
Proposition

For a hypergraph (X, \mathscr{E}) , a separating set C has size at least $\log_2(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|C|}$.



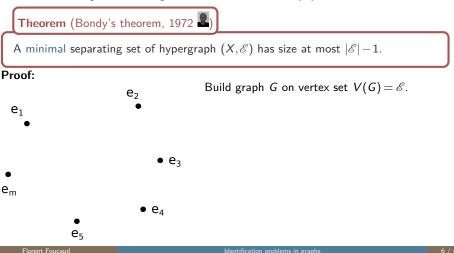
Which are the "problematic" vertices?



Proposition

For a hypergraph (X, \mathscr{E}) , a separating set C has size at least $\log_2(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|\mathcal{C}|}$.



Proposition

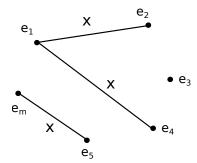
For a hypergraph (X, \mathscr{E}) , a separating set C has size at least $\log_2(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|C|}$.

Theorem (Bondy's theorem, 1972 🌄)

A minimal separating set of hypergraph (X, \mathscr{E}) has size at most $|\mathscr{E}| - 1$.

Proof:



Build graph G on vertex set $V(G) = \mathscr{E}$. Join e_i to e_j iff $e_i = e_j \cup \{x\}$ for some $x \in X$, label it "x"

Proposition

For a hypergraph (X, \mathscr{E}) , a separating set C has size at least $\log_2(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|C|}$.

Theorem (Bondy's theorem, 1972

A minimal separating set of hypergraph (X, \mathscr{E}) has size at most $|\mathscr{E}| - 1$.

Proof:



Build graph G on vertex set $V(G) = \mathscr{E}$. Join e_i to e_j iff $e_i = e_j \cup \{x\}$ for some $x \in X$, label it "x"

Proposition

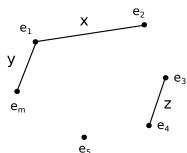
For a hypergraph (X, \mathscr{E}) , a separating set C has size at least $\log_2(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|C|}$.

Theorem (Bondy's theorem, 1972 🌄)

A minimal separating set of hypergraph (X, \mathscr{E}) has size at most $|\mathscr{E}| - 1$.

Proof:



Build graph G on vertex set $V(G) = \mathscr{E}$.

Join e_i to e_j iff $e_i = e_j \cup \{x\}$ for some $x \in X$, label it "x"

If an edge labeled x appears multiple times, keep only one of them.

This destroys all cycles in $G! \rightarrow \text{forest.}$

Proposition

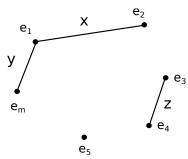
For a hypergraph (X, \mathscr{E}) , a separating set C has size at least $\log_2(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C: $|\mathscr{E}| \leq 2^{|C|}$.

Theorem (Bondy's theorem, 1972

A minimal separating set of hypergraph (X, \mathscr{E}) has size at most $|\mathscr{E}| - 1$.

Proof:



Build graph G on vertex set $V(G) = \mathscr{E}$.

Join e_i to e_j iff $e_i = e_j \cup \{x\}$ for some $x \in X$, label it "x"

If an edge labeled x appears multiple times, keep only one of them.

This destroys all cycles in $G! \rightarrow \text{forest.}$

So, there are at most $|\mathscr{E}| - 1$ "problematic" vertices. \rightarrow Find one "non-problematic vertex" and omit it.

- Special graph-based cases of separating sets in hypergraphs:
 - identifying codes
 - open neighbourhood locating-dominating sets
 - path/cycle identifying covers
 - separating path systems

• Special graph-based cases of separating sets in hypergraphs:

• identifying codes

- open neighbourhood locating-dominating sets
- path/cycle identifying covers
- separating path systems
- A variation:
 - locating-dominating sets
 - locating-total dominating sets

- Special graph-based cases of separating sets in hypergraphs:
 - identifying codes
 - open neighbourhood locating-dominating sets
 - path/cycle identifying covers
 - separating path systems
- A variation:
 - locating-dominating sets
 - locating-total dominating sets
- Geometric versions: e.g. seperating points using disks in Euclidean space

- Special graph-based cases of separating sets in hypergraphs:
 - identifying codes
 - open neighbourhood locating-dominating sets
 - path/cycle identifying covers
 - separating path systems
- A variation:
 - locating-dominating sets
 - locating-total dominating sets
- Geometric versions: e.g. seperating points using disks in Euclidean space
- Distance-based identification:
 - resolving sets (metric dimension)
 - centroidal locating sets
 - tracking paths problem

- Special graph-based cases of separating sets in hypergraphs:
 - identifying codes
 - open neighbourhood locating-dominating sets
 - path/cycle identifying covers
 - separating path systems
- A variation:
 - locating-dominating sets
 - locating-total dominating sets
- Geometric versions: e.g. seperating points using disks in Euclidean space
- Distance-based identification:
 - resolving sets (metric dimension)
 - centroidal locating sets
 - tracking paths problem
- Colouring-based identification:
 - Locally identifying colourings
 - Locating-colourings
 - Neighbour-locating colourings

Identifying codes in graphs

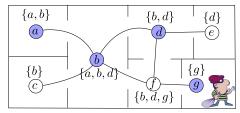
G: undirected graph N[u]: set of vertices v s.t. $d(u, v) \leq 1$

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

ID(G): identifying code number of G, minimum size of an identifying code in G



G: undirected graph N[u]: set of vertices v s.t. $d(u, v) \le 1$

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

ID(G): identifying code number of G, minimum size of an identifying code in G

Separating set of G = separating set of neighbourhood hypergraph of G

G: undirected graph N[u]: set of vertices v s.t. $d(u, v) \le 1$

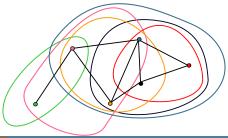
Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

ID(G): identifying code number of G, minimum size of an identifying code in G

Separating set of G = separating set of neighbourhood hypergraph of G



G: undirected graph N[u]: set of vertices v s.t. $d(u, v) \le 1$

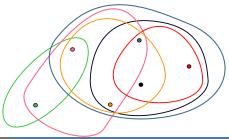
Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

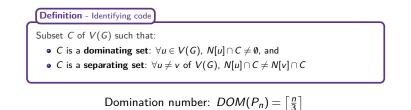
Subset C of V(G) such that:

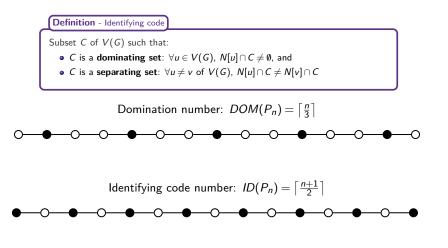
- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

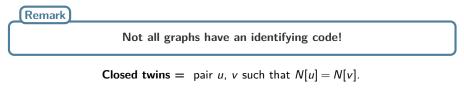
ID(G): identifying code number of G, minimum size of an identifying code in G

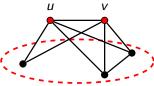
Separating set of G = separating set of neighbourhood hypergraph of G

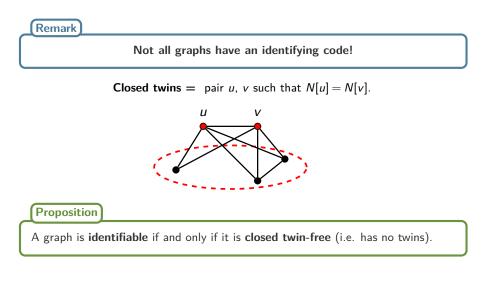












n: number of vertices

Proposition

G identifiable graph on *n* vertices: $\lceil \log_2(n+1) \rceil \leq ID(G)$.

n: number of vertices

Proposition

G identifiable graph on *n* vertices: $\lceil \log_2(n+1) \rceil \leq ID(G)$.

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

 $ID(G) \leq n-1$

n: number of vertices

Proposition

G identifiable graph on *n* vertices: $\lceil \log_2(n+1) \rceil \leq ID(G)$.

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

 $ID(G) \leq n-1$

 $ID(G) = n \Leftrightarrow G$ has no edges

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

Theorem

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G)$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

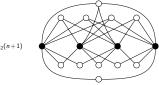
Theorem



Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

Theorem

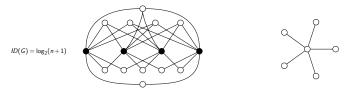


$$ID(G) = \log_2(n+1)$$

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

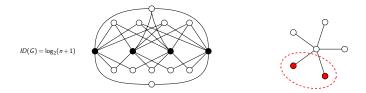
Theorem



Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

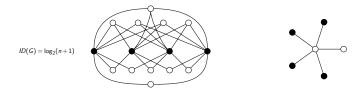
Theorem



Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

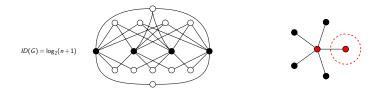
Theorem



Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

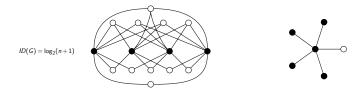
Theorem



Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

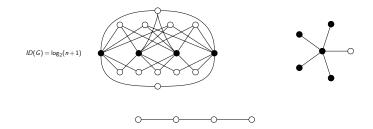
Theorem



Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

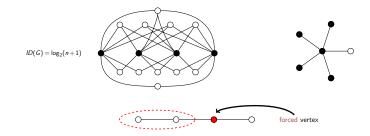
Theorem



Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

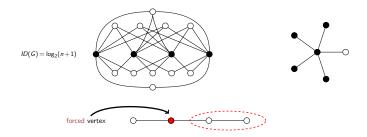
Theorem



Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

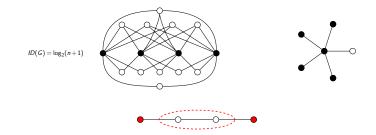
Theorem



Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

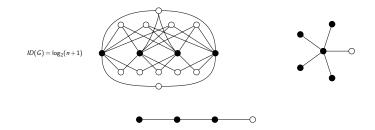
Theorem



Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating set: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

Theorem



Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

 $ID(G) \leq n-1$

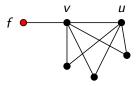
Question

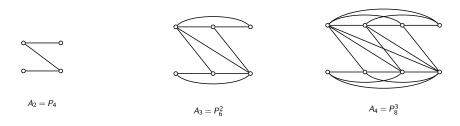
What are the graphs G with n vertices and ID(G) = n - 1?

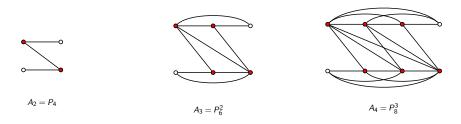
u, v such that $N[v] \ominus N[u] = \{f\}$:

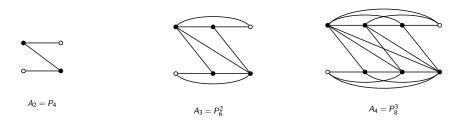
f belongs to any identifying code

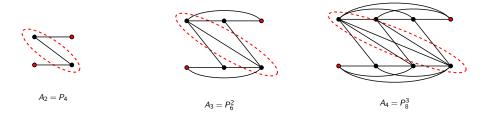
 $\rightarrow f$ forced by u, v.

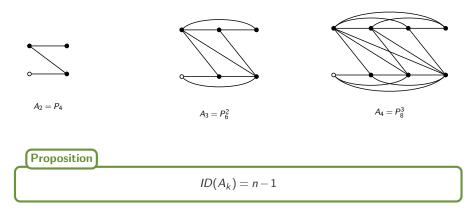


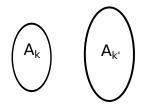




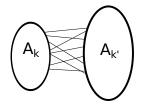




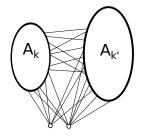




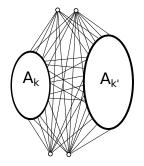
Two graphs A_k and $A_{k'}$



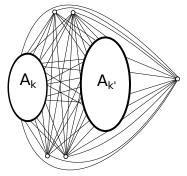
Join: add all edges between them



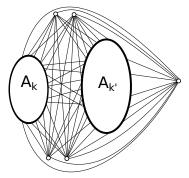
Join the new graph to two non-adjacent vertices $(\overline{K_2})$



Join the new graph to two non-adjacent vertices, again



Finally, add a universal vertex



Finally, add a universal vertex

Proposition

At each step, the constructed graph has ID = n - 1

A characterization

(1) stars

(2)
$$A_k = P_{2k}^{k-1}$$

- (3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_2}$
- (4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

G connected identifiable graph, n vertices:

 $ID(G) = n-1 \Leftrightarrow G \in (1), (2), (3) \text{ or } (4)$

A characterization

(1) stars

(2)
$$A_k = P_{2k}^{k-1}$$

- (3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_2}$
- (4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

G connected identifiable graph, n vertices:

$$ID(G) = n - 1 \Leftrightarrow G \in (1), (2), (3) \text{ or } (4)$$

• *G*: minimum counterexample

A characterization

(1) stars

(2)
$$A_k = P_{2k}^{k-1}$$

- (3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_2}$
- (4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

G connected identifiable graph, n vertices:

$$ID(G) = n - 1 \Leftrightarrow G \in (1), (2), (3) \text{ or } (4)$$

- G: minimum counterexample
- v: vertex such that G v identifiable (exists)

A characterization

(1) stars

(2)
$$A_k = P_{2k}^{k-1}$$

- (3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_2}$
- (4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

G connected identifiable graph, n vertices:

$$ID(G) = n - 1 \Leftrightarrow G \in (1)$$
, (2), (3) or (4)

- G: minimum counterexample
- v: vertex such that G v identifiable (exists)
- Lemma: ID(G v) = n' 1

A characterization

(1) stars

(2)
$$A_k = P_{2k}^{k-1}$$

- (3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_2}$
- (4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

G connected identifiable graph, n vertices:

$$ID(G) = n-1 \Leftrightarrow G \in (1)$$
, (2), (3) or (4)

- G: minimum counterexample
- *v*: vertex such that *G v* identifiable (exists)

• Lemma:
$$ID(G - v) = n' - 1$$

 \Rightarrow By minimality of G:
 $G - v \in (1), (2), (3)$ or (4)

A characterization

(1) stars

(2)
$$A_k = P_{2k}^{k-1}$$

- (3) joins between 0 or more members of (2) and 0 or more copies of $\overline{\mathcal{K}_2}$
- (4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

G connected identifiable graph, n vertices:

$$ID(G) = n-1 \Leftrightarrow G \in (1)$$
, (2), (3) or (4)

- G: minimum counterexample
- v: vertex such that G v identifiable (exists)
- Lemma: ID(G v) = n' 1 \Rightarrow By minimality of G: $G - v \in (1), (2), (3)$ or (4)
- Put *v* back \Rightarrow contradiction:

no counterexample exists!

Location-domination in graphs

Location-domination

Definition - Locating-dominating set (Slater, 1980's)

 $D \subseteq V(G)$ locating-dominating set of G:

- for every $u \in V$, $N[v] \cap D \neq \emptyset$ (domination).
- $\forall u \neq v$ of $V(G) \setminus D$, $N(u) \cap D \neq N(v) \cap D$ (location).

Notation. location-domination number LD(G), smallest size of a locating-dominating set of G

Location-domination

Definition - Locating-dominating set (Slater, 1980's)

 $D \subseteq V(G)$ locating-dominating set of G:

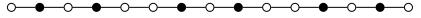
- for every $u \in V$, $N[v] \cap D \neq \emptyset$ (domination).
- $\forall u \neq v$ of $V(G) \setminus D$, $N(u) \cap D \neq N(v) \cap D$ (location).

Notation. location-domination number LD(G), smallest size of a locating-dominating set of G

Domination number: $DOM(P_n) = \left\lceil \frac{n}{3} \right\rceil$

Identifying code number: $ID(P_n) = \left\lceil \frac{n+1}{2} \right\rceil$

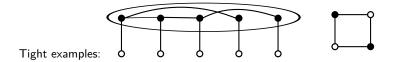
Location-domination number: $LD(P_n) = \left\lceil \frac{2n}{5} \right\rceil$

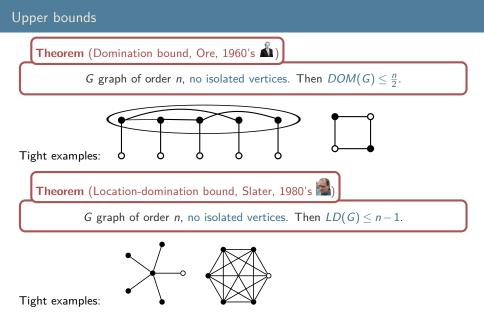


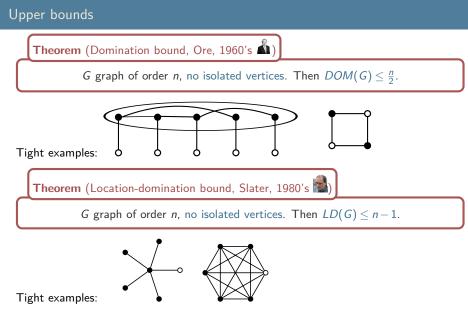
Upper bounds

Theorem (Domination bound, Ore, 1960's 🌒)

G graph of order *n*, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.







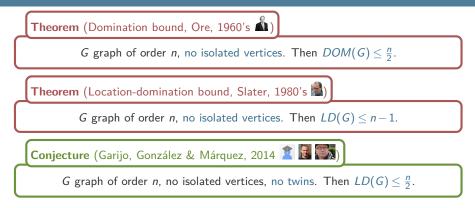
Remark: tight examples contain many twin-vertices!!

Theorem (Domination bound, Ore, 1960's 🏜)

G graph of order *n*, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.

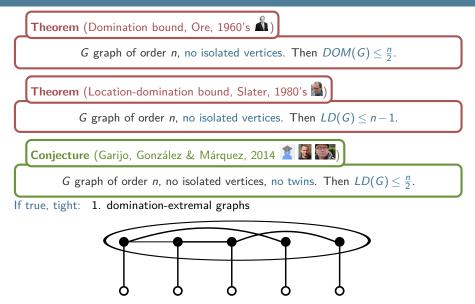
Theorem (Location-domination bound, Slater, 1980's 🔂)

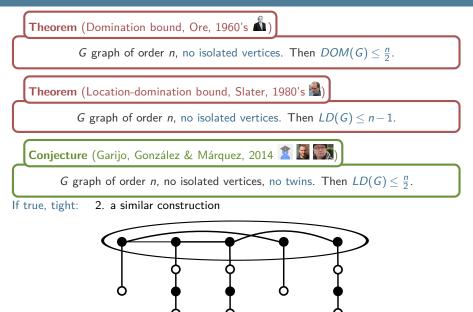
G graph of order *n*, no isolated vertices. Then $LD(G) \le n-1$.

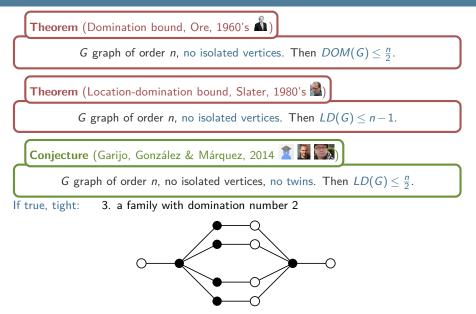


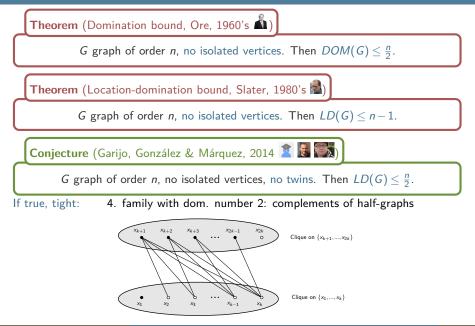
Remark:

- twins are easy to detect
- twins have a trivial behaviour w.r.t. location-domination









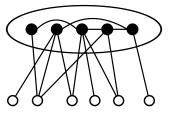
Upper bound: a conjecture - special graph classes

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (Garijo, González & Márquez, 2014 🙎 📓 🎆

Conjecture true if G has independence number $\ge n/2$. (in particular, if bipartite)

Proof: every vertex cover of a twin-free graph is a locating-dominating set



Conjecture (Garijo, González & Márquez, 2014 🙎 🕃 🏹)

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

 $\alpha'(G)$: matching number of G

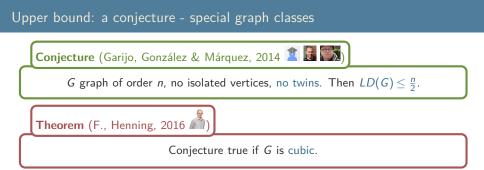
Theorem (Garijo, González & Márquez, 2014 🙎 🕃 🎆)

If G has no 4-cycles, then $LD(G) \le \alpha'(G) \le \frac{n}{2}$.

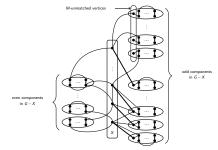
Upper bound: a conjecture - special graph classes

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Conjecture true if *G* is cubic.



Proof: Involved argument using maximum matching and Tutte-Berge theorem.



Upper bound: a conjecture - special graph classes

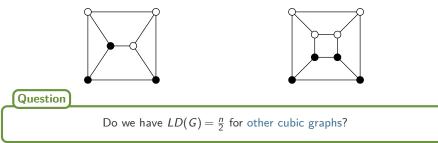
Conjecture (Garijo, González & Márquez, 2014 🙎 🕃 🖏)

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (F., Henning, 2016 🎒)

Conjecture true if G is cubic.

Bound is tight:



Conjecture (Garijo, González & Márquez, 2014 🙎 📓 🏹)

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

True for bipartite, split, co-bipartite, cubic, line...

Conjecture (Garijo, González & Márquez, 2014 🙎 📓 🏹)

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

True for bipartite, split, co-bipartite, cubic, line...

Conjecture (Garijo, González & Márquez, 2014 🙎 📓 🏹)

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

True for bipartite, split, co-bipartite, cubic, line...

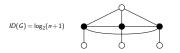
But the conjecture remains open in the general case!

Lower bounds

G identifiable graph on *n* vertices: $\lceil \log_2(n+1) \rceil \leq ID(G) \leq LD(G)$.

G identifiable graph on *n* vertices: $\lceil \log_2(n+1) \rceil \leq ID(G) \leq LD(G)$.

Tight examples:



 $ID(G) = \log_2(n+1)$

G identifiable graph on *n* vertices: $\lceil \log_2(n+1) \rceil \leq ID(G) \leq LD(G)$.

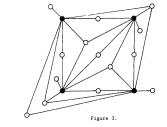
Theorem (Rall & Slater, 1980's 🚉 🚵)

G planar graph, order *n*, LD(G) = k. Then $n \leq 7k - 10 \rightarrow LD(G) \geq \frac{n+10}{7}$.

G identifiable graph on *n* vertices: $\lceil \log_2(n+1) \rceil \leq ID(G) \leq LD(G)$.

Theorem (Rall & Slater, 1980's 🖹 🚵)

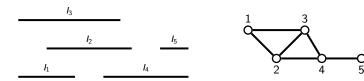
G planar graph, order *n*, LD(G) = k. Then $n \leq 7k - 10 \rightarrow LD(G) \geq \frac{n+10}{7}$.



Tight examples:

Definition - Interval graph

Intersection graph of intervals of the real line.

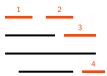


Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 🗰 🎥 👧 🖏

Then
$$n \leq \frac{k(k+1)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 跡 🎼 🗑

Then
$$n \leq \frac{k(k+1)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.



- Identifying code *D* of size *k*.
- Define zones using the right points of intervals in *D*.

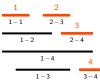
Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 🗰 🗫 💽

Then
$$n \leq \frac{k(k+1)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.

- Identifying code *D* of size *k*.
- Define zones using the right points of intervals in *D*.
- Each vertex intersects a consecutive set of intervals of *D* when ordered by left points.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 🗰 🗫 💽

Then
$$n \leq rac{k(k+1)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.



- Identifying code *D* of size *k*.
- Define zones using the right points of intervals in *D*.
- Each vertex intersects a consecutive set of intervals of *D* when ordered by left points.

$$\rightarrow n \leq \sum_{i=1}^{k} (k-i) = \frac{k(k+1)}{2}.$$

Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 🗰 🎥 👧 🖏

G interval graph of order n, LD(G) = k.

Then
$$n \leq rac{k(k+1)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.

Tight:

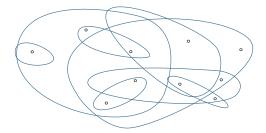
_	_	_	_

Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X, \mathscr{E}) (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered:

for every subset $S' \subseteq S$, there is an edge e with $e \cap S = S'$.



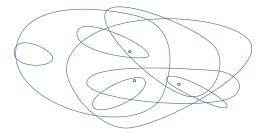
V-C dimension of H: maximum size of a shattered set in H

Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X, \mathscr{E}) (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered:

for every subset $S' \subseteq S$, there is an edge e with $e \cap S = S'$.



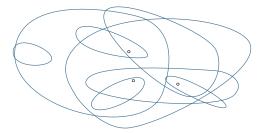
V-C dimension of H: maximum size of a shattered set in H

Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X, \mathscr{E}) (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered:

for every subset $S' \subseteq S$, there is an edge e with $e \cap S = S'$.



V-C dimension of H: maximum size of a shattered set in H

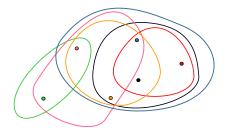
Typically bounded for geometric hypergraphs:

Florent Foucaud

Identification problems in graphs

Vapnik-Červonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph



V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:

 \rightarrow interval graphs (d = 2), C₄-free graphs (d = 2), line graphs (d = 4), permutation graphs (d = 3), unit disk graphs (d = 3), planar graphs (d = 4)...

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:

 \rightarrow interval graphs (d = 2), C₄-free graphs (d = 2), line graphs (d = 4), permutation graphs (d = 3), unit disk graphs (d = 3), planar graphs (d = 4)...

Theorem (Sauer-Shelah Lemma 🖉 🏙

Let H be a hypergraph of V-C dimension at most d. Then, any set S of vertices has at most $|S|^d$ distinct traces.

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:

 \rightarrow interval graphs (d = 2), C₄-free graphs (d = 2), line graphs (d = 4), permutation graphs (d = 3), unit disk graphs (d = 3), planar graphs (d = 4)...

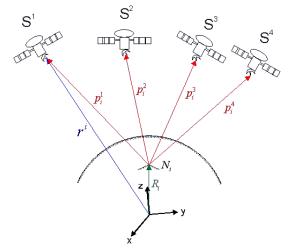
Theorem (Sauer-Shelah Lemma \mathbb{P}) Let H be a hypergraph of V-C dimension at most d. Then, any set S of vertices has at most $|S|^d$ distinct traces.

Corollary

G graph of order n, LD(G) = k, V-C dimension $\leq d$. Then $n = O(k^d)$.

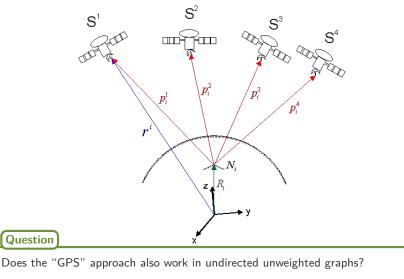
GPS/GLONASS/Galileo/Beidou/IRNSS:

need to know the exact position of 4 satellites + distance to them



GPS/GLONASS/Galileo/Beidou/IRNSS:

need to know the exact position of 4 satellites + distance to them



Florent Foucaud

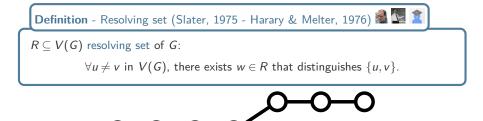
Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976) 🗟 🚾 🙎

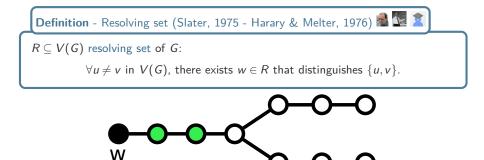
 $R \subseteq V(G)$ resolving set of G:

 $\forall u \neq v \text{ in } V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

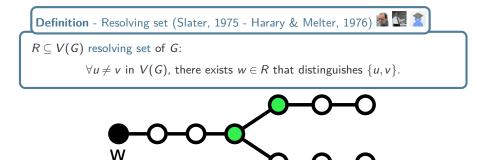
Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$



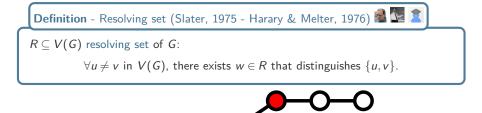
Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$



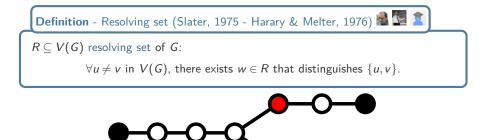
Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$



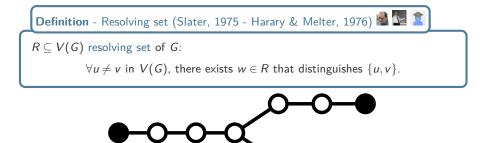
Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$



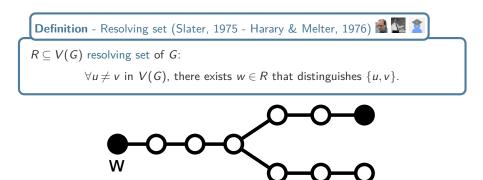
Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$



Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

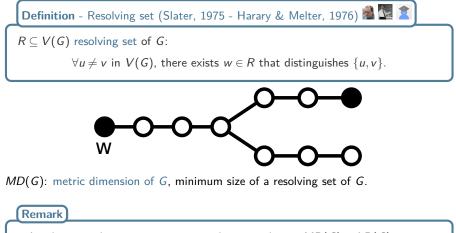


Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$



MD(G): metric dimension of G, minimum size of a resolving set of G.

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$



- Any locating-dominating set is a resolving set, hence $MD(G) \leq LD(G)$.
- A locating-dominating set can be seen as a "distance-1-resolving set".

0-0-0-0-0-0-0

-0

Examples

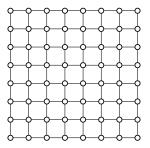
റ

Examples

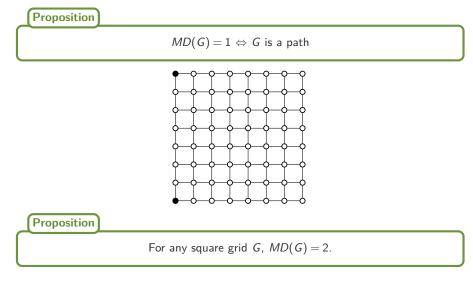
 \cap

Proposition

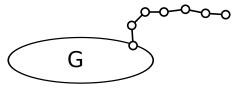
 $MD(G) = 1 \Leftrightarrow G$ is a path



Examples



Leg: path with all inner-vertices of degree 2, endpoints of degree \geq 3 and 1.



Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree \geq 3 and 1.

Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree \geq 3 and 1.

Observation

R resolving set. If v has k legs, at least k-1 legs contain a vertex of *R*.

Simple leg rule: if v has $k \ge 2$ legs, select k - 1 leg endpoints.

Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree \geq 3 and 1.

Observation

R resolving set. If v has k legs, at least k-1 legs contain a vertex of *R*.

Simple leg rule: if v has $k \ge 2$ legs, select k - 1 leg endpoints.

For any tree, the simple leg rule produces an optimal resolving set.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002 📓 🖗 🔊

G of order n, diameter D, MD(G) = k. Then $n \leq D^k + k$.

(diameter: maximum distance between two vertices)

Theorem (Khuller, Raghavachari & Rosenfeld, 2002 💐 🔮 🚵

G of order n, diameter D, MD(G) = k. Then $n \le D^k + k$.

(diameter: maximum distance between two vertices)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 🗰 🎥 🕵 🏹

G interval graph of order *n*, MD(G) = k, diameter *D*. Then $n = O(Dk^2)$ i.e. $k = \Omega(\sqrt{\frac{n}{D}})$. (Tight.)

Theorem (Khuller, Raghavachari & Rosenfeld, 2002 💐 🔮 🚵

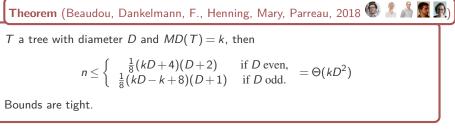
G of order n, diameter D, MD(G) = k. Then $n \leq D^k + k$.

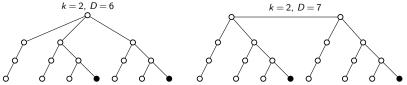
(diameter: maximum distance between two vertices)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 🗰 🕮 🛒 🦷

G interval graph of order *n*, MD(G) = k, diameter *D*. Then $n = O(Dk^2)$ i.e. $k = \Omega(\sqrt{\frac{n}{D}})$. (Tight.)

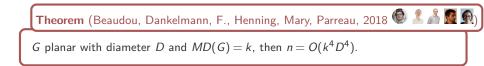
 \rightarrow Proofs are similar as for identifying codes.





Planar graphs

Using the concept of distance-VC-dimension:



Planar graphs

Using the concept of distance-VC-dimension:

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 (2018) *G* planar with diameter *D* and MD(G) = k, then $n = O(k^4D^4)$.

Using the concept of neighbourhood complexity:

Theorem (Joret, Rambaud, 2023+ 🕅 🙎)

G planar with diameter D and MD(G) = k, then $n = O(kD^4)$.

Planar graphs

Using the concept of distance-VC-dimension:

🛛 Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 🚇 🤽 👗 👧 👧

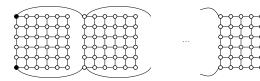
G planar with diameter *D* and MD(G) = k, then $n = O(k^4D^4)$.

Using the concept of neighbourhood complexity:

Theorem (Joret, Rambaud, 2023+ 🚨 🙎)

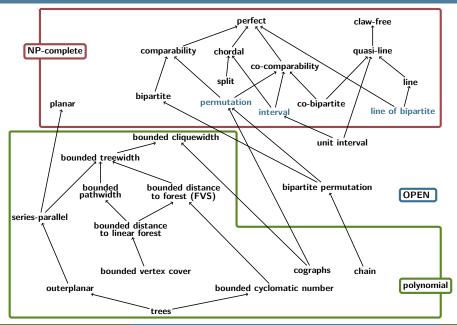
G planar with diameter D and MD(G) = k, then $n = O(kD^4)$.

Tight? Example with k = 3 and $n = \Theta(D^3)$:



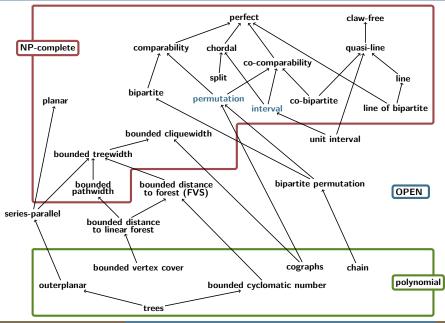
Two slides on complexity and algorithms

Complexity of IDENTIFYING CODE / LOCATING-DOMINATING SET



Florent Foucaud

Complexity of METRIC DIMENSION



Florent Foucaud

Conclusion

Some of my favorite open problems:

- Conjecture: $LD(G) \le n/2$ in the absence of twins
- Find tight bounds for Metric Dimension in planar graphs of diameter *D* (and other classes, e.g. graphs of bounded twin-width)
- Can we solve Identifying Code or Metric Dimension in polynomial time for unit interval graphs?
- Polyhedral questions : see e.g. the work of Annegret Wagler and others

Conclusion

Some of my favorite open problems:

- Conjecture: $LD(G) \le n/2$ in the absence of twins
- Find tight bounds for Metric Dimension in planar graphs of diameter *D* (and other classes, e.g. graphs of bounded twin-width)
- Can we solve Identifying Code or Metric Dimension in polynomial time for unit interval graphs?
- Polyhedral questions : see e.g. the work of Annegret Wagler and others

THANKS FOR YOUR ATTENTION

