Homomorphisms to model navigational queries of graph databases

Florent Foucaud (LIFO, Université d'Orléans, France)

joint work with: Laurent Beaudou, Florent Madelaine, Lhouari Nourine, Gaétan Richard

April 2019

Database (DB) : storage system + organisation of numerical data.

Relational database (RDB) : model defined by Codd, 1970. Set of tables with keys identifying each data tuple.

PubID Publisher		PubAddress			
03-4472822	Random House	123 4th Street, New York			
04-7733903	Wiley and Sons	45 Lincoln Blvd, Chicago			
03-4859223	O'Reilly Press	77 Boston Ave, Cambridge			
03-3920886	City Lights Books	99 Market, San Francisco			

			Autho	rID		AuthorName	AuthorBDay	
			345-28-	2938	Н	laile Selassie	14-Aug-92	
			392-48-	9965	J	oe Blow	14-Mar-15	
			454-22-	4012	S	ally Hemmings	12-Sept-70	
		_	663-59-	1254	Н	lannah Arendt	12-Mar-06	
ISBN	AuthorID Pu		ubID	Date		Title		
1-34532-482-1	345-28-2938	8-2938 03-4		1990		Cold Fusion for	Dummies	
1-38482-995-1	392-48-9965	04-7	733903	1985		Macrame and Straw Tying		
2-35921-499-4	454-22-4012	03-4	859223	1952		Fluid Dynamics	s of Aquaducts	
1-38278-293-4	663-59-1254	03-3	920886	1967	1	Beads, Baskets & Revolution		

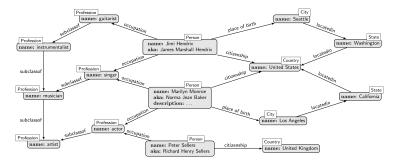
Query : interrogation of the DB to obtain some information

Typical query langage : SQL, Structured Query Language ("sequel") Boyce-Chamberlain, IBM, 1979

ex : SELECT AuthorID FROM Books WHERE Date > 1970;

Graph database (GDB) : all relations are binary.

Data is stored as a graph ("data graph").



Fast-developing technology \rightarrow Neo4J, OrientDB, GraphDB...

Query languages : Cypher, SPARQL, XPath...

Part of the recent trend for graph-based IT systems \rightarrow Google (Pregel), Facebook (Graph API), Twitter (Cassovary)...

Conference ACM SIGMOD'18 : industry and academics try to design future standards for "Graph Query Languages"

Industry 4: Graph databases & Query Processing on Modern Hardware

SIGMOD'18, June 10-15, 2018, Houston, TX, USA

Cypher: An Evolving Query Language for Property Graphs

Nadime Francis^{*} Université Paris-Est

Leonid Libkin University of Edinburgh

Stefan Plantikow Neo4j

Alastair Green Neo4i

Paolo Guagliardo University of Edinburgh Victor Marsault

Tobias Lindaaker Neo4i

Mats Rydberg Neo4j

University of Edinburgh Petra Selmer

Andrés Taylor Neo4i

Neo4j

Industry 4: Graph databases & Query Processing on Modern Hardware

SIGMOD'18, June 10-15, 2018, Houston, TX, USA

G-CORE A Core for Future Graph Query Languages

Designed by the LDBC Graph Query Language Task Force*

Renzo Angles Universidad de Talca

Marcelo Arenas Pontificia Universidad Católica de Chile

George Fletcher Technische Universiteit Eindhoven

> Marcus Paradies[†] DLR

Oskar van Rest Oracle

Pablo Barceló DCC, Universidad de Chile

Claudio Gutierrez DCC. Universidad de Chile

> Stefan Plantikow Neo4j

Hannes Voigt Technische Universität Dresden

Peter Boncz CWI Amsterdam

Tobias Lindaaker Neo4j

Juan Sequeda Capsenta

🐚 neo4j

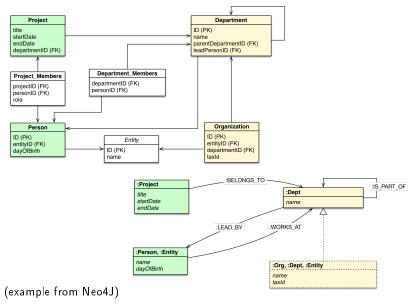
Cypher (2011) + Open Cypher (2015) on Property graphs

Examples of Cypher queries :

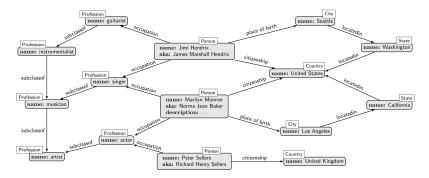
MATCH(:Person {name :'Jennifer'})-[:WORKS_FOR]->(c :Company) RETURN c

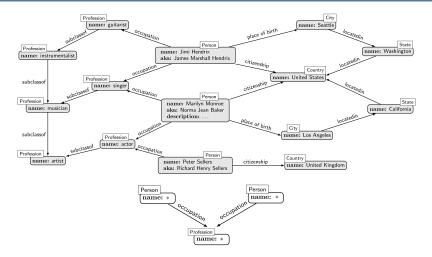
```
MATCH p=(a :Person)-[*1..3]-(b :Person)
WHERE a.name='Alice' AND b.name='Bob'
RETURN p
```

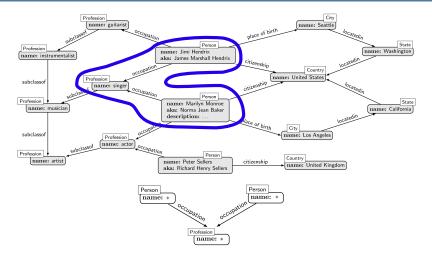
Also : shortest paths

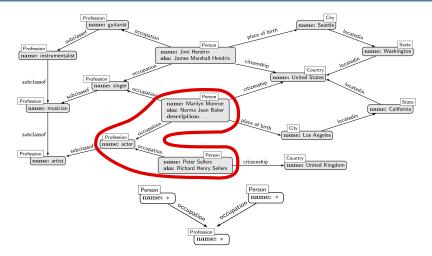


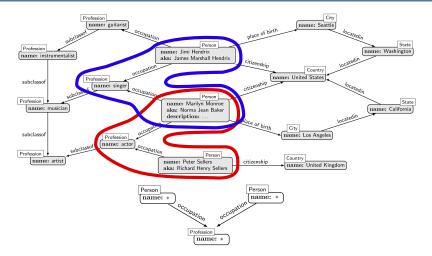
Graphs : both simple and expressive

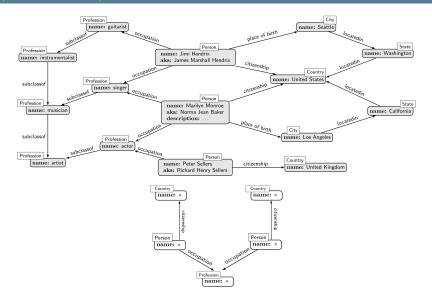


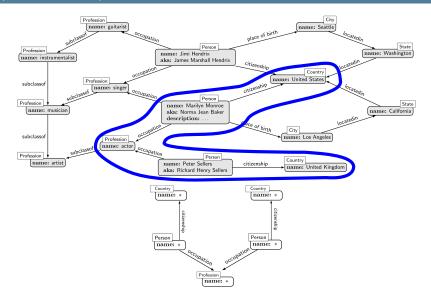


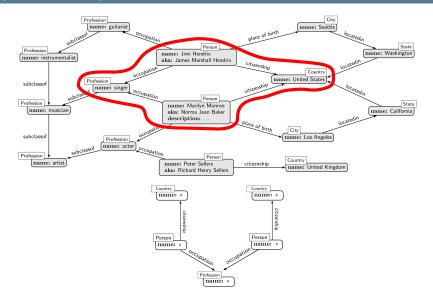


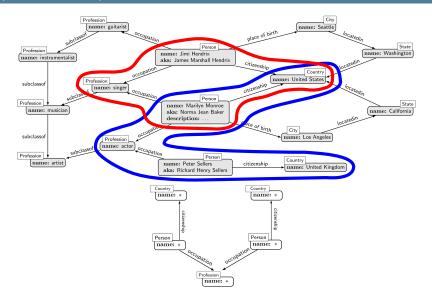












Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which **preserves** adjacency, arc labels and orientation :

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

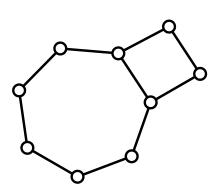
Notation : $G \rightarrow H$.

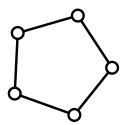
Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which **preserves** adjacency, arc labels and orientation :

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Notation : $G \rightarrow H$.



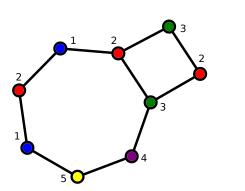


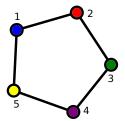
Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which **preserves** adjacency, arc labels and orientation :

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Notation : $G \rightarrow H$.



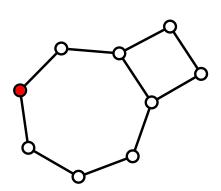


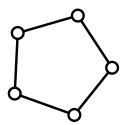
Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which **preserves** adjacency, arc labels and orientation :

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Notation : $G \rightarrow H$.



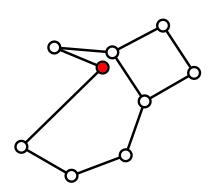


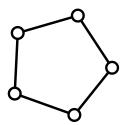
Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which **preserves** adjacency, arc labels and orientation :

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Notation : $G \rightarrow H$.



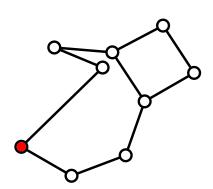


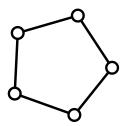
Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which **preserves** adjacency, arc labels and orientation :

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Notation : $G \rightarrow H$.



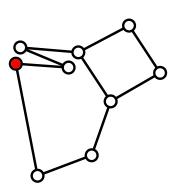


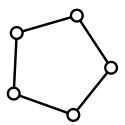
Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which **preserves** adjacency, arc labels and orientation :

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Notation : $G \rightarrow H$.



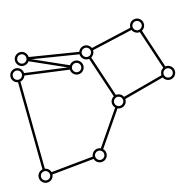


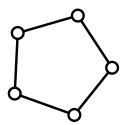
Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which **preserves** adjacency, arc labels and orientation :

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Notation : $G \rightarrow H$.



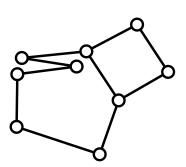


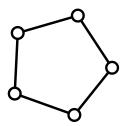
Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which **preserves** adjacency, arc labels and orientation :

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Notation : $G \rightarrow H$.



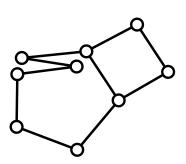


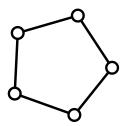
Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which **preserves** adjacency, arc labels and orientation :

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Notation : $G \rightarrow H$.



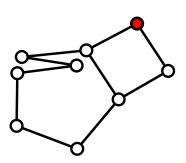


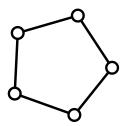
Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which **preserves** adjacency, arc labels and orientation :

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Notation : $G \rightarrow H$.



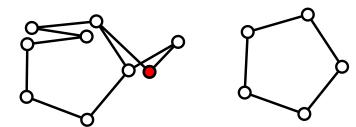


Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which **preserves** adjacency, arc labels and orientation :

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Notation : $G \rightarrow H$.

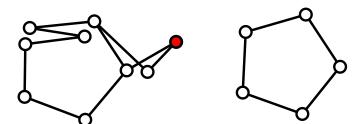


Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which **preserves** adjacency, arc labels and orientation :

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Notation : $G \rightarrow H$.

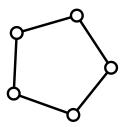


Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which **preserves** adjacency, arc labels and orientation :

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Notation : $G \rightarrow H$.

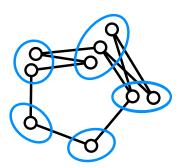


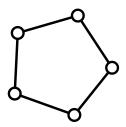
Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which **preserves** adjacency, arc labels and orientation :

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Notation : $G \rightarrow H$.



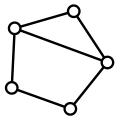


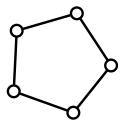
Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which **preserves** adjacency, arc labels and orientation :

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Notation : $G \rightarrow H$.



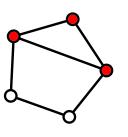


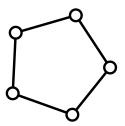
Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which **preserves** adjacency, arc labels and orientation :

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Notation : $G \rightarrow H$.





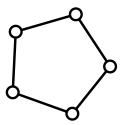
Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which **preserves** adjacency, arc labels and orientation :

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Notation : $G \rightarrow H$.



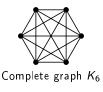


Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which **preserves** adjacency, arc labels and orientation :

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Notation : $G \rightarrow H$.



Remark: Homomorphisms generalize proper colourings

$$G o K_k$$
 if and only if $\chi(G) \le k$

Definition - Core

- Core of G : minimal subgraph H with $G \rightarrow H$
- G is a core if core(G) = G

Cores

Definition - Core

- Core of G : minimal subgraph H with $G \rightarrow H$
- G is a core if core(G) = G

Proposition

The core of a graph is unique (up to isomorphism)

Examples : \bullet the core of any nontrivial bipartite graph is \mathcal{K}_2

• complete graphs and odd cycles are cores

Cores

Definition - Core

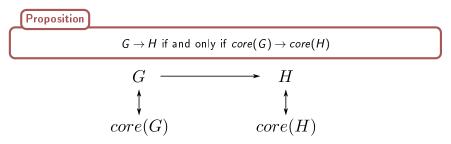
- Core of G : minimal subgraph H with $G \rightarrow H$
- G is a core if core(G) = G

Proposition

The core of a graph is unique (up to isomorphism)

Examples : \bullet the core of any nontrivial bipartite graph is \mathcal{K}_2

• complete graphs and odd cycles are cores



Cores

Definition - Core

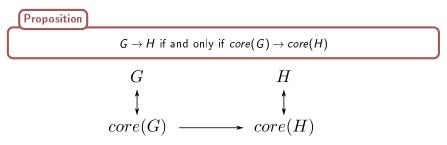
- Core of G : minimal subgraph H with $G \rightarrow H$
- G is a core if core(G) = G

Proposition

The core of a graph is unique (up to isomorphism)

Examples : \bullet the core of any nontrivial bipartite graph is \mathcal{K}_2

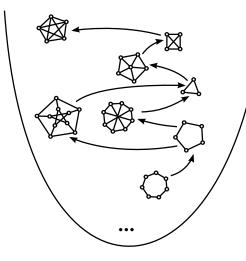
• complete graphs and odd cycles are cores



The homomorphism order

Definition - Homomorphism quasi-order

Defined by $G \leq H$ iff $G \rightarrow H$ (if restricted to cores : partial order).



- \preceq is :
- $\bullet \ \mathsf{reflexive}$
- transitive
- antisymmetric (on cores)

The order is :

- dense
- universal
- ullet fractal

H-COLOURING

INPUT : a graph G. QUESTION : Does G have a homomorphism to H?

Theorem (Hell-Nešetřil, 1990)

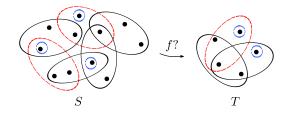
H-COLOURING is polynomial-time if H is bipartite or has a loop. Otherwise, it is NP-complete.

Note : for directed graphs, such nice dichotomy is unknown (and probably does not exist) !

Relational structure S = (X, V): domain X + relations R_1, \ldots, R_k of arity a_1, \ldots, a_k ($R_i \subseteq X^{a_i}$). Ex : graphs, digraphs, k-SAT Boolean formulae...

CSP decision problem

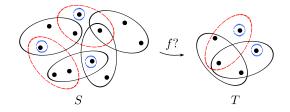
INPUT : two relational structures S et T. QUESTION : Does S have a homomorphism to T?



Relational structure S = (X, V): domain X + relations R_1, \ldots, R_k of arity a_1, \ldots, a_k $(R_i \subseteq X^{a_i})$. Ex : graphs, digraphs, k-SAT Boolean formulae...

(Non-uniform) CSP decision problem for a fixed template T

INPUT : a relational structure S. QUESTION : Does S have a homomorphism to T?



Relational structure S = (X, V): domain X + relations R_1, \ldots, R_k of arity a_1, \ldots, a_k ($R_i \subseteq X^{a_i}$). Ex : graphs, digraphs, k-SAT Boolean formulae...

(Non-uniform) CSP decision problem for a fixed template T

INPUT : a relational structure S. QUESTION : Does S have a homomorphism to T?

Conjecture (Feder-Vardi, 1998 - Dichotomy Conjecture)

For every relational structure T, T-CSP is either NP-complete or polynomialtime (i.e. not NP-intermediate).

Relational structure S = (X, V): domain X + relations R_1, \ldots, R_k of arity a_1, \ldots, a_k ($R_i \subseteq X^{a_i}$). Ex : graphs, digraphs, k-SAT Boolean formulae...

(Non-uniform) CSP decision problem for a fixed template T

```
INPUT : a relational structure S.
QUESTION : Does S have a homomorphism to T?
```

Conjecture (Feder-Vardi, 1998 - Dichotomy Conjecture)

For every relational structure T, T-CSP is either NP-complete or polynomial-time (i.e. not NP-intermediate).

Siggers polymorphism : homomorphism $f : T^4 \to T$ with f(a, r, e, a) = f(r, a, r, e) for all $a, e, r \in T$.

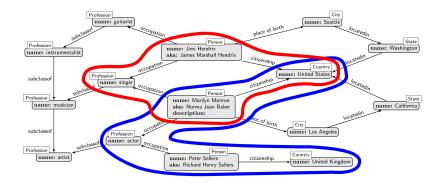
Theorem (Bulatov 2017 + Zhuk 2017)

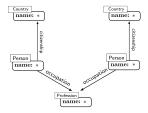
If T has a Siggers polymorphism, T-CSP is polynomial. Otherwise, NP-hard.

Proved after 20 years of intensive works using algebraic techniques

Florent Foucaud

Back to our queries





Query evaluation problem

INPUT : a database B and a query Q. QUESTION : Does there exist a match of Q in B? Query evaluation problem

INPUT : a database B and a query Q. QUESTION : Does there exist a match of Q in B?

Enumerative query evaluation problem

INPUT : a database B and a query Q. TASK : List all matches of Q in B.

Algorithmic tasks - queries

Query minimization

INPUT : a query Q. QUESTION : Is Q minimal (is a core)?

Algorithmic tasks - queries

Query minimization

INPUT : a query Q. QUESTION : Is Q minimal (is a core)?

 Q_1 and Q_2 are equivalent if for each database B, Q_1 matches B if and only if Q_2 matches B.

Query equivalence

INPUT : two queries Q_1 , Q_2 . QUESTION : Are Q_1 and Q_2 equivalent?

Algorithmic tasks - queries

Query minimization

INPUT : a query Q. QUESTION : Is Q minimal (is a core)?

 Q_1 and Q_2 are equivalent if for each database $B,\ Q_1$ matches B if and only if Q_2 matches B.

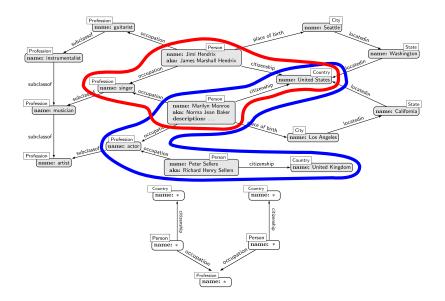
Query equivalence

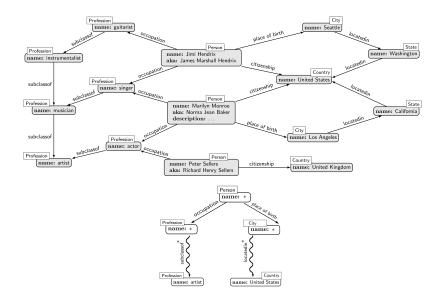
INPUT : two queries Q_1 , Q_2 . QUESTION : Are Q_1 and Q_2 equivalent?

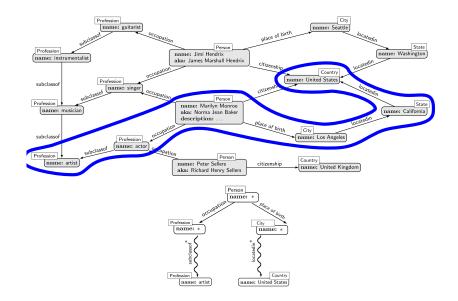
 Q_1 is contained/included in Q_2 if for each database B, any match of Q_1 in B is a match of Q_2 in B.

Query containment

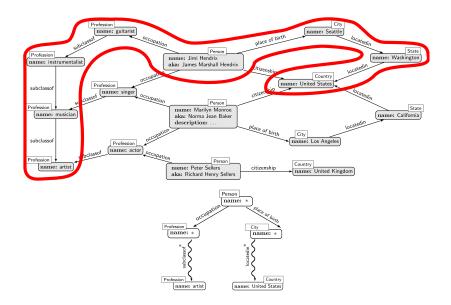
INPUT : two queries Q_1 , Q_2 . QUESTION : Is Q_1 contained in Q_2 ?



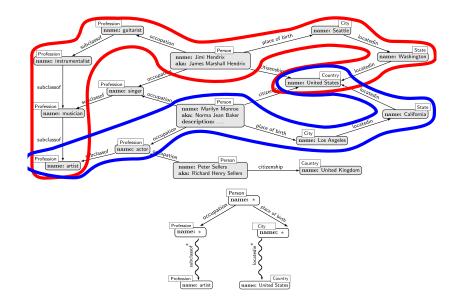




Navigational queries



Navigational queries



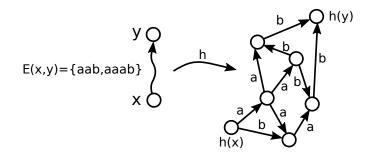
Navigational homomorphisms

Graph database : Arc-labeled directed graph, labels are from a fixed alphabet $\Sigma = \{a, b, c, \ldots\}$

Query graph : Directed graph with label E(x,y) for each arc (x,y). Labels are sets of words over Σ .

Definition - Navigational homomorphism of Q to B

Mapping $h: V(G) \to V(H)$ that preserves labels : $(x,y) \in A(Q) \Longrightarrow$ there exists a directed walk from h(x) to h(y) in B whose associated word is in E(x,y).

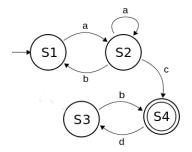


The sets of words labeling the arcs are regular languages.

Regular language : set of words over alphabet Σ that is closed under union +, concatenation, and Kleene-star *.

Example : $a(a^*ba)^*c(db)^*$

Correspond to word sets recognized by finite automata :



RPQ : one arc conjunctive RPQ (CRPQ) : regular graph pattern ("graph of RPQs")

B : a fixed database

CRPQ evaluation for B

INPUT : a regular graph pattern Q. QUESTION : Does there exist a match (n-homomorphism) of Q in B?

 \rightarrow Barceló-Romero-Vardi (LICS'17) : NP-complete/polynomial dichotomy using the CSP dichotomy theorem (Bulatov'17 + Zhuk'17)

How to model navigational query containment using homomorphisms?

Query graphs : Directed graphs with label E(x,y) for each arc (x,y). Labels are sets of words over Σ . Example : $\{a, aa, ab, ba, bcab\}$

Definition - Navigational homomorphism between two CRPQs Q_1 and Q_2

Mapping $h: V(Q_1) \to V(Q_2)$ such that : $(x,y) \in A(Q_1) \Longrightarrow$ there exists a directed walk from h(x) to h(y) in Q_2 whose associated concatenation of sets of words is in E(x,y). Homomorphism-based CRPQ containment

INPUT : two CRPQs Q_1 and Q_2 . QUESTION : Does there exist a homomorphism of Q_1 to Q_2 ? Homomorphism-based CRPQ containment

INPUT : two CRPQs Q_1 and Q_2 . QUESTION : Does there exist a homomorphism of Q_1 to Q_2 ?

Theorem (Beaudou, F., Madelaine, Nourine, Richard, 2019)

Homomorphism-based CRPQ containment is in EXPTIME, but PSPACE-hard.

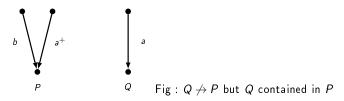
hardness : trivial reduction from **Regular Language Inclusion**. L_{ln} : *n*-truncation of *L* (words of *L* of length at most *n*)

Lemma

 A, B_1, \ldots, B_k regular languages recognized by automata with n_A, n_1, \ldots, n_k states. Then, $L(B_1) \cdot \ldots \cdot L(B_k) \subseteq L(A)$ if and only if $L(B_1)_{|n_A n_1} \cdot \ldots \cdot L(B_k)_{|n_A n_k} \subseteq L(A)$. **Theorem** (Beaudou, F., Madelaine, Nourine, Richard, 2019)

Homomorphism-based CRPQ containment is in EXPTIME, but PSPACE-hard.

Remark : General CRPQ containment is EXPSPACE-complete (Florescu et al. PODS'98)



Special case of unary alphabet : $\Sigma = \{a\}$ and walks of type "a" or "a⁺" $(a^+ = \{a, aa, aaa, aaaa, ...\})$

Motivation : XPath (XML Path Language), SPARQL ()

XPath operators "" (child node) and "" (descendants or self)

objectsprice : returns all prices that are below the "items"

Special case of unary alphabet : $\Sigma = \{a\}$ and walks of type "a" or "a⁺" $(a^+ = \{a, aa, aaa, aaaa, ...\})$

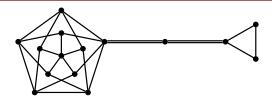
Proposition

Homomorphism-based $\{a, a^+\}$ -CRPQ containment has a polynomial/NP-complete dichotomy.

Special case of unary alphabet : $\Sigma = \{a\}$ and walks of type "a" or "a⁺" $(a^+ = \{a, aa, aaa, aaaa, ...\})$

Theorem (Beaudou, F., Madelaine, Nourine, Richard, 2019)

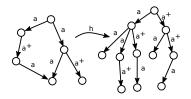
Homomorphism-based $\{a, a^+\}$ -**CRPQ containment** for undirected CRPQs is polynomial-time if the core of the target has at most one edge, NP-complete otherwise.



Special case of unary alphabet : $\Sigma = \{a\}$ and walks of type "a" or "a⁺" $(a^+ = \{a, aa, aaa, aaaa, ...\})$

Theorem (Beaudou, F., Madelaine, Nourine, Richard, 2019)

Homomorphism-based $\{a, a^+\}$ -**CRPQ containment** is polynomial-time if the target is a directed path.



Special case of unary alphabet : $\Sigma = \{a\}$ and walks of type "a" or " a^+ " $(a^+ = \{a, aa, aaa, aaaa, ...\})$

Theorem (Beaudou, F., Madelaine, Nourine, Richard, 2019)

Homomorphism-based $\{a, a^+\}$ -**CRPQ containment** is polynomial-time if the target is a directed path.

Proof. If only *a*'s : parallel scheduling with relative deadlines.

Generally : majority (median) polymorphism.

ternary **majority polymorphism** of T: homomorphism $h: T^3 \to T$ with h(x,x,y) = h(x,y,x) = h(y,x,x) = x

Theorem (Feder-Vardi)

If T has a ternary majority polymorphism, then CSP(T) can be solved in cubic time by path-consistency.

Interface of rich research areas : Databases - Graph theory/algorithms - CSP - Language/automata theory

Some selected problems :

• Is **Homomorphism-based CRPQ containment** EXPTIME-hard or in PSPACE ?

• Is Homomorphism-based $\{a, a^+\}$ -CRPQ containment NP-complete on rooted directed trees?

• Many special cases are interesting ! Examples : $\{a, a^+\}$; $\{a, a^*\}$; $\{a^k, k \in \mathbb{N}\}$; Unary regular languages in general...