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Separating sets in hypergraphs

Hypergraph (X ,E ). A separating set is a subset C ⊆ X such that each edge e ∈ E
contains a distinct subset of C .

Definition - Separating set (Rényi, 1961 )

v1

v2

v3 v4

v5

e1
e2

e4
e3

X = {v1,v2,v3,v4,v5}
E = {{v1},{v1,v2,v3},{v3,v4},{v3,v4,v5}}

Also known as Separating system, Distinguishing set, Test cover, Distinguishing
transversal, Discriminating code...
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Equivalently: for any pair e, f of edges, there is a vertex of C in exactly one of e, f .
→ hitting set of the symmetric differences of all pairs of hyperedges

Also known as Separating system, Distinguishing set, Test cover, Distinguishing
transversal, Discriminating code...
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Applications

network-monitoring, fault detection (burglar)

medical diagnostics: testing samples for diseases (test cover)

biological identification (attributes of individuals)

learning theory: teaching dimension

machine learning: V-C dimension (Vapnik, Červonenkis, 1971)

graph isomorphism: canonical representation of graphs (Babai, 1982)

logic definability of graphs (Kim, Pikhurko, Spencer, Verbitsky, 2005)

Florent Foucaud Identification problems in graphs 5 / 42



General bounds, Bondy’s theorem

For a hypergraph (X ,E ), a separating set C has size at least log2(|E |).

Proposition

Proof: Must assign to each edge, a distinct subset of C : |E | ≤ 2|C |.

A minimal separating set of hypergraph (X ,E ) has size at most |E |−1.

Theorem (Bondy’s theorem, 1972 )

Build graph G on vertex set V (G) = E .

Join ei to ej iff ei = ej ∪{x} for some x ∈ X ,
label it “x”

If an edge labeled x appears multiple times,
keep only one of them.

This destroys all cycles in G! → forest.

So, there are at most |E |−1 “problematic”
vertices. → Find one “non-problematic vertex”
and omit it.
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Some example problems

• Special graph-based cases of separating sets in hypergraphs:
identifying codes
open neighbourhood locating-dominating sets
path/cycle identifying covers
separating path systems

• A variation:
locating-dominating sets
locating-total dominating sets

• Geometric versions: e.g. seperating points using disks in Euclidean space

• Distance-based identification:
resolving sets (metric dimension)
centroidal locating sets
tracking paths problem

• Colouring-based identification:
Locally identifying colourings
Locating-colourings
Neighbour-locating colourings
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Identifying codes in graphs

Florent Foucaud Identification problems in graphs 8 / 42



Identifying codes

G : undirected graph
N[u]: set of vertices v s.t. d(u,v) ≤ 1

Subset C of V (G) such that:
C is a dominating set: ∀u ∈ V (G), N[u]∩C ̸= /0, and
C is a separating set: ∀u ̸= v of V (G), N[u]∩C ̸= N[v ]∩C

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

ID(G): identifying code number of G ,
minimum size of an identifying code in G
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Examples: paths

Subset C of V (G) such that:
C is a dominating set: ∀u ∈ V (G), N[u]∩C ̸= /0, and
C is a separating set: ∀u ̸= v of V (G), N[u]∩C ̸= N[v ]∩C

Definition - Identifying code

Domination number: DOM(Pn) =
⌈ n

3
⌉

Identifying code number: ID(Pn) =
⌈ n+1

2
⌉
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Identifiable graphs

Not all graphs have an identifying code!

Remark

Closed twins = pair u, v such that N[u] = N[v ].

u v

A graph is identifiable if and only if it is closed twin-free (i.e. has no twins).

Proposition
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Bounds on ID(G)

n: number of vertices

G identifiable graph on n vertices: ⌈log2(n +1)⌉ ≤ ID(G).

Proposition

G identifiable graph on n vertices with at least one edge:

ID(G) ≤ n−1

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

ID(G) = n ⇔ G has no edges
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Further examples

Subset C of V (G) such that:
C is a dominating set: ∀u ∈ V (G), N[u]∩C ̸= /0, and
C is a separating set: ∀u ̸= v of V (G), N[u]∩C ̸= N[v ]∩C

Definition - Identifying code

G identifiable, n vertices, some edges: ⌈log2(n +1)⌉ ≤ ID(G) ≤ n−1

Theorem

forced vertexforced vertex
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Further examples
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C is a dominating set: ∀u ∈ V (G), N[u]∩C ̸= /0, and
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A question

G identifiable graph on n vertices with at least one edge:

ID(G) ≤ n−1

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

What are the graphs G with n vertices and ID(G) = n−1 ?

Question

Florent Foucaud Identification problems in graphs 14 / 42



Forced vertices

u,v such that N[v ]⊖N[u] = {f }:

f belongs to any identifying code

→ f forced by u,v .

f
v u
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Graphs with many forced vertices

Special path powers: Ak = Pk−1
2k (also called complements of half-graphs)

A2 = P4
A3 = P2

6 A4 = P3
8

ID(Ak) = n−1

Proposition
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Constructions using joins

Ak Ak'

Two graphs Ak and Ak ′

At each step, the constructed graph has ID = n−1

Proposition
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Constructions using joins

Ak Ak'

Join: add all edges between them

At each step, the constructed graph has ID = n−1

Proposition
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Constructions using joins

Ak Ak'

Join the new graph to two non-adjacent vertices (K2)

At each step, the constructed graph has ID = n−1

Proposition

Florent Foucaud Identification problems in graphs 17 / 42



Constructions using joins

Ak Ak'

Join the new graph to two non-adjacent vertices, again

At each step, the constructed graph has ID = n−1

Proposition
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Constructions using joins

Ak Ak'

Finally, add a universal vertex

At each step, the constructed graph has ID = n−1

Proposition
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Constructions using joins

Ak Ak'

Finally, add a universal vertex

At each step, the constructed graph has ID = n−1

Proposition
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A characterization

(1) stars
(2) Ak = Pk−1

2k
(3) joins between 0 or more members of (2) and 0 or more copies of K2
(4) (2) or (3) with a universal vertex

G connected identifiable graph, n vertices:

ID(G) = n−1 ⇔ G ∈ (1), (2), (3) or (4)

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

• G : minimum counterexample

• v : vertex such that G −v identifiable
(exists)

• Lemma: ID(G −v) = n′−1
⇒ By minimality of G :

G −v ∈ (1), (2), (3) or (4)

• Put v back ⇒ contradiction:

G-v

v

no counterexample exists!
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Location-domination in graphs
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Location-domination

D ⊆ V (G) locating-dominating set of G :

for every u ∈ V , N[v ]∩D ̸= /0 (domination).
∀u ̸= v of V(G)\D, N(u)∩D ̸= N(v)∩D (location).

Definition - Locating-dominating set (Slater, 1980’s)

Notation. location-domination number LD(G),
smallest size of a locating-dominating set of G

Florent Foucaud Identification problems in graphs 20 / 42



Location-domination

D ⊆ V (G) locating-dominating set of G :

for every u ∈ V , N[v ]∩D ̸= /0 (domination).
∀u ̸= v of V(G)\D, N(u)∩D ̸= N(v)∩D (location).

Definition - Locating-dominating set (Slater, 1980’s)

Notation. location-domination number LD(G),
smallest size of a locating-dominating set of G

Domination number: DOM(Pn) =
⌈ n

3
⌉

Identifying code number: ID(Pn) =
⌈ n+1

2
⌉

Location-domination number: LD(Pn) =
⌈ 2n

5
⌉
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Upper bounds

G graph of order n, no isolated vertices. Then DOM(G) ≤ n
2 .

Theorem (Domination bound, Ore, 1960’s )

Tight examples:
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2 .

Theorem (Domination bound, Ore, 1960’s )

Tight examples:

G graph of order n, no isolated vertices. Then LD(G) ≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s )

Tight examples:
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Upper bounds

G graph of order n, no isolated vertices. Then DOM(G) ≤ n
2 .

Theorem (Domination bound, Ore, 1960’s )

Tight examples:

G graph of order n, no isolated vertices. Then LD(G) ≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s )

Tight examples:

Remark: tight examples contain many twin-vertices!!
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Upper bound: a conjecture

G graph of order n, no isolated vertices. Then DOM(G) ≤ n
2 .

Theorem (Domination bound, Ore, 1960’s )

G graph of order n, no isolated vertices. Then LD(G) ≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s )
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Upper bound: a conjecture

G graph of order n, no isolated vertices. Then DOM(G) ≤ n
2 .

Theorem (Domination bound, Ore, 1960’s )

G graph of order n, no isolated vertices. Then LD(G) ≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s )

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )
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Upper bound: a conjecture

G graph of order n, no isolated vertices. Then DOM(G) ≤ n
2 .

Theorem (Domination bound, Ore, 1960’s )

G graph of order n, no isolated vertices. Then LD(G) ≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s )

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

Remark:

• twins are easy to detect

• twins have a trivial behaviour w.r.t. location-domination
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Upper bound: a conjecture

G graph of order n, no isolated vertices. Then DOM(G) ≤ n
2 .

Theorem (Domination bound, Ore, 1960’s )

G graph of order n, no isolated vertices. Then LD(G) ≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s )

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

If true, tight: 1. domination-extremal graphs
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Upper bound: a conjecture

G graph of order n, no isolated vertices. Then DOM(G) ≤ n
2 .

Theorem (Domination bound, Ore, 1960’s )

G graph of order n, no isolated vertices. Then LD(G) ≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s )

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

If true, tight: 2. a similar construction
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Upper bound: a conjecture

G graph of order n, no isolated vertices. Then DOM(G) ≤ n
2 .

Theorem (Domination bound, Ore, 1960’s )

G graph of order n, no isolated vertices. Then LD(G) ≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s )

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

If true, tight: 3. a family with domination number 2
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Upper bound: a conjecture

G graph of order n, no isolated vertices. Then DOM(G) ≤ n
2 .

Theorem (Domination bound, Ore, 1960’s )

G graph of order n, no isolated vertices. Then LD(G) ≤ n−1.

Theorem (Location-domination bound, Slater, 1980’s )

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

If true, tight: 4. family with dom. number 2: complements of half-graphs

Clique on {xk+1, ...,x2k}

Clique on {x1, ...,xk}

xk+1 xk+2 xk+3 ...
x2k−1 x2k

x1 x2 x3
...

xk−1 xk
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Upper bound: a conjecture - special graph classes

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

Conjecture true if G has independence number ≥ n/2.
(in particular, if bipartite)

Theorem (Garijo, González & Márquez, 2014 )

Proof: every vertex cover of a twin-free graph is a locating-dominating set
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Upper bound: a conjecture - special graph classes

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

α ′(G): matching number of G

If G has no 4-cycles, then LD(G) ≤ α ′(G) ≤ n
2 .

Theorem (Garijo, González & Márquez, 2014 )
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Upper bound: a conjecture - special graph classes

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

Conjecture true if G is cubic.

Theorem (F., Henning, 2016 )

Florent Foucaud Identification problems in graphs 23 / 42



Upper bound: a conjecture - special graph classes

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

Conjecture true if G is cubic.

Theorem (F., Henning, 2016 )

Proof: Involved argument using maximum matching and Tutte-Berge theorem.

. . .. . .

. . .. . .

. . .. . .

. . .. . .

..
.

..
.

..
.

X

. . .. . .

. . .. . .

. . .. . .
M-unmatched vertices

odd components
in G −X

. . .. . .

. . .. . .

. . .. . .

..
.

even components
in G −X
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Upper bound: a conjecture - special graph classes

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

Conjecture true if G is cubic.

Theorem (F., Henning, 2016 )

Bound is tight:

Do we have LD(G) = n
2 for other cubic graphs?

Question
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Upper bound: a conjecture - general bound

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

True for bipartite, split, co-bipartite, cubic, line...

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ 2
3 n.

Theorem (F., Henning, Löwenstein, Sasse, 2016 )

But the conjecture remains open in the general case!
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Upper bound: a conjecture - general bound

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
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Upper bound: a conjecture - general bound

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ n
2 .

Conjecture (Garijo, González & Márquez, 2014 )

True for bipartite, split, co-bipartite, cubic, line...

G graph of order n, no isolated vertices, no twins. Then LD(G) ≤ 2
3 n.

Theorem (F., Henning, Löwenstein, Sasse, 2016 )

But the conjecture remains open in the general case!
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Lower bounds
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Lower bounds

G identifiable graph on n vertices: ⌈log2(n +1)⌉ ≤ ID(G) ≤ LD(G).

Proposition
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Lower bounds

G identifiable graph on n vertices: ⌈log2(n +1)⌉ ≤ ID(G) ≤ LD(G).

Proposition

Tight examples:

ID(G) = log2(n +1)
ID(G) = log2(n +1)
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Lower bounds

G identifiable graph on n vertices: ⌈log2(n +1)⌉ ≤ ID(G) ≤ LD(G).

Proposition

G planar graph, order n, LD(G) = k. Then n ≤ 7k −10 → LD(G) ≥ n+10
7 .

Theorem (Rall & Slater, 1980’s )
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Lower bounds

G identifiable graph on n vertices: ⌈log2(n +1)⌉ ≤ ID(G) ≤ LD(G).

Proposition

G planar graph, order n, LD(G) = k. Then n ≤ 7k −10 → LD(G) ≥ n+10
7 .

Theorem (Rall & Slater, 1980’s )

Tight examples:
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Interval graphs

Intersection graph of intervals of the real line.

Definition - Interval graph

I1 I4

I2 I5

I3 1

2

3

4 5
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Lower bound for interval graphs

G interval graph of order n, LD(G) = k.

Then n ≤ k(k+1)
2 , i.e. LD(G) = Ω(

√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 )
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Lower bound for interval graphs

G interval graph of order n, LD(G) = k.

Then n ≤ k(k+1)
2 , i.e. LD(G) = Ω(

√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 )

1 2

3

4

1−1 2−3

1−2 2−4

1−4

1−3 3−4

Identifying code D of size k.

Define zones using the right points of intervals in D.

Each vertex intersects a consecutive set of intervals of D when ordered by left
points.

→ n ≤ ∑
k
i=1(k − i) = k(k+1)

2 .
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Lower bound for interval graphs

G interval graph of order n, LD(G) = k.

Then n ≤ k(k+1)
2 , i.e. LD(G) = Ω(

√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 )

1 2

3

4

1−1 2−3

1−2 2−4

1−4

1−3 3−4

Identifying code D of size k.

Define zones using the right points of intervals in D.

Each vertex intersects a consecutive set of intervals of D when ordered by left
points.

→ n ≤ ∑
k
i=1(k − i) = k(k+1)

2 .
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Lower bound for interval graphs

G interval graph of order n, LD(G) = k.

Then n ≤ k(k+1)
2 , i.e. LD(G) = Ω(

√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 )

1 2

3

4

1−1 2−3

1−2 2−4

1−4

1−3 3−4

Identifying code D of size k.

Define zones using the right points of intervals in D.

Each vertex intersects a consecutive set of intervals of D when ordered by left
points.

→ n ≤ ∑
k
i=1(k − i) = k(k+1)

2 .
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Lower bound for interval graphs

G interval graph of order n, LD(G) = k.

Then n ≤ k(k+1)
2 , i.e. LD(G) = Ω(

√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 )

Tight:
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Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X ,E )
(initial motivation: machine learning, 1971)

A set S ⊆ X is shattered:
for every subset S ′ ⊆ S, there is an edge e with e∩S = S ′.

V-C dimension of H: maximum size of a shattered set in H

Typically bounded for geometric hypergraphs:

Florent Foucaud Identification problems in graphs 29 / 42



Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X ,E )
(initial motivation: machine learning, 1971)

A set S ⊆ X is shattered:
for every subset S ′ ⊆ S, there is an edge e with e∩S = S ′.

V-C dimension of H: maximum size of a shattered set in H

Typically bounded for geometric hypergraphs:

Florent Foucaud Identification problems in graphs 29 / 42



Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X ,E )
(initial motivation: machine learning, 1971)

A set S ⊆ X is shattered:
for every subset S ′ ⊆ S, there is an edge e with e∩S = S ′.

V-C dimension of H: maximum size of a shattered set in H

Typically bounded for geometric hypergraphs:
Florent Foucaud Identification problems in graphs 29 / 42



Vapnik-Červonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood
hypergraph

Typically bounded for geometric intersection graphs:

→ interval graphs (d = 2), C4-free graphs (d = 2), line graphs (d = 4), permutation
graphs (d = 3), unit disk graphs (d = 3), planar graphs (d = 4)...

Let H be a hypergraph of V-C dimension at most d . Then, any set S of vertices
has at most |S|d distinct traces.

Theorem (Sauer-Shelah Lemma )

G graph of order n, LD(G) = k, V-C dimension ≤ d . Then n = O(kd ).
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Metric dimension
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Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them

Does the “GPS” approach also work in undirected unweighted graphs?

Question
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Metric dimension

Now, w ∈ V (G) distinguishes {u,v} if dist(w ,u) ̸= dist(w ,v)

R ⊆ V (G) resolving set of G :

∀u ̸= v in V (G), there exists w ∈ R that distinguishes {u,v}.

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)
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MD(G): metric dimension of G , minimum size of a resolving set of G .
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Metric dimension

Now, w ∈ V (G) distinguishes {u,v} if dist(w ,u) ̸= dist(w ,v)

R ⊆ V (G) resolving set of G :

∀u ̸= v in V (G), there exists w ∈ R that distinguishes {u,v}.

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

w

MD(G): metric dimension of G , minimum size of a resolving set of G .

• Any locating-dominating set is a resolving set, hence MD(G) ≤ LD(G).
• A locating-dominating set can be seen as a “distance-1-resolving set”.

Remark
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Examples

MD(G) = 1 ⇔ G is a path

Proposition

For any square grid G , MD(G) = 2.

Proposition

Florent Foucaud Identification problems in graphs 34 / 42



Examples

MD(G) = 1 ⇔ G is a path

Proposition

For any square grid G , MD(G) = 2.

Proposition

Florent Foucaud Identification problems in graphs 34 / 42



Examples

MD(G) = 1 ⇔ G is a path

Proposition

For any square grid G , MD(G) = 2.

Proposition

Florent Foucaud Identification problems in graphs 34 / 42



Examples

MD(G) = 1 ⇔ G is a path

Proposition

For any square grid G , MD(G) = 2.

Proposition

Florent Foucaud Identification problems in graphs 34 / 42



Examples

MD(G) = 1 ⇔ G is a path

Proposition

For any square grid G , MD(G) = 2.

Proposition

Florent Foucaud Identification problems in graphs 34 / 42



Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree ≥ 3 and 1.

G
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree ≥ 3 and 1.

G v

R resolving set. If v has k legs, at least k −1 legs contain a vertex of R.

Observation

Simple leg rule: if v has k ≥ 2 legs, select k −1 leg endpoints.
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Trees

Leg: path with all inner-vertices of degree 2, endpoints of degree ≥ 3 and 1.

G v

R resolving set. If v has k legs, at least k −1 legs contain a vertex of R.

Observation

Simple leg rule: if v has k ≥ 2 legs, select k −1 leg endpoints.

For any tree, the simple leg rule produces an optimal resolving set.

Theorem (Slater, 1975 )
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Bounds with diameter

Example of path: no bound n ≤ f (MD(G)) possible.

G of order n, diameter D, MD(G) = k. Then n ≤ Dk +k.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002 )

(diameter: maximum distance between two vertices)

G interval graph of order n, MD(G) = k, diameter D. Then n = O(Dk2) i.e.
k = Ω

(√ n
D
)
. (Tight.)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 )

→ Proofs are similar as for identifying codes.
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Trees

T a tree with diameter D and MD(T ) = k, then

n ≤
{ 1

8 (kD +4)(D +2) if D even,
1
8 (kD−k +8)(D +1) if D odd.

= Θ(kD2)

Bounds are tight.

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 )

k = 2, D = 6 k = 2, D = 7
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Planar graphs

Using the concept of distance-VC-dimension:

G planar with diameter D and MD(G) = k, then n = O(k4D4).

Theorem (Beaudou, Dankelmann, F., Henning, Mary, Parreau, 2018 )

Using the concept of neighbourhood complexity:

G planar with diameter D and MD(G) = k, then n = O(kD4).

Theorem (Joret, Rambaud, 2023+ )

Tight? Example with k = 3 and n = Θ(D3):

· · ·
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Two slides on complexity and algorithms
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Complexity of IDENTIFYING CODE / LOCATING-DOMINATING SET

trees

outerplanar

cographs chain

bounded cliquewidth

bounded treewidth

bounded
pathwidth

series-parallel

bounded distance
to forest (FVS)

bounded cyclomatic number

bounded distance
to linear forest

bounded vertex cover

unit interval

permutation

bipartite permutation

interval
co-bipartite

line of bipartite
bipartite

planar

split
co-comparability

quasi-line

line

comparability chordal

claw-freeperfect

polynomial

NP-complete

OPEN
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Complexity of METRIC DIMENSION
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Conclusion

Some of my favorite open problems:

Conjecture: LD(G) ≤ n/2 in the absence of twins

Find tight bounds for Metric Dimension in planar graphs of diameter D
(and other classes, e.g. graphs of bounded twin-width)

Can we solve Identifying Code or Metric Dimension in polynomial time for unit
interval graphs?

Polyhedral questions : see e.g. the work of Annegret Wagler and others

THANKS FOR YOUR ATTENTION
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