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Separating sets in hypergraphs

7

Definition - Separating set (Rényi, 1961 E)

Hypergraph (X,&). A separating set is a subset C C X such that each edge e € &
contains a distinct subset of C.

X= {Vla V2,V3, Va4, V5}

e ao & ={{n},{v1,v2,v3},{v3,va},{v3,va,v5}}
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Definition - Separating set (Rényi, 1961 E)

Hypergraph (X,&). A separating set is a subset C C X such that each edge e € &
contains a distinct subset of C.

ov, X ={v1,v2,v3,v4,v5}
aCovi ) & ={{wvi}{vi,v2,v3},{v3,va}, {v3,va,v5}}
— €= fw)
enNnC=0
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esNC= {v5}
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Definition - Separating set (Rényi, 1961 E)

Hypergraph (X,&). A separating set is a subset C C X such that each edge e € &
contains a distinct subset of C.

.y, X ={vi,v2,v3,va,v5}

61 éa:{{Vl}’{vlvv%V3},{V33V4}7{V37V47V5}}
— €= mml

eNC={v,v}
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Separating sets in hypergraphs

7

Definition - Separating set (Rényi, 1961 E)

Hypergraph (X,&). A separating set is a subset C C X such that each edge e € &
contains a distinct subset of C.

Florent Foucaud

X={v1,v2,v3,v4,v5}
&= {{V1}3 {V17 V2, V3}’{V33 V4}7{V37 va, V5}}

C={vs,v1,v3}

eenNnC={wv}
eNC={v;,v3}
e3NC={vs}

eaNC= {V3,v5}
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Separating sets in hypergraphs

7

Definition - Separating set (Rényi, 1961 E)

Hypergraph (X,&). A separating set is a subset C C X such that each edge e € &
contains a distinct subset of C.

X={v1,v2,v3,v4,v5}

aCon ) & ={{vi},{vi,v2,v3},{va,va},{v3,va,v5}}
— €= mml
es @ etNC={v}
eNC={vi,vs}
e3ﬂC={V3}
64ﬂC={V3,V5}

Equivalently: for any pair e, f of edges, there is a vertex of C in exactly one of e, f.
— hitting set of the symmetric differences of all pairs of hyperedges
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Separating sets in hypergraphs

7

Definition - Separating set (Rényi, 1961 E)

Hypergraph (X,&). A separating set is a subset C C X such that each edge e € &
contains a distinct subset of C.

X={v1,v2,v3,v4,v5}

el@ éa:{{Vl},{V]_,VQ,V3},{V3,V4},{V3,V47V5}}
— €= mml
es @ etNC={v}
eNC={v,vs}
esNC= {V3}
esNC= {V3,v5}

Also known as Separating system, Distinguishing set, Test cover, Distinguishing
transversal, Discriminating code...

Florent Foucaud Identification problems in graphs 4 /42



Applications

o network-monitoring, fault detection (burglar)

e medical diagnostics: testing samples for diseases (test cover)

@ biological identification (attributes of individuals)

@ learning theory: teaching dimension

@ machine learning: V-C dimension (Vapnik, Cervonenkis, 1971)

@ graph isomorphism: canonical representation of graphs (Babai, 1982)

o logic definability of graphs (Kim, Pikhurko, Spencer, Verbitsky, 2005)
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&), a separating set C has size at least log,(|£)).

Proof: Must assign to each edge, a distinct subset of C: |&] < 2lcl, O
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&), a separating set C has size at least log,(|£)).

Proof: Must assign to each edge, a distinct subset of C: |&] < 2lcl, O

7

Theorem (Bondy's theorem, 1972 ‘)

A minimal separating set of hypergraph (X,&) has size at most |&|— 1.
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&), a separating set C has size at least log,(|£)).

Proof: Must assign to each edge, a distinct subset of C: |&] < 2lcl, O
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Theorem (Bondy's theorem, 1972 ‘)

A minimal separating set of hypergraph (X,&) has size at most |&|— 1.
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&), a separating set C has size at least log,(|£)).

Proof: Must assign to each edge, a distinct subset of C: |&] < 2lcl, O

7

Theorem (Bondy's theorem, 1972 ‘)

A minimal separating set of hypergraph (X,&) has size at most |&|— 1.

Proof:

Which are the “problematic” vertices?
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&), a separating set C has size at least log,(|£)).

Proof: Must assign to each edge, a distinct subset of C: |&] < 2lcl, O

7

Theorem (Bondy's theorem, 1972 ‘)

A minimal separating set of hypergraph (X,&) has size at most |&|— 1.

Proof:
e, Build graph G on vertex set V(G) =&
e; ®
.
e e,
°
€m
e g,
.
€s
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&), a separating set C has size at least log,(|£)).

Proof: Must assign to each edge, a distinct subset of C: |&] < 2lcl, O

7

Theorem (Bondy's theorem, 1972 ‘)

A minimal separating set of hypergraph (X,&) has size at most |&|— 1.

Proof:
e, Build graph G on vertex set V(G) =&
e; X Join e; to ¢; iff e = ;U {x} for some x € X,
label it “x"
X ®€s
€m
X e,
€5
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&), a separating set C has size at least log,(|£)).

Proof: Must assign to each edge, a distinct subset of C: |&] < 2lcl, O

7

Theorem (Bondy's theorem, 1972 ‘)

A minimal separating set of hypergraph (X,&) has size at most |&|— 1.

Proof:
e Build graph G on vertex set V(G) =&
2
e X Join ¢ to ¢; iff e = ;U {x} for some x € X,
label it “x”
y
€3

€m z

X €,

€5 y
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&), a separating set C has size at least log,(|£)).

Proof: Must assign to each edge, a distinct subset of C: |&] < 2lcl, O

7

Theorem (Bondy's theorem, 1972 ‘)

A minimal separating set of hypergraph (X,&) has size at most |&|— 1.

Proof:
e Build graph G on vertex set V(G) =&
2
e X Join ¢ to ¢; iff e = ;U {x} for some x € X,
label it “x”
y If an edge labeled x appears multiple times,
e3  keep only one of them.
This destroys all cycles in G! — forest.
€n z
€4
°
€s
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General bounds, Bondy's theorem

Proposition

For a hypergraph (X,&), a separating set C has size at least log,(|£)).

Proof: Must assign to each edge, a distinct subset of C: |&] < 2lcl, O

7

Theorem (Bondy's theorem, 1972 ‘)

A minimal separating set of hypergraph (X,&) has size at most |&|— 1.

Proof:
e Build graph G on vertex set V(G) =&
2
e X Join ¢ to ¢; iff e = ;U {x} for some x € X,
label it “x”
y If an edge labeled x appears multiple times,
e3  keep only one of them.
This destroys all cycles in G! — forest.
emn 4
e, So, there are at most |&]| — 1 “problematic”
° vertices. — Find one “non-problematic vertex”
€s and omit it. O

Florent Foucaud Identification problems in graphs 6 /42



Some example problems

e Special graph-based cases of separating sets in hypergraphs:
o identifying codes
@ open neighbourhood locating-dominating sets
@ path/cycle identifying covers
@ separating path systems

Florent Foucaud Identification problems in graphs 7/ 42



Some example problems

e Special graph-based cases of separating sets in hypergraphs:
o identifying codes
@ open neighbourhood locating-dominating sets
@ path/cycle identifying covers
@ separating path systems
e A variation:
o locating-dominating sets
@ locating-total dominating sets

Florent Foucaud Identification problems in graphs 7/ 42



Some example problems

e Special graph-based cases of separating sets in hypergraphs:
o identifying codes
@ open neighbourhood locating-dominating sets
@ path/cycle identifying covers
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e A variation:
o locating-dominating sets
@ locating-total dominating sets

e Geometric versions: e.g. seperating points using disks in Euclidean space
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Some example problems

e Special graph-based cases of separating sets in hypergraphs:
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@ open neighbourhood locating-dominating sets
@ path/cycle identifying covers
@ separating path systems
e A variation:
o locating-dominating sets
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e Geometric versions: e.g. seperating points using disks in Euclidean space
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Some example problems

e Special graph-based cases of separating sets in hypergraphs:
o identifying codes
@ open neighbourhood locating-dominating sets
@ path/cycle identifying covers
@ separating path systems
e A variation:
o locating-dominating sets
@ locating-total dominating sets

e Geometric versions: e.g. seperating points using disks in Euclidean space

e Distance-based identification:
o resolving sets (metric dimension)
@ centroidal locating sets
@ tracking paths problem
e Colouring-based identification:
@ Locally identifying colourings
@ Locating-colourings
@ Neighbour-locating colourings
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Identifying codes in graphs

Identification problems in graphs
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Identifying codes

G: undirected graph
N[u]: set of vertices v s.t. d(u,v) <1

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)]

Subset C of V(G) such that:
e C is a dominating set: Vu e V(G), N[ulnC #0, and

e C is a separating set: Vu # v of V(G), N[ulnC # N[v]nC

ID(G): identifying code number of G,
minimum size of an identifying code in G

{a,b} | L gy g
©
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G: undirected graph
N[u]: set of vertices v s.t. d(u,v) <1

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)]

Subset C of V(G) such that:
e C is a dominating set: Vu e V(G), N[ulnC #0, and

e C is a separating set: Vu # v of V(G), N[ulnC # N[v]nC

ID(G): identifying code number of G,
minimum size of an identifying code in G

Separating set of G = separating set of neighbourhood hypergraph of G
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Identifying codes

G: undirected graph
N[u]: set of vertices v s.t. d(u,v) <1

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)]

Subset C of V(G) such that:
e C is a dominating set: Vu e V(G), N[ulnC #0, and

e C is a separating set: Vu # v of V(G), N[ulnC # N[v]nC

ID(G): identifying code number of G,
minimum size of an identifying code in G

Separating set of G = separating set of neighbourhood hypergraph of G
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Examples: paths

Definition - Identifying code]

Subset C of V(G) such that:
o Cis a dominating set: Yu € V(G), N[u]nC # 0, and
o Cis a separating set: Yu # v of V(G), N[ul[nC# N[v]nC

Domination number: DOM(P,) = [§]
O—e—0—0—8—0—0—8—O0—0—e—O0—0—eo0
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Examples: paths

Definition - Identifying code]

Subset C of V(G) such that:
o Cis a dominating set: Yu € V(G), N[u]nC # 0, and
o Cis a separating set: Yu # v of V(G), N[ul[nC# N[v]nC

Domination number: DOM(P,) = [§]
O—e—0—0—8—0—0—8—O0—0—e—O0—0—eo0

Identifying code number: ID(P,) = [241]

o—O0—"0—OC0—0—OC—0—0O0—0—O0—0—0OC—0—0—0
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Identifiable graphs

Remark

Not all graphs have an identifying code!

Closed twins = pair u, v such that N[u] = N[v].
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Identifiable graphs

Remark

Not all graphs have an identifying code!

Closed twins = pair u, v such that N[u] = N[v].

Proposition

A graph is identifiable if and only if it is closed twin-free (i.e. has no twins).
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Bounds on ID(G)

n: number of vertices

Proposition

G identifiable graph on n vertices: [logy(n+1)] < ID(G).
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Bounds on ID(G)

n: number of vertices

Proposition

G identifiable graph on n vertices: [logy(n+1)] < ID(G).

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)]

G identifiable graph on n vertices with at least one edge:

ID(G)<n—1
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Bounds on ID(G)

n: number of vertices

Proposition

G identifiable graph on n vertices: [logy(n+1)] < ID(G).

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)]

G identifiable graph on n vertices with at least one edge:

ID(G)<n—1

ID(G) = n< G has no edges Py

Florent Foucaud Identification problems in graphs
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Further examples

Definition - Identifying code]

Subset C of V(G) such that:
o C is a dominating set: Vu € V(G), N[u]NC # 0, and
o C is a separating set: Yu # v of V(G), N[u]nC # N[v]nC

Theorem

G identifiable, n vertices, some edges: [log,(n+1)] <ID(G)<n—1
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Definition - Identifying code]
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Further examples

Definition - Identifying code]

Subset C of V(G) such that:
o C is a dominating set: Yu e V(G), N[ulnC # 0, and
o C is a separating set: Vu # v of V(G), N[u]nC # N[v]nC

Theorem

G identifiable, n vertices, some edges: [logy(n+1)] <ID(G)<n-—1

ID(G) = logy(n+1)

forced vertex
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Further examples
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Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)]

G identifiable graph on n vertices with at least one edge:

ID(G)<n—1

Question

What are the graphs G with n vertices and ID(G)=n—17
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Forced vertices

u,v such that N[v]e N[u] = {f}: v u
f belongs to any identifying code

— f forced by u,v.
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Graphs with many forced vertices

Special path powers: Ay = P§k_1 (also called complements of half-graphs)

AN

Ay =Py

As = P2 Ay =P}
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Graphs with many forced vertices

Special path powers: Ay = P§k_1 (also called complements of half-graphs)

AN

Ar =Py A3:P62 A4:P§
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Graphs with many forced vertices

Special path powers: Ay = P§k_1 (also called complements of half-graphs)
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Graphs with many forced vertices

Special path powers: Ay = P§k_1 (also called complements of half-graphs)

AN

Ar =Py A3:P62 A4:P§

Proposition

ID(Ax) =n—1
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Constructions using joins

Two graphs Ag and Ay
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Constructions using joins

il

Join: add all edges between them

17 / 42
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Constructions using joins

Join the new graph to two non-adjacent vertices (K>)
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Constructions using joins

Join the new graph to two non-adjacent vertices, again
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Constructions using joins

Finally, add a universal vertex




Constructions using joins

Finally, add a universal vertex

Proposition

At each step, the constructed graph has ID=n—1

Identification problems in graphs



A characterization

1) stars

2) Ax=P5?t

3) joins between 0 or more members of (2) and 0 or more copies of Ko
4) (2) or (3) with a universal vertex

(
(
(
(

Theorem (F., Guerrini, Kovse, Naserasr, Parreau, Valicov, 2011)]

G connected identifiable graph, n vertices:

ID(G)=n—1 Ge (1), (2), (3) or (4)
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1) stars

2) Ax=P5?t

3) joins between 0 or more members of (2) and 0 or more copies of Ko
4) (2) or (3) with a universal vertex

(
(
(
(

Theorem (F., Guerrini, Kovse, Naserasr, Parreau, Valicov, 2011)]

G connected identifiable graph, n vertices:

ID(G)=n—1 Ge (1), (2), (3) or (4)

e G: minimum counterexample
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4) (2) or (3) with a universal vertex

(
(
(
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Theorem (F., Guerrini, Kovse, Naserasr, Parreau, Valicov, 2011)]

G connected identifiable graph, n vertices:

ID(G)=n—1 Ge (1), (2), (3) or (4)

e G: minimum counterexample

e v: vertex such that G — v identifiable
(exists)
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A characterization

1) stars

2) Ax=P5?t

3) joins between 0 or more members of (2) and 0 or more copies of Ko
4) (2) or (3) with a universal vertex

(
(
(
(

Theorem (F., Guerrini, Kovse, Naserasr, Parreau, Valicov, 2011)]

G connected identifiable graph, n vertices:

ID(G)=n—1 Ge (1), (2), (3) or (4)

e G: minimum counterexample

e v: vertex such that G — v identifiable
(exists)

e Lemma: ID(G—v)=n'-1
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3) joins between 0 or more members of (2) and 0 or more copies of Ko
4) (2) or (3) with a universal vertex

(
(
(
(

Theorem (F., Guerrini, Kovse, Naserasr, Parreau, Valicov, 2011)]

G connected identifiable graph, n vertices:

ID(G)=n—1 Ge (1), (2), (3) or (4)

e G: minimum counterexample

e v: vertex such that G — v identifiable
(exists)
e Lemma: ID(G—v)=n'-1
= By minimality of G:
G—ve (1), (2), (3) or (4)
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A characterization

1) stars

2) Ax=P5?t

3) joins between 0 or more members of (2) and 0 or more copies of Ko
4) (2) or (3) with a universal vertex

(
(
(
(

Theorem (F., Guerrini, Kovse, Naserasr, Parreau, Valicov, 2011)]

G connected identifiable graph, n vertices:

ID(G)=n—1 Ge (1), (2), (3) or (4)

e G: minimum counterexample

e v: vertex such that G — v identifiable
(exists)

e Lemma: ID(G—v)=n'-1
= By minimality of G:
G—ve (1), (2), (3)or(4)

e Put v back = contradiction: no counterexample exists!
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Location-domination in graphs
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Location-domination

Definition - Locating-dominating set (Slater, 1980’s) n

D C V(G) locating-dominating set of G:

o for every ue V, N[v]ND # 0 (domination).
@ Yu#v of V(G)\D, N(u)ND = N(v)NnD (location).

Notation. location-domination number LD(G),
smallest size of a locating-dominating set of G
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Location-domination

Definition - Locating-dominating set (Slater, 1980’s) m

D C V(G) locating-dominating set of G:
o for every ue V, N[v]ND # 0 (domination).
@ Yu#v of V(G)\D, N(u)ND = N(v)NnD (location).

Notation. location-domination number LD(G),
smallest size of a locating-dominating set of G

Domination number: DOM(P,) = [§]

o0—e—OC—70C—e—O0—10C—8—0—10C—e—0—10C—e—O

Identifying code number: ID(P,) = {n_ﬁ_l]

—C—"0—O0—0 00— 00— O0O—0—OC—0—0C—0

Location-domination number: LD(P,) = [%"]

o0—e—OC—"8—O0—0—08—0—08—0—0C—e—0—e—O
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7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

BT O
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7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

BT O

Theorem (Location-domination bound, Slater, 1980’s m)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

Tight examples: E %
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7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

BT O

Theorem (Location-domination bound, Slater, 1980’s m)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

Tight examples: E %

Remark: tight examples contain many twin-vertices!!

Florent Foucaud Identification problems in graphs 21 /42



Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

7

Theorem (Location-domination bound, Slater, 1980’s ﬂ)

G graph of order n, no isolated vertices. Then LD(G) < n—1.
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

7

Theorem (Location-domination bound, Slater, 1980’s ﬂ)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 I E)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

7

Theorem (Location-domination bound, Slater, 1980’s ﬂ)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 I E)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

Remark:
e twins are easy to detect

e twins have a trivial behaviour w.r.t. location-domination
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

7

Theorem (Location-domination bound, Slater, 1980’s ﬂ)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 I ﬂ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

If true, tight: 1. domination-extremal graphs

’
bobod
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

7

Theorem (Location-domination bound, Slater, 1980’s II)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 2 ﬂ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

If true, tight: 2. a similar construction

?

)
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

7

Theorem (Location-domination bound, Slater, 1980’s ﬂ)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 I )

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

If true, tight: 3. a family with domination number 2
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then DOM(G) < 7.

7

Theorem (Location-domination bound, Slater, 1980’s ﬂ)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 I )

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

If true, tight: 4. family with dom. number 2: complements of half-graphs

Clique on {x: 1, ok}

Clique on {x1. ...k}
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Upper bound: a conjecture - special graph classes

7

Conjecture (Garijo, Gonzalez & Maérquez, 2014 ) ¢ E)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

Theorem (Garijo, Gonzalez & Marquez, 2014 X [l ()

Conjecture true if G has independence number > n/2.
(in particular, if bipartite)

Proof: every vertex cover of a twin-free graph is a locating-dominating set
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Upper bound: a conjecture - special graph classes

Conjecture (Garijo, Gonzalez & Maérquez, 2014 ) ¢ E )

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

a/'(G): matching number of G

Theorem (Garijo, Gonzélez & Marquez, 2014 ) 4 ﬂ )]

If G has no 4-cycles, then LD(G) < o/(G) < 5.
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Upper bound: a conjecture - special graph classes

Conjecture (Garijo, Gonzalez & Maérquez, 2014 ) ¢ E )

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

Theorem (F., Henning, 2016 ﬂ‘gl)

Conjecture true if G is cubic.
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Upper bound: a conjecture - special graph classes

Conjecture (Garijo, Gonzalez & Maérquez, 2014 ) ¢ E )

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

g
Theorem (F., Henning, 2016 £7)

Conjecture true if G is cubic.

Proof: Involved argument using maximum matching and Tutte-Berge theorem.

odd components
inG-Xx
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Upper bound: a conjecture - special graph classes

Conjecture (Garijo, Gonzalez & Maérquez, 2014 ) ¢ E )

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

Theorem (F., Henning, 2016 ﬂ‘gl)

Conjecture true if G is cubic.

Bound is tight:

Question

Do we have LD(G) = 1§ for other cubic graphs?
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Upper bound: a conjecture - general bound

Conjecture (Garijo, Gonzalez & Maérquez, 2014 ) ¢ E )

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

True for bipartite, split, co-bipartite, cubic, line...
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Upper bound: a conjecture - general bound

Conjecture (Garijo, Gonzalez & Maérquez, 2014 ) ¢ E )

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

True for bipartite, split, co-bipartite, cubic, line...

7

Theorem (F., Henning, Léwenstein, Sasse, 2016 ﬂ‘% . ﬁ)

IN
wir
3

G graph of order n, no isolated vertices, no twins. Then LD(G)

Identification problems in graphs
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Upper bound: a conjecture - general bound

Conjecture (Garijo, Gonzalez & Maérquez, 2014 ) ¢ E )

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

True for bipartite, split, co-bipartite, cubic, line...

7

Theorem (F., Henning, Léwenstein, Sasse, 2016 ﬂ‘% . ﬁ)

IN
wir
3

G graph of order n, no isolated vertices, no twins. Then LD(G)

But the conjecture remains open in the general case!
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Lower bounds
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Proposition

G identifiable graph on n vertices: [logy(n+1)] < ID(G) < LD(G).
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Lower bounds

Proposition

G identifiable graph on n vertices: [logy(n+1)] < ID(G) < LD(G).

Tight examples:

ID(G) = logy(n+1) 15(6) = loga(n+ 1)
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Proposition

G identifiable graph on n vertices: [logy(n+1)] < ID(G) < LD(G).

Theorem (Rall & Slater, 1980's £ i)

— 10
G planar graph, order n, LD(G) = k. Then n <7k —10 — LD(G) > 210,
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Proposition

G identifiable graph on n vertices: [logy(n+1)] < ID(G) < LD(G).

Theorem (Rall & Slater, 1980's £ i)

_ 10
G planar graph, order n, LD(G) = k. Then n<7k—10 — LD(G) > %

Tight examples: Figare 3.
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Interval graphs

Definition - Interval graph]

Intersection graph of intervals of the real line.

I
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 ﬁ “ E )

G interval graph of order n, LD(G) = k.
Then n < X5 ie 1D(G) = Q(v/n).
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 ﬁ “ }) )

G interval graph of order n, LD(G) = k.
Then n < X5 ie 1D(G) = Q(v/n).

o Identifying code D of size k.

@ Define zones using the right points of intervals in D.
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 ﬁ “ E )

G interval graph of order n, LD(G) =
Then n < X5 ie 1D(G) = Q(v/n).

1 2
— —
1-1 2-3
3
—
1-2 2-4
1-4 4
—
1-3 3-4

o Identifying code D of size k.
@ Define zones using the right points of intervals in D.

@ Each vertex intersects a consecutive set of intervals of D when ordered by left
points.
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 ﬁ “ E )

G interval graph of order n, LD(G) =
Then n < X5 ie 1D(G) = Q(v/n).

1 2
— —
1-1 2-3
3
—
1-2 2-4
1-4 4
—
1-3 3-4

o Identifying code D of size k.
@ Define zones using the right points of intervals in D.

@ Each vertex intersects a consecutive set of intervals of D when ordered by left
points.

— n < T (k—i) = U,
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 ﬁ “ }) )

G interval graph of order n, LD(G) = k.
Then n < X5 ie 1D(G) = Q(v/n).

Tight:
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Vapnik-Cervonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X, &)
(initial motivation: machine learning, 1971)

A set S C X is shattered:
for every subset S’ C S, there is an edge e with eNS=5'.

V-C dimension of H: maximum size of a shattered set in H
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Vapnik-Cervonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X, &)
(initial motivation: machine learning, 1971)

A set S C X is shattered:
for every subset S’ C S, there is an edge e with eNS=5'.

V-C dimension of H: maximum size of a shattered set in H
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Vapnik-Cervonenkis dimension

na

Measure of intersection complexity of sets in a hypergraph (X, &)
(initial motivation: machine learning, 1971)

A set S C X is shattered:
for every subset S’ C S, there is an edge e with eNS=5'.

V-C dimension of H: maximum size of a shattered set in H

Typically bounded for geometric hypergraphs: @ o o
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood
hypergraph

/NI (G
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood
hypergraph

Typically bounded for geometric intersection graphs:

— interval graphs (d = 2), Cs-free graphs (d = 2), line graphs (d = 4), permutation
graphs (d = 3), unit disk graphs (d = 3), planar graphs (d =4)...
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood
hypergraph

Typically bounded for geometric intersection graphs:

— interval graphs (d = 2), Cs-free graphs (d = 2), line graphs (d = 4), permutation
graphs (d = 3), unit disk graphs (d = 3), planar graphs (d =4)...

7

Theorem (Sauer-Shelah Lemma B ﬁ)

Let H be a hypergraph of V-C dimension at most d. Then, any set S of vertices
has at most |S|? distinct traces.
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood
hypergraph

Typically bounded for geometric intersection graphs:

— interval graphs (d = 2), Cs-free graphs (d = 2), line graphs (d = 4), permutation
graphs (d = 3), unit disk graphs (d = 3), planar graphs (d =4)...

7

Theorem (Sauer-Shelah Lemma B ﬁ)

Let H be a hypergraph of V-C dimension at most d. Then, any set S of vertices
has at most |S|? distinct traces.

Corollary

G graph of order n, LD(G) = k, V-C dimension < d. Then n= O(k%).
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Metric dimension
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Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites 4 distance to them
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Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites 4 distance to them

Question

Does the “GPS" approach also work in undirected unweighted graphs?

Florent Foucaud Identification problems in graphs 32 /42



Metric dimension

Now, w € V(G) distinguishes {u, v} if dist(w,u) # dist(w,v)

7

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976) 2 M b

R C V(G) resolving set of G:
Yu# v in V(G), there exists w € R that distinguishes {u,v}.
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Metric dimension

Now, w € V(G) distinguishes {u, v} if dist(w,u) # dist(w,v)

7

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976) A E 4

R C V(G) resolving set of G:
Yu# v in V(G), there exists w € R that distinguishes {u,v}.
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Metric dimension

Now, w € V(G) distinguishes {u, v} if dist(w,u) # dist(w,v)

7

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976) A E 4

R C V(G) resolving set of G:
Yu# v in V(G), there exists w € R that distinguishes {u,v}.
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Metric dimension

Now, w € V(G) distinguishes {u, v} if dist(w,u) # dist(w,v)

7

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976) A E 4

R C V(G) resolving set of G:
Yu# v in V(G), there exists w € R that distinguishes {u,v}.
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Metric dimension

Now, w € V(G) distinguishes {u, v} if dist(w,u) # dist(w,v)

7

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976) A E 4

R C V(G) resolving set of G:
Yu# v in V(G), there exists w € R that distinguishes {u,v}.
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Metric dimension

Now, w € V(G) distinguishes {u, v} if dist(w,u) # dist(w,v)

7

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976) A E 4

R C V(G) resolving set of G:
Yu# v in V(G), there exists w € R that distinguishes {u,v}.
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Metric dimension

Now, w € V(G) distinguishes {u, v} if dist(w,u) # dist(w,v)

7

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976) A E 4

R C V(G) resolving set of G:
Yu# v in V(G), there exists w € R that distinguishes {u,v}.
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Metric dimension

Now, w € V(G) distinguishes {u, v} if dist(w,u) # dist(w,v)

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976) ﬂ M 2

R C V(G) resolving set of G:
Vu# v in V(G), there exists w € R that distinguishes {u, v}.

w

MD(G): metric dimension of G, minimum size of a resolving set of G.
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Metric dimension

Now, w € V(G) distinguishes {u, v} if dist(w,u) # dist(w,v)

7

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976) A E 4

R C V(G) resolving set of G:
Yu# v in V(G), there exists w € R that distinguishes {u,v}.

w

MD(G): metric dimension of G, minimum size of a resolving set of G.

Remark

e Any locating-dominating set is a resolving set, hence MD(G) < LD(G).

e A locating-dominating set can be seen as a “distance-1-resolving set".
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Examples
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e—O—CO—0O—C—C0C——0O—-0

Proposition

MD(G)=1 < G is a path
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e—O—CO—0O—C—C0C——0O—-0

Proposition

MD(G)=1 < G is a path
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e—O—CO—0O—C—C0C——0O—-0

Proposition

MD(G)=1 < G is a path

Proposition

For any square grid G, MD(G) = 2.

Identification problems in graphs



Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree >3 and 1.
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree >3 and 1.
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree >3 and 1.

Observation

R resolving set. If v has k legs, at least kK —1 legs contain a vertex of R.

Simple leg rule: if v has k > 2 legs, select k—1 leg endpoints.
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree >3 and 1.

Observation

R resolving set. If v has k legs, at least kK —1 legs contain a vertex of R.

Simple leg rule: if v has k > 2 legs, select k—1 leg endpoints.

7

Theorem (Slater, 1975 II)

For any tree, the simple leg rule produces an optimal resolving set.
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Bounds with diameter

Example of path: no bound n < f(MD(G)) possible.
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Bounds with diameter

Example of path: no bound n < f(MD(G)) possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002 E ' .ﬁ)

G of order n, diameter D, MD(G) = k. Then n < D¥ + k.

(diameter: maximum distance between two vertices)

Florent Foucaud Identification problems in graphs 36 /42



Bounds with diameter

Example of path: no bound n < f(MD(G)) possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002 E ' .ﬁ)

G of order n, diameter D, MD(G) = k. Then n < D¥ + k.

(diameter: maximum distance between two vertices)

7

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 m “ Q )

G interval graph of order n, MD(G) = k, diameter D. Then n= O(Dk?) i.e.
k=Q(y/5). (Tight.)
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Bounds with diameter

Example of path: no bound n < f(MD(G)) possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002 E ' .ﬁ)

G of order n, diameter D, MD(G) = k. Then n < D¥ + k.

(diameter: maximum distance between two vertices)

7

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 m “ Q )

G interval graph of order n, MD(G) = k, diameter D. Then n= O(Dk?) i.e.
k=Q(y/5). (Tight.)

— Proofs are similar as for identifying codes.
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Trees

7

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 ‘B‘ L4 mgl . E)

T a tree with diameter D and MD(T) = k, then

1 .
n< { g(kD+4)(D+2) if Deven, _ O(kD?)

$(kD—k+8)(D+1) if D odd.

Bounds are tight.

k=2 D=6 k=2,D=7

NN
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Planar graphs

Using the concept of distance-VC-dimension:

7

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 ®° ﬂg.l . E)

G planar with diameter D and MD(G) = k, then n= O(k*D%).
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Planar graphs

Using the concept of distance-VC-dimension:

7

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 ®° ﬂ‘gl . E)

G planar with diameter D and MD(G) = k, then n= O(k*D%).

Using the concept of neighbourhood complexity:

7

Theorem (Joret, Rambaud, 2023+ i X)

G planar with diameter D and MD(G) = k, then n = O(kD*).
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Planar graphs

Using the concept of distance-VC-dimension:

7

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 ®° mg! E)

G planar with diameter D and MD(G) = k, then n= O(k*D%).

Using the concept of neighbourhood complexity:

7

Theorem (Joret, Rambaud, 2023+ i X)

G planar with diameter D and MD(G) = k, then n = O(kD*).

Tight? Example with k =3 and n=9©(D3):
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Two slides on complexity and algorithms
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Complexity of IDENTIFYING CODE / LOCATING-DOMINATING SET

@-complete l comparability chordal
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Complexity of METRIC DIMENSION
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Conclusion

Some of my favorite open problems:

o Conjecture: LD(G) < n/2 in the absence of twins

o Find tight bounds for Metric Dimension in planar graphs of diameter D
(and other classes, e.g. graphs of bounded twin-width)

@ Can we solve ldentifying Code or Metric Dimension in polynomial time for unit
interval graphs?

@ Polyhedral questions : see e.g. the work of Annegret Wagler and others
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THANKS FOR YOUR ATTENTION
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