Homomorphism bounds for K₄-minor-free graphs

Florent Foucaud (LIMOS, Univ. Clermont Auvergne, Clermont-Ferrand)

joint work with

Laurent Beaudou (LIMOS + HSE Moscow) and Reza Naserasr (IRIF, Univ. Paris-Diderot)

Graph colourings

The map colouring problem

Problem

Colour regions of a map so that adjacent regions receive distinct colours. **Goal**: minimize number of colours.

The map colouring problem

Problem

Colour vertices of a graph so that adjacent vertices receive distinct colours. Goal: minimize number of colours.

proper k-colouring of graph G: good colouring of G with k colours.

chromatic number $\chi(G)$ of graph G: smallest k s.t. G has a k-colouring

planar graph:

that can be drawn on the plane without edge-crossing.

Conjecture (Four Colour Conjecture - Guthrie, 1852)

Every planar graph is 4-colourable.

The map colouring problem

Problem

Colour vertices of a graph so that adjacent vertices receive distinct colours. Goal: minimize number of colours.

proper k-colouring of graph G: good colouring of G with k colours.

chromatic number $\chi(G)$ of graph G: smallest k s.t. G has a k-colouring

planar graph:

that can be drawn on the plane without edge-crossing.

Theorem (Four Colour Theorem - Appel & Haken, 1976)

Every planar graph is 4-colourable.

Homomorphisms

 $xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Notation: $G \rightarrow H$.

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Notation: $G \rightarrow H$.

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Notation: $G \rightarrow H$.

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Notation: $G \rightarrow H$.

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Notation: $G \rightarrow H$.

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Notation: $G \rightarrow H$.

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Notation: $G \rightarrow H$.

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Notation: $G \rightarrow H$.

Remark: Homomorphisms generalize proper colourings

 $G o K_k$ if and only if $\chi(G) \le k$

Definition - Core

- Core of G: minimal subgraph H with $G \rightarrow H$
- G is a core if core(G) = G

Cores

Definition - Core

- Core of G: minimal subgraph H with $G \rightarrow H$
- G is a core if core(G) = G

Proposition

The core of a graph is unique (up to isomorphism)

- **Examples**: the core of any nontrivial bipartite graph is K_2
 - complete graphs and odd cycles are cores

Cores

Definition - Core

- Core of G: minimal subgraph H with $G \rightarrow H$
- G is a core if core(G) = G

Proposition

The core of a graph is unique (up to isomorphism)

Examples: • the core of any nontrivial bipartite graph is K_2

• complete graphs and odd cycles are cores

Cores

Definition - Core

- Core of G: minimal subgraph H with $G \rightarrow H$
- G is a core if core(G) = G

Proposition

The core of a graph is unique (up to isomorphism)

Examples: • the core of any nontrivial bipartite graph is K_2

• complete graphs and odd cycles are cores

The homomorphism order

Definition - Homomorphism quasi-order

Defined by $G \leq H$ iff $G \rightarrow H$ (if restricted to cores: partial order).

- reflexive
- transitive
- antisymmetric (cores)

Bounds

Definition - Bound in the order

Graph B is a **bound** for graph class \mathscr{C} if for each $G \in \mathscr{C}$, $G \to B$.

Definition - Bound in the order

Graph B is a **bound** for graph class \mathscr{C} if for each $G \in \mathscr{C}$, $G \to B$.

Definition - Bound in the order

Graph B is a **bound** for graph class \mathscr{C} if for each $G \in \mathscr{C}$, $G \to B$.

K₃: bound for planar triangle-free graphs (Grötzsch's theorem)

A generic problem

Question

Given graph class ${\mathscr C},$ is there a bound for ${\mathscr C}$ having specific properties?
Question

Given graph class ${\mathscr C},$ is there a bound for ${\mathscr C}$ having specific properties?

Definition

 \mathscr{F} : finite set of connected graphs. $Forb(\mathscr{F})$: graphs G s.t. for any $F \in \mathscr{F}$, $F \not\rightarrow G$.

Examples:

- Forb($\{K_{\ell}\}$): graphs with clique number at most $\ell 1$
- Forb($\{C_{2k-1}\}$): graphs of odd-girth at least 2k+1

(odd-girth: length of a smallest odd cycle)

Question

Given graph class ${\mathscr C},$ is there a bound for ${\mathscr C}$ having specific properties?

Definition

 \mathscr{F} : finite set of connected graphs. $Forb(\mathscr{F})$: graphs G s.t. for any $F \in \mathscr{F}$, $F \not\rightarrow G$.

Examples:

- Forb($\{K_{\ell}\}$): graphs with clique number at most $\ell-1$
- Forb($\{C_{2k-1}\}$): graphs of odd-girth at least 2k+1

(odd-girth: length of a smallest odd cycle)

Theorem (Häggvist-Hell, 1993)

All k-colorable graphs of $Forb(\mathscr{F})$ with maximum degree d are bounded by a k-colorable graph $B(k, d, \mathscr{F})$ in $Forb(\mathscr{F})$.

Four Color Theorem: $(K_5$ -free) planar graphs bounded by a K_5 -free graph (K_4) Grötzsch's Theorem: K_3 -free planar graphs bounded by K_3

Question (Nešetřil, 1999)

- Are planar K_3 -free graphs bounded by a K_3 -free graph?
- Are planar K₄-free graphs bounded by a K₄-free graph?
 Are planar (K₅-free) graphs bounded by a K₅-free graph?

Minor of G: graph obtained by sequence of edge-contractions and deletions.

Classic minor-closed graph classes:

trees, planar graphs, bounded genus, classed defined by forbidden minor...

Four Color Theorem: $(K_5$ -free) planar graphs bounded by a K_5 -free graph (K_4) Grötzsch's Theorem: K_3 -free planar graphs bounded by K_3

Question (Nešetřil, 1999)

- Are planar K_3 -free graphs bounded by a K_3 -free graph?
- Are planar K₄-free graphs bounded by a K₄-free graph?
 Are planar (K₅-free) graphs bounded by a K₅-free graph?

Minor of G: graph obtained by sequence of edge-contractions and deletions.

Classic minor-closed graph classes: trees, planar graphs, bounded genus, classed defined by forbidden minor...

• Nešetřil-Ossona de Mendez, 2003: 3-colorable K_3 -free bound for K_3 -free planar graphs of order roughly 10^{10²²⁵} (in general, for any minor-closed class)

Four Color Theorem: (K_5 -free) planar graphs bounded by a K_5 -free graph (K_4) Grötzsch's Theorem: K_3 -free planar graphs bounded by K_3

Question (Nešetřil, 1999)

- Are planar K_3 -free graphs bounded by a K_3 -free graph?
- Are planar K_4 -free graphs bounded by a K_4 -free graph?
- Are planar (K_5 -free) graphs bounded by a K_5 -free graph?

Minor of G: graph obtained by sequence of edge-contractions and deletions.

Classic minor-closed graph classes: trees, planar graphs, bounded genus, classed defined by forbidden minor...

- Nešetřil-Ossona de Mendez, 2003: 3-colorable K_3 -free bound for K_3 -free planar graphs of order roughly $10^{10^{225}}$ (in general, for any minor-closed class)
- Naserasr, 2006: K_5 -free bound for planar graphs of order $63\cdot 2^{2\binom{62}{5}}\approx 10^{3895933}$

Four Color Theorem: (K_5 -free) planar graphs bounded by a K_5 -free graph (K_4) Grötzsch's Theorem: K_3 -free planar graphs bounded by K_3

Question (Nešetřil, 1999)

- Are planar K_3 -free graphs bounded by a K_3 -free graph?
- Are planar K_4 -free graphs bounded by a K_4 -free graph?
- Are planar $(K_5$ -free) graphs bounded by a K_5 -free graph?

Minor of G: graph obtained by sequence of edge-contractions and deletions.

Classic minor-closed graph classes: trees, planar graphs, bounded genus, classed defined by forbidden minor...

- Nešetřil-Ossona de Mendez, 2003: 3-colorable K_3 -free bound for K_3 -free planar graphs of order roughly $10^{10^{225}}$ (in general, for any minor-closed class)
- \bullet Naserasr, 2006: $K_5\text{-free}$ bound for planar graphs of order $63\cdot2^{2\binom{62}{5}}\approx10^{3895933}$

• Nešetřil-Ossona de Mendez, 2006: K_k -free bounds (for K_k -free graphs from any minor-closed class)

Definition

 \mathscr{F} : finite set of connected graphs. $Forb(\mathscr{F})$: all graphs G s.t. for any $F \in \mathscr{F}, F \not\rightarrow G$.

Theorem (Nešetřil and Ossona de Mendez, 2008)

For any minor-closed class \mathscr{C} of graphs: $\mathscr{C} \cap Forb(\mathscr{F})$ is bounded by a finite graph $B(\mathscr{C}, \mathscr{F})$ from $Forb(\mathscr{F})$.

Definition

 \mathscr{F} : finite set of connected graphs. $Forb(\mathscr{F})$: all graphs G s.t. for any $F \in \mathscr{F}, F \not\rightarrow G$.

Theorem (Nešetřil and Ossona de Mendez, 2008)

For any bounded expansion class \mathscr{C} of graphs: $\mathscr{C} \cap Forb(\mathscr{F})$ is bounded by a finite graph $B(\mathscr{C},\mathscr{F})$ from $Forb(\mathscr{F})$.

Proved using machinery of the sparsicity project

Definition

 \mathscr{F} : finite set of connected graphs. $Forb(\mathscr{F})$: all graphs G s.t. for any $F \in \mathscr{F}, F \not\rightarrow G$.

Theorem (Nešetřil and Ossona de Mendez, 2008)

For any bounded expansion class \mathscr{C} of graphs: $\mathscr{C} \cap Forb(\mathscr{F})$ is bounded by a finite graph $B(\mathscr{C}, \mathscr{F})$ from $Forb(\mathscr{F})$.

Example 1.
$$\mathscr{C}$$
: planar graphs $\mathscr{F} = \{C_{2k-1}\}$

 \longrightarrow all planar graphs of odd-girth at least 2k+1 map to some graph $B_{n,k}$ of odd-girth 2k+1.

Definition

 \mathscr{F} : finite set of connected graphs. $Forb(\mathscr{F})$: all graphs G s.t. for any $F \in \mathscr{F}, F \not\rightarrow G$.

Theorem (Nešetřil and Ossona de Mendez, 2008)

For any bounded expansion class \mathscr{C} of graphs: $\mathscr{C} \cap Forb(\mathscr{F})$ is bounded by a finite graph $B(\mathscr{C}, \mathscr{F})$ from $Forb(\mathscr{F})$.

Example 2.
$$\mathscr{C}$$
: \mathcal{K}_n -minor-free graphs
 $\mathscr{F} = \{\mathcal{K}_n\}$

 \longrightarrow all K_n -minor-free graphs map to some graph B_n of clique number n-1.

Definition

 \mathscr{F} : finite set of connected graphs. $Forb(\mathscr{F})$: all graphs G s.t. for any $F \in \mathscr{F}$, $F \not\rightarrow G$.

Theorem (Nešetřil and Ossona de Mendez, 2008)

For any bounded expansion class \mathscr{C} of graphs: $\mathscr{C} \cap Forb(\mathscr{F})$ is bounded by a finite graph $B(\mathscr{C},\mathscr{F})$ from $Forb(\mathscr{F})$.

Note: there could be no bound in C ∩ Forb(F) itself! (e.g. planar triangle-free graphs, Naserasr 2005)

 \mathscr{F} : finite set of connected graphs. $Forb(\mathscr{F})$: all graphs G s.t. for any $F \in \mathscr{F}, F \not\rightarrow G$.

Theorem (Nešetřil and Ossona de Mendez, 2008)

For any bounded expansion class \mathscr{C} of graphs: $\mathscr{C} \cap Forb(\mathscr{F})$ is bounded by a finite graph $B(\mathscr{C},\mathscr{F})$ from $Forb(\mathscr{F})$.

Question

What is a bound of smallest order?

Example: \mathscr{C} : K_n -minor-free graphs, $\mathscr{F} = \{K_n\}$

 \longrightarrow Hadwiger's conjecture states that smallest B_n is K_{n-1} .

Projective cubes and planar graphs

Conjecture (Naserasr, 2007)

The projective cube PC(2k) bounds the class of planar graphs of odd-girth at least 2k + 1.

The projective cube PC(2k) bounds the class of planar graphs of odd-girth at least 2k + 1.

Definition - Projective cube of dimension d, PC(d)

The projective cube PC(2k) bounds the class of planar graphs of odd-girth at least 2k + 1.

Definition - Projective cube of dimension d, PC(d)

The projective cube PC(2k) bounds the class of planar graphs of odd-girth at least 2k + 1.

Definition - Projective cube of dimension d, PC(d)

The projective cube PC(2k) bounds the class of planar graphs of odd-girth at least 2k + 1.

Definition - Projective cube of dimension d, PC(d)

The projective cube PC(2k) bounds the class of planar graphs of odd-girth at least 2k + 1.

Definition - Projective cube of dimension d, PC(d)

Obtained from hypercube H(d) by adding edges between all antipodal pairs. Also known as folded cube.

PC(4): Clebsch graph (a.k.a Greenwood-Gleason: R(3,3,3) = 17, 1955)

Projective cubes

Definition - Projective cube of dimension d, PC(d)

Obtained from hypercube H(d) by adding edges between all antipodal pairs.

d(u, v), there is an automorphism with $x \rightarrow u$ and $y \rightarrow v$

Projective cubes

Definition - Projective cube of dimension d, PC(d)

Obtained from hypercube H(d) by adding edges between all antipodal pairs.

Remark

d = 2k + 1 odd: PC(2k + 1) bipartite d = 2k even: PC(2k) has odd-girth 2k + 1 **Conjecture** (Naserasr, 2007)

The projective cube PC(2k) bounds the class of planar graphs of odd-girth at least 2k + 1.

Theorem (Naserasr, Sen, Sun, 2014)

If true, the conjecture is optimal: there is a planar graph of odd-girth 2k+1 whose smallest image of odd-girth 2k+1 has order 2^{2k} .

Proof idea: construct planar (2k-1)-walk-power clique of odd-girth 2k+1

Conjecture (Naserasr, 2007)

The projective cube PC(2k) bounds the class of planar graphs of odd-girth at least 2k + 1.

Conjecture (Seymour, 1981)

Every planar *r*-graph is *r*-edge-colourable.

(*r*-graph: *r*-regular multigraph without odd (< *r*)-cut) \rightarrow Proved up to r = 8.

Theorem (Naserasr, 2007)

Planar graphs of odd-girth at least 2k + 1 are bounded by PC(2k) if and only if every planar (2k + 1)-graph is (2k + 1)-edge-colourable.

Conjecture (Naserasr, 2007)

The projective cube PC(2k) bounds the class of planar graphs of odd-girth at least 2k + 1.

Outerplanar graphs

Outerplanar graph: Planar graphs with all vertices on the outer face

 \longrightarrow Exactly the class of $\{K_4, K_{2,3}\}$ -minor-free graphs.

Theorem (Gerards, 1988)

The class of outerplanar graphs of odd-girth at least 2k+1 is bounded by the cycle C_{2k+1} .

Question

What is an optimal bound of odd-girth 2k + 1 for K_4 -minor-free graphs of odd-girth at least 2k + 1?

Question

What is an optimal bound of odd-girth 2k + 1 for K_4 -minor-free graphs of odd-girth at least 2k + 1?

Proposition

K_4 -minor-free graphs

Question

What is an optimal bound of odd-girth 2k + 1 for K_4 -minor-free graphs of odd-girth at least 2k + 1?

Proposition

K_4 -minor-free graphs

Question

What is an optimal bound of odd-girth 2k + 1 for K_4 -minor-free graphs of odd-girth at least 2k + 1?

Proposition

Question

What is an optimal bound of odd-girth 2k + 1 for K_4 -minor-free graphs of odd-girth at least 2k + 1?

Proposition

K_4 -minor-free graphs

Question

What is an optimal bound of odd-girth 2k + 1 for K_4 -minor-free graphs of odd-girth at least 2k + 1?

Proposition

Question

What is an optimal bound of odd-girth 2k + 1 for K_4 -minor-free graphs of odd-girth at least 2k + 1?

Proposition

Question

What is an optimal bound of odd-girth 2k + 1 for K_4 -minor-free graphs of odd-girth at least 2k + 1?

Proposition

Question

What is an optimal bound of odd-girth 2k + 1 for K_4 -minor-free graphs of odd-girth at least 2k + 1?

Proposition

K₄-minor-free graphs

Question

What is an optimal bound of odd-girth 2k + 1 for K_4 -minor-free graphs of odd-girth at least 2k + 1?

Proposition

A graph is K_4 -minor free if and only if it is a partial 2-tree.

*K*₄-minor-free graphs

Question

What is an optimal bound of odd-girth 2k + 1 for K_4 -minor-free graphs of odd-girth at least 2k + 1?

Proposition

A graph is K_4 -minor free if and only if it is a partial 2-tree.

Remark

 K_4 -minor-free graphs are 2-degenerate \implies 3-colourable.

K₄-minor-free graphs

Question

What is an optimal bound of odd-girth 2k + 1 for K_4 -minor-free graphs of odd-girth at least 2k + 1?

Proposition

A graph is K_4 -minor free if and only if it is a partial 2-tree.

Remark

 K_4 -minor-free graphs are 2-degenerate \implies 3-colourable.

 K_4 -minor-free graphs: almost equivalent to series-parallel graphs.

Circular chromatic number

Definition - $\frac{p}{a}$ -colouring of G

Mapping $c: V(G) \to \{1, ..., p\}$ s.t. $xy \in E(G) \Rightarrow q \le |c(x) - c(y)| \le p - q$. Circular chromatic number: $\chi_c(G) = \inf\{\frac{p}{q} \mid G \text{ is } \frac{p}{q} \text{-colourable}\}$

Remark

- Equivalently, homomorphism to circular clique K(p/q)
- $\frac{2k+1}{k}$ -colouring \iff homomorphism to C_{2k+1}

• Refinement of chromatic number: $\chi(G) - 1 < \chi_c(G) \le \chi(G)$

Theorem (Hell & Zhu, 2000 + Pan & Zhu, 2002)

If G K₄-minor-free and triangle-free, $\chi_c(G) \leq \frac{8}{3}$.

If moreover G has odd-girth at least 7, $\chi_c(G) \leq \frac{5}{2}$.

General bounds for K₄-minor-free graphs

Theorem (Beaudou, F., Naserasr, 2017)

The projective cube PC(2k) bounds K_4 -minor-free graphs of odd-girth at least 2k + 1.

Every K_4 -minor-free (2k+1)-graph is (2k+1)-edge-colourable.

 \longrightarrow A more general result already proved by Seymour (1990)

The projective cube PC(2k) bounds the class of planar graphs of odd-girth at least 2k + 1.

Theorem (Beaudou, F., Naserasr, 2017)

The Kneser graph ("odd graph") $Kn(2k+1,k) \subset PC(2k)$ bounds K_4 -minor-free graphs of odd-girth at least 2k+1.

Kneser graph Kn(a, b): vertices are *b*-subsets of $\{1, ..., a\}$ adjacent if and only if disjoint. *Example:* Kn(5,2) = Petersen graph.

Theorem (Beaudou, F., Naserasr, 2017)

The Kneser graph ("odd graph") $Kn(2k+1,k) \subset PC(2k)$ bounds K_4 -minor-free graphs of odd-girth at least 2k+1.

```
Kneser graph Kn(a,b):
vertices are b-subsets of \{1,...,a\}
adjacent if and only if disjoint.
Example: Kn(5,2) = Petersen graph.
```


Corollary

 K_4 -minor-free graphs of odd-girth at least 2k + 1 have fractional chromatic number at most $2 + \frac{1}{k}$.

Theorem (Beaudou, F., Naserasr, 2017)

The $2k \times 2k$ projective toroidal grid $PTG_{2k,2k} \subset PC(2k)$ bounds K_4 -minor-free graphs of odd-girth at least 2k + 1.

Theorem (Beaudou, F., Naserasr, 2017)

The $2k \times 2k$ projective toroidal grid $PTG_{2k,2k} \subset PC(2k)$ bounds K_4 -minor-free graphs of odd-girth at least 2k + 1.

Theorem (Beaudou, F., Naserasr, 2017)

The $2k \times 2k$ projective toroidal grid $PTG_{2k,2k} \subset PC(2k)$ bounds K_4 -minor-free graphs of odd-girth at least 2k + 1.

k = 2: $PTG_{4,4} = PC(4)$ (Clebsch graph)

Theorem (Beaudou, F., Naserasr, 2017)

The $2k \times 2k$ projective toroidal grid $PTG_{2k,2k} \subset PC(2k)$ bounds K_4 -minor-free graphs of odd-girth at least 2k + 1.

k = 2: $PTG_{4,4} = PC(4)$ (Clebsch graph)

 $k = 3: PTG_{6,6}$

Theorem (Beaudou, F., Naserasr, 2017)

The $2k \times 2k$ projective toroidal grid $PTG_{2k,2k} \subset PC(2k)$ bounds K_4 -minor-free graphs of odd-girth at least 2k + 1.

k = 2: $PTG_{4,4} = PC(4)$ (Clebsch graph)

 $k = 3: PTG_{6,6}$

The projective cube PC(2k) bounds the class of planar graphs of odd-girth at least 2k + 1.

Conjecture (Beaudou, F., Naserasr, 2017)

The Generalized Mycielskian of level k-1 of C_{2k+1} $M_{k-1}(C_{2k+1}) \subset PC(2k)$ bounds for K_4 -minor-free graphs of odd-girth at least 2k+1.

The projective cube PC(2k) bounds the class of planar graphs of odd-girth at least 2k + 1.

Conjecture (Beaudou, F., Naserasr, 2017)

The Generalized Mycielskian of level k-1 of C_{2k+1} $M_{k-1}(C_{2k+1}) \subset PC(2k)$ bounds for K_4 -minor-free graphs of odd-girth at least 2k+1.

The projective cube PC(2k) bounds the class of planar graphs of odd-girth at least 2k + 1.

Conjecture (Beaudou, F., Naserasr, 2017)

The Generalized Mycielskian of level k-1 of C_{2k+1} $M_{k-1}(C_{2k+1}) \subset PC(2k)$ bounds for K_4 -minor-free graphs of odd-girth at least 2k+1.

 $k = 2: M_1(C_5)$

The projective cube PC(2k) bounds the class of planar graphs of odd-girth at least 2k + 1.

Conjecture (Beaudou, F., Naserasr, 2017)

The Generalized Mycielskian of level k-1 of C_{2k+1} $M_{k-1}(C_{2k+1}) \subset PC(2k)$ bounds for K_4 -minor-free graphs of odd-girth at least 2k+1.

Conjecture (Naserasr, 2007)

The projective cube PC(2k) bounds the class of planar graphs of odd-girth at least 2k + 1.

Conjecture (Beaudou, F., Naserasr, 2017)

The Generalized Mycielskian of level k-1 of C_{2k+1} $M_{k-1}(C_{2k+1}) \subset PC(2k)$ bounds for K_4 -minor-free graphs of odd-girth at least 2k+1.

Conjecture (Naserasr, 2007)

The projective cube PC(2k) bounds the class of planar graphs of odd-girth at least 2k + 1.

Conjecture (Beaudou, F., Naserasr, 2017)

The Generalized Mycielskian of level k-1 of C_{2k+1} $M_{k-1}(C_{2k+1}) \subset PC(2k)$ bounds for K_4 -minor-free graphs of odd-girth at least 2k+1.

Conjecture (Naserasr, 2007)

The projective cube PC(2k) bounds the class of planar graphs of odd-girth at least 2k + 1.

Conjecture (Beaudou, F., Naserasr, 2017)

The Generalized Mycielskian of level k-1 of C_{2k+1} $M_{k-1}(C_{2k+1}) \subset PC(2k)$ bounds for K_4 -minor-free graphs of odd-girth at least 2k+1.

Conjecture (Naserasr, 2007)

The projective cube PC(2k) bounds the class of planar graphs of odd-girth at least 2k + 1.

Conjecture (Beaudou, F., Naserasr, 2017)

The Generalized Mycielskian of level k-1 of C_{2k+1} $M_{k-1}(C_{2k+1}) \subset PC(2k)$ bounds for K_4 -minor-free graphs of odd-girth at least 2k+1.

Conjecture (Naserasr, 2007)

The projective cube PC(2k) bounds the class of planar graphs of odd-girth at least 2k + 1.

Conjecture (Beaudou, F., Naserasr, 2017)

The Generalized Mycielskian of level k-1 of C_{2k+1} $M_{k-1}(C_{2k+1}) \subset PC(2k)$ bounds for K_4 -minor-free graphs of odd-girth at least 2k+1.

Conjecture (Naserasr, 2007)

The projective cube PC(2k) bounds the class of planar graphs of odd-girth at least 2k + 1.

Conjecture (Beaudou, F., Naserasr, 2017)

The Generalized Mycielskian of level k-1 of C_{2k+1} $M_{k-1}(C_{2k+1}) \subset PC(2k)$ bounds for K_4 -minor-free graphs of odd-girth at least 2k + 1.

 $k = 4: M_3(C_9)$

Conjecture (Naserasr, 2007)

The projective cube PC(2k) bounds the class of planar graphs of odd-girth at least 2k + 1.

Conjecture (Beaudou, F., Naserasr, 2017)

The Generalized Mycielskian of level k-1 of C_{2k+1} $M_{k-1}(C_{2k+1}) \subset PC(2k)$ bounds for K_4 -minor-free graphs of odd-girth at least 2k + 1.

 $k = 4: M_3(C_9)$

Conjecture (Naserasr, 2007)

The projective cube PC(2k) bounds the class of planar graphs of odd-girth at least 2k + 1.

Conjecture (Beaudou, F., Naserasr, 2017)

The Generalized Mycielskian of level k-1 of C_{2k+1} $M_{k-1}(C_{2k+1}) \subset PC(2k)$ bounds for K_4 -minor-free graphs of odd-girth at least 2k + 1.

 $k = 4: M_3(C_9)$

Conjecture (Naserasr, 2007)

The projective cube PC(2k) bounds the class of planar graphs of odd-girth at least 2k + 1.

Conjecture (Beaudou, F., Naserasr, 2017)

The Generalized Mycielskian of level k-1 of C_{2k+1} $M_{k-1}(C_{2k+1}) \subset PC(2k)$ bounds for K_4 -minor-free graphs of odd-girth at least 2k + 1.

 $k = 4: M_3(C_9)$

Our main tool

Let $1 \leq p, q, r \leq k$.

Graph $T_{2k+1}(p,q,r)$:

Our main tool

Let $1 \leq p, q, r \leq k$.

Graph
$$T_{2k+1}(p,q,r)$$
:

Definition

• Let $G \subseteq \widetilde{G}$. Partial distance (weighted) graph (\widetilde{G}, d_G) of G: weighted extension of G (weights are distances in G).

– For every $1 \leq p \leq k$, \widetilde{G} has an edge of weight p

- For each edge uv of weight p and every q, r s.t. $T_{2k+1}(p, q, r)$ has odd-girth at least 2k + 1, there is $w \in V(G)$ with uw, vw in $E(\tilde{G})$ and $d_G(uw) = q$, $d_G(vw) = r$.

Our main tool

Let $1 \le p, q, r \le k$.

Graph
$$T_{2k+1}(p,q,r)$$
:

Definition

• Let $G \subseteq \widetilde{G}$. Partial distance (weighted) graph (\widetilde{G}, d_G) of G: weighted extension of G (weights are distances in G).

– For every
$$1 \leq p \leq k$$
, \widetilde{G} has an edge of weight p

- For each edge uv of weight p and every q, r s.t. $T_{2k+1}(p, q, r)$ has odd-girth at least 2k + 1, there is $w \in V(G)$ with uw, vw in $E(\widetilde{G})$ and $d_G(uw) = q$, $d_G(vw) = r$.

Theorem (Beaudou, F., Naserasr, 2017)

A graph *B* with odd-girth 2k+1 bounds all K_4 -minor-free graphs of odd-girth at least 2k+1 if and only if *B* admits a *k*-good partial distance weighted graph (\tilde{B}, d_B) .

Corollary

Given a graph B of odd-girth 2k+1, one can test in polynomial time $O(|B|^3)$ whether B bounds all K_4 -minor-free graphs of odd-girth at least 2k+1.

Corollary

Given a graph B of odd-girth 2k+1, one can test in polynomial time $O(|B|^3)$ whether B bounds all K_4 -minor-free graphs of odd-girth at least 2k+1.

Question

Given a graph B of odd-girth 2k + 1, is it decidable to test whether B bounds all planar graphs of odd-girth at least 2k + 1?

Theorem (Beaudou, F., Naserasr, 2017)

The complete distance graphs of PC(2k), Kn(2k+1,k) and $PTG_{2k,2k}$ have the k-good property.

PC(2k) has order 2^{2k}

 $\mathit{Kn}(2\,k+1,k)$ has order $\binom{2\,k+1}{k} < 2^{2\,k}/2$

PTG(2k, 2k) has order $4k^2$

 $(M_{k-1}(C_{2k+1})$ has order $2k^2 + k + 1)$

Theorem (Beaudou, F., Naserasr, 2017)

The complete distance graphs of PC(2k), Kn(2k+1,k) and $PTG_{2k,2k}$ have the k-good property.

PC(2k) has order 2^{2k} Kn(2k+1,k) has order $\binom{2k+1}{k} < 2^{2k}/2$ PTG(2k,2k) has order $4k^2$ $(M_{k-1}(C_{2k+1})$ has order $2k^2 + k + 1)$

Question

Are these bounds optimal?

Bounds for small odd-girth
Proposition

 K_4 -minor-free graphs are 3-colourable: optimal bound is K_3

Odd-girth 5 (i.e. triangle-free): PC(4), K(8/3), Kn(5,2), $M_1(C_5)$ are bounds.

Wagner graph K(8/3)

Odd-girth 5 (i.e. triangle-free): PC(4), K(8/3), Kn(5,2), $M_1(C_5)$ are bounds.

 C_8^{++} is the smallest triangle-free bound for K_4 -minor-free triangle-free graphs. It is unique.

Florent Foucaud

Odd-girth 7: PC(6), Kn(7,3), $\frac{K(5/2) = C_5}{C_5}$, PTG(3,3), $M_2(C_7)$ are bounds.

Odd-girth 7: PC(6), Kn(7,3), $\frac{K(5/2) = C_5}{C_5}$, PTG(3,3), $M_2(C_7)$ are bounds.

Theorem (Beaudou, F., Naserasr, 2017)

The graph below (order 16) is a bound for K_4 -minor-free graphs of odd-girth at least 7.

Odd-girth 7: PC(6), Kn(7,3), $\frac{K(5/2) = C_5}{C_5}$, PTG(3,3), $M_2(C_7)$ are bounds.

Theorem (Beaudou, F., Naserasr, 2017)

The graph below (order 15) is a smallest bound for K_4 -minor-free graphs of odd-girth at least 7.

Odd-girth 7: PC(6), Kn(7,3), $\frac{K(5/2) = C_5}{C_5}$, PTG(3,3), $M_2(C_7)$ are bounds.

Theorem (Beaudou, F., Naserasr, 2017)

The graph below (order 15) is a smallest bound for K_4 -minor-free graphs of odd-girth at least 7.

k-good property for partial t-trees: triples are replaced with (t+1)-tuples

Theorem (Chen, Naserasr, 2018+)

B: graph with odd-girth 2k + 1.

B bounds all partial *t*-trees of odd-girth at least 2k + 1 if and only if *B* admits a k, t-good partial distance (\tilde{B}, d_B) hypergraph.

Theorem (Chen, Naserasr, 2018+)

The projective cube PC(2k) bounds all partial 3-trees of odd-girth 2k+1.

Conjecture (Guenin, 2005)

The signed projective cube SPC(2k-1) bounds signed bipartite graphs with no $(K_5, E(K_5))$ -minor and unbalanced-girth 2k.

Theorem (Beaudou, F., Naserasr, 2019)

Bipartite signed graph B with unbalanced-girth 2k bounds all K_4 -minor-free bipartite signed graphs of odd-girth at least 2k if and only if B admits a k-good partial distance weighted graph (\tilde{B}, d_B) .

Theorem (Beaudou, F., Naserasr, 2019)

The signed projective cube SPC(2k-1) bounds all bipartite K_4 -minor-free signed graphs of unbalanced-girth 2k.

Signed graphs - small values

unbalanced-girth 2 unbalanced-girth 4 unbalanced-girth 6 unbalanced-girth 8

THE END