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Relational databases

Database (DB) : storage system + organisation of numerical data.

Relational database (RDB) : model de�ned by Codd, 1970.
Set of tables with keys identifying each data tuple.

Query : interrogation of the DB to obtain some information

Typical query langage : SQL, Structured Query Language (�sequel�)
Boyce-Chamberlain, IBM, 1979

ex : SELECT AuthorID FROM Books WHERE Date > 1970 ;
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Graph databases

Graph database (GDB) : all relations are binary.

Data is stored as a graph (�data graph�).

Fast-developing technology → Neo4J, OrientDB, GraphDB...

Query languages : Cypher, SPARQL, XPath...

Part of the recent trend for graph-based IT systems
→ Google (Pregel), Facebook (Graph API), Twitter (Cassovary)...
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Standards are being written

Conference ACM SIGMOD'18 : industry and academics try to design future
standards for �Graph Query Languages�
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Cypher by Neo4J

Cypher (2011) + Open Cypher (2015) on Property graphs

Examples of Cypher queries :

MATCH( :Person {name :'Jennifer'})-[ :WORKS_FOR]->(c :Company)
RETURN c

MATCH p=(a :Person)-[*1..3]-(b :Person)
WHERE a.name='Alice' AND b.name='Bob'
RETURN p

Also : shortest paths

Florent Foucaud Navigational homomorphisms for graph databases 5 / 24



Graph databases : simpler than classic RDB?

Graphs : both simple and expressive

(example from Neo4J)
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Graph databases - queries
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Graph homomorphisms

Mapping h : V (G)→ V (H) which preserves adjacency, arc labels and orienta-
tion :

xy ∈ E(G) =⇒ h(x)h(y) ∈ E(H)

Notation : G → H.

De�nition - Graph homomorphism of G to H
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Graph homomorphisms

Mapping h : V (G)→ V (H) which preserves adjacency, arc labels and orienta-
tion :

xy ∈ E(G) =⇒ h(x)h(y) ∈ E(H)

Notation : G → H.

De�nition - Graph homomorphism of G to H

Complete graph K6

G → Kk if and only if χ(G)≤ k

Remark: Homomorphisms generalize proper colourings

Florent Foucaud Navigational homomorphisms for graph databases 8 / 24



Cores

• Core of G : minimal subgraph H with G → H

• G is a core if core(G) = G

De�nition - Core

The core of a graph is unique (up to isomorphism)

Proposition

Examples : • the core of any nontrivial bipartite graph is K2

• complete graphs and odd cycles are cores

G → H if and only if core(G)→ core(H)

Proposition
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The homomorphism order

De�ned by G � H i� G → H (if restricted to cores : partial order).

De�nition - Homomorphism quasi-order

...

� is :

• re�exive

• transitive

• antisymmetric (on cores)

The order is :

• dense

• universal

• fractal
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H-COLOURING decision problem

INPUT : a graph G .
QUESTION : Does G have a homomorphism to H ?

H-COLOURING

H-COLOURING is polynomial-time if H is bipartite or has a loop.
Otherwise, it is NP-complete.

Theorem (Hell-Ne²et°il, 1990)

Note : for directed graphs, such nice dichotomy is unknown (and probably does
not exist) !
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Constraint Satisfaction Problem (CSP)

Relational structure S = (X ,V ) : domain X + relations R1, . . . ,Rk of arity
a1, . . . ,ak (Ri ⊆ X ai ).
Ex : graphs, digraphs, k-SAT Boolean formulae...

INPUT : two relational structures S et T .
QUESTION : Does S have a homomorphism to T ?

CSP decision problem
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For every relational structure T , T -CSP is either NP-complete or polynomial-
time (i.e. not NP-intermediate).

Conjecture (Feder-Vardi, 1998 - Dichotomy Conjecture)

Siggers polymorphism : homomorphism f : T 4→ T with
f (a, r ,e,a) = f (r ,a, r ,e) for all a,e, r ∈ T .

If T has a Siggers polymorphism, T -CSP is polynomial. Otherwise, NP-hard.

Theorem (Bulatov 2017 + Zhuk 2017)

Proved after 20 years of intensive works using algebraic techniques
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Back to our queries
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Databases - some algorithmic tasks

INPUT : a database B and a query Q.
QUESTION : Does there exist a match of Q in B ?

Query evaluation problem

INPUT : a database B and a query Q.
TASK : List all matches of Q in B.

Enumerative query evaluation problem
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Algorithmic tasks - queries

INPUT : a query Q.
QUESTION : Is Q minimal (is a core) ?

Query minimization

Q1 and Q2 are equivalent if for each database B, Q1 matches B if and only if
Q2 matches B.

INPUT : two queries Q1, Q2.
QUESTION : Are Q1 and Q2 equivalent ?

Query equivalence

Q1 is contained/included in Q2 if for each database B, any match of Q1 in B is
a match of Q2 in B.

INPUT : two queries Q1, Q2.
QUESTION : Is Q1 contained in Q2 ?

Query containment
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Navigational queries
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Navigational homomorphisms

Graph database : Arc-labeled directed graph, labels are from a �xed alphabet
Σ = {a,b,c, . . .}

Query graph : Directed graph with label E(x ,y) for each arc (x ,y).
Labels are sets of words over Σ.

Mapping h : V (G)→ V (H) that preserves labels :
(x ,y) ∈ A(Q) =⇒ there exists a directed walk from h(x) to h(y) in B whose
associated word is in E(x ,y).

De�nition - Navigational homomorphism of Q to B

x

y

E(x,y)={aab,aaab}

b

a

a a
a

b
b

ba

h(y)

h(x)

h

b

Florent Foucaud Navigational homomorphisms for graph databases 17 / 24



Regular path queries (RPQ)

The sets of words labeling the arcs are regular languages.

Regular language : set of words over alphabet Σ that is closed under union +,
concatenation, and Kleene-star ∗.

Example : a(a∗ba)∗c(db)∗

Correspond to word sets recognized by �nite automata :
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CRPQ evaluation

RPQ : one arc
conjunctive RPQ (CRPQ) : regular graph pattern (�graph of RPQs�)

B : a �xed database

INPUT : a regular graph pattern Q.
QUESTION : Does there exist a match (n-homomorphism) of Q in B ?

CRPQ evaluation for B

→ Barceló-Romero-Vardi (LICS'17) : NP-complete/polynomial dichotomy
using the CSP dichotomy theorem (Bulatov'17 + Zhuk'17)
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CRPQ containment

How to model navigational query containment using homomorphisms ?

Query graphs : Directed graphs with label E(x ,y) for each arc (x ,y).
Labels are sets of words over Σ. Example : {a,aa,ab,ba,bcab}

Mapping h : V (Q1)→ V (Q2) such that :
(x ,y) ∈ A(Q1) =⇒ there exists a directed walk from h(x) to h(y) in Q2 whose
associated concatenation of sets of words is in E(x ,y).

De�nition - Navigational homomorphism between two CRPQs Q1 and Q2
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CRPQ containment

INPUT : two CRPQs Q1 and Q2.
QUESTION : Does there exist a homomorphism of Q1 to Q2 ?

Homomorphism-based CRPQ containment

Homomorphism-based CRPQ containment is in EXPTIME, but PSPACE-hard.

Theorem (Beaudou, F., Madelaine, Nourine, Richard, 2019)

hardness : trivial reduction from Regular Language Inclusion.
L|n : n-truncation of L (words of L of length at most n)

A,B1, . . . ,Bk regular languages recognized by automata with nA,n1, . . . ,nk states.
Then, L(B1) · . . . ·L(Bk)⊆ L(A) if and only if L(B1)|nAn1 · . . . ·L(Bk)|nAnk ⊆ L(A).

Lemma
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Homomorphism-based CRPQ containment is in EXPTIME, but PSPACE-hard.

Theorem (Beaudou, F., Madelaine, Nourine, Richard, 2019)

Remark : General CRPQ containment is EXPSPACE-complete
(Florescu et al. PODS'98)

a+b

P

a

Q Fig : Q 6→ P but Q contained in P
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CRPQ containment

Special case of unary alphabet : Σ = {a} and walks of type �a� or �a+�
(a+ = {a,aa,aaa,aaaa, . . .})

Motivation : XPath (XML Path Language), SPARQL ()

XPath operators �� (child node) and �� (descendants or self)

objectsprice : returns all prices that are below the �items�
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CRPQ containment

Special case of unary alphabet : Σ = {a} and walks of type �a� or �a+�
(a+ = {a,aa,aaa,aaaa, . . .})

Homomorphism-based {a,a+}-CRPQ containment has a polynomial/NP-
complete dichotomy.

Proposition
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CRPQ containment

Special case of unary alphabet : Σ = {a} and walks of type �a� or �a+�
(a+ = {a,aa,aaa,aaaa, . . .})

Homomorphism-based {a,a+}-CRPQ containment for undirected CRPQs is
polynomial-time if the core of the target has at most one edge, NP-complete
otherwise.

Theorem (Beaudou, F., Madelaine, Nourine, Richard, 2019)
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CRPQ containment

Special case of unary alphabet : Σ = {a} and walks of type �a� or �a+�
(a+ = {a,aa,aaa,aaaa, . . .})

Homomorphism-based {a,a+}-CRPQ containment is polynomial-time if the tar-
get is a directed path.

Theorem (Beaudou, F., Madelaine, Nourine, Richard, 2019)

a

a
a

h

a

a

a
a+

a

a

aa a+

a+

a+

a+

a+
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CRPQ containment

Special case of unary alphabet : Σ = {a} and walks of type �a� or �a+�
(a+ = {a,aa,aaa,aaaa, . . .})

Homomorphism-based {a,a+}-CRPQ containment is polynomial-time if the tar-
get is a directed path.

Theorem (Beaudou, F., Madelaine, Nourine, Richard, 2019)

Proof. If only a's : parallel scheduling with relative deadlines.

Generally : majority (median) polymorphism.

ternary majority polymorphism of T : homomorphism h : T 3→ T with
h(x ,x ,y) = h(x ,y ,x) = h(y ,x ,x) = x

If T has a ternary majority polymorphism, then CSP(T ) can be solved in cubic
time by path-consistency.

Theorem (Feder-Vardi)
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Conclusion

Interface of rich research areas :
Databases - Graph theory/algorithms - CSP - Language/automata theory

Some selected problems :

• Is Homomorphism-based CRPQ containment EXPTIME-hard or in
PSPACE ?

• Is Homomorphism-based {a,a+}-CRPQ containment NP-complete on
rooted directed trees ?

• Many special cases are interesting !
Examples : {a,a+} ; {a,a∗} ; {ak ,k ∈ N} ; Unary regular languages in general...
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