Domination-based identification problems in graphs selected topics

Florent Foucaud

April 2025

Locating a burglar in a building

Locating a burglar in a building

Domination in graphs

V(G): set of vertices of G

- $D \subseteq V(G)$ dominating set of G:
 - every vertex not in D has a neighbour in D

V(G): set of vertices of G

N[v]: closed neighbourhood of vertex v (v together with its neighbours)

V(G): set of vertices of G

N[v]: closed neighbourhood of vertex v (v together with its neighbours)

Motivation: covering problems in telecommunication networks

V(G): set of vertices of G

N[v]: closed neighbourhood of vertex v (v together with its neighbours)

Motivation: covering problems in telecommunication networks

Notation: domination number DOM(G): smallest size of a dominating set of G

Theorem (Domination bound, Ore, 1960's 🏝)

G graph of order *n*, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.

Proof: Consider an *inclusionwise minimal* dominating set D of G.

 \rightarrow its complement set $V(G) \setminus D$ is also a dominating set!

Thus, either D or $V(G) \setminus D$ has size at most $\frac{n}{2}$.

Location-domination in graphs

Location-domination

Definition - Locating-dominating set (Slater, 1980's)

 $D \subseteq V(G)$ locating-dominating set of G:

- for every vertex $v \in V(G)$, $N[v] \cap D \neq \emptyset$ (domination).
- $\forall u \neq v$ of $V(G) \setminus D$, $N(u) \cap D \neq N(v) \cap D$ (location).

Notation. location-domination number LD(G),

smallest size of a locating-dominating set of ${\it G}$

Location-domination

Definition - Locating-dominating set (Slater, 1980's) 🌌

 $D \subseteq V(G)$ locating-dominating set of G:

- for every vertex $v \in V(G)$, $N[v] \cap D \neq \emptyset$ (domination).
- $\forall u \neq v$ of $V(G) \setminus D$, $N(u) \cap D \neq N(v) \cap D$ (location).

Notation. location-domination number LD(G),

smallest size of a locating-dominating set of G

Domination number:
$$\gamma(P_n) = \left\lceil \frac{n}{3} \right\rceil$$

Separation type	Locating-Sep		Closed-Sep		Open-Sep		Full-Sep	
adj non-adj	$\frac{N(u) \triangle N(v)}{N[u] \triangle N[v]}$		N[u] riangle N[v]		$N(u) \triangle N(v)$		$\frac{N[u] \triangle N[v]}{N(u) \triangle N(v)}$	
D/TD	N[u]	N(u)	N[u]	N(u)	N[u]	N(u)	N[u]	N(u)
	Locating-dominating sets	Locating total-dominating sets	Closed-separating dominating sets a.k.a Identifying codes	Closed-separating total-dominating sets a.k.a Total identifying codes	Open-separating dominating sets	Open-separating total-dominating sets a.k.a Identifying open codes a.k.a Open focating-dominating-sets	Full-separating dominating sets	Full-separating total-dominating sets

1998: ID-codes M. Karpovsky, K. Chakrabarty & L. Levi	tin				
2002: Open ID codes I. Honkala, T. Laihonen, S Ranto	I. Honkala, T. Laihonen, S Ranto				
2010: Open ID-codes S. Seo & P. Slater	S. Seo & P. Slater				
2006: LTD-sets T. Haynes M. Henning & I. Howard	T. Haynes, M. Henning & J. Howard				
ITD-sets					
OD-sets					
2024: FD-sets D. Chakraborty & A. Wagler	D. Chakraborty & A. Wagler				
FTD-sets					

Definition - Separating set (Rényi, 1961 🗟)

Hypergraph (X, \mathscr{E}) . A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

$$X = \{v_1, v_2, v_3, v_4, v_5\}$$

$$\mathscr{E} = \{\{v_1\}, \{v_1, v_2, v_3\}, \{v_3, v_4\}, \{v_3, v_4, v_5\}\}$$

Definition - Separating set (Rényi, 1961 🗟)

Hypergraph (X, \mathscr{E}) . A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

Equivalently:

$$X = \{v_1, v_2, v_3, v_4, v_5\}$$

$$\mathscr{E} = \{\{v_1\}, \{v_1, v_2, v_3\}, \{v_3, v_4\}, \{v_3, v_4, v_5\}\}$$

Definition - Separating set (Rényi, 1961

Hypergraph (X, \mathscr{E}) . A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

Equivalently:

Definition - Separating set (Rényi, 1961

Hypergraph (X, \mathscr{E}) . A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

Equivalently:

Definition - Separating set (Rényi, 1961 🚳)

Hypergraph (X, \mathscr{E}) . A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

Equivalently:

Definition - Separating set (Rényi, 1961 🚳)

Hypergraph (X, \mathscr{E}) . A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

Equivalently:

Definition - Separating set (Rényi, 1961 🚳)

Hypergraph (X, \mathscr{E}) . A separating set is a subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

Equivalently:

for any pair e, f of edges, there is a vertex in C contained in **exactly** one of e, f.

Also known as Separating system, Distinguishing set, Test cover, Distinguishing transversal, Discriminating code...

Florent Foucaud

Identification problems in graphs

- network-monitoring, fault detection (burglar)
- medical diagnostics: testing samples for diseases (test cover)
- biological identification (attributes of individuals)
- learning theory: teaching dimension
- machine learning: V-C dimension (Vapnik, Červonenkis, 1971)
- graph isomorphism: canonical representation of graphs (Babai, 1982)
- logic definability of graphs (Kim, Pikhurko, Spencer, Verbitsky, 2005)

Location-domination

Definition - Locating-dominating set (Slater, 1980's)

 $D \subseteq V(G)$ locating-dominating set of G:

- for every vertex $v \in V(G)$, $N[v] \cap D \neq \emptyset$ (domination).
- $\forall u \neq v$ of $V(G) \setminus D$, $N(u) \cap D \neq N(v) \cap D$ (location).

Notation. location-domination number LD(G),

smallest size of a locating-dominating set of ${\it G}$

Theorem (Domination bound, Ore, 1960's 🛋)

G graph of order *n*, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.

Proof: Take $V(G) \setminus v$, for any vertex v of G.

Proof: Take $V(G) \setminus v$, for any vertex v of G.

Tight examples:

Tight examples:

Remark: tight examples contain many twin-vertices!!

(Twins: vertices with the same sets of neighbours)
Theorem (Domination bound, Ore, 1960's 🏜)

G graph of order *n*, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's 🔂)

G graph of order *n*, no isolated vertices. Then $LD(G) \le n-1$.

Remark:

- twins are easy to detect
- twins have a trivial behaviour w.r.t. location-domination

Upper bound: a conjecture - special graph classes Conjecture (Garijo, González & Márquez, 2014 \bigcirc \bigcirc \bigcirc G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$. Theorem (Garijo, González & Márquez, 2014 \bigcirc \bigcirc \bigcirc Conjecture true if *G* has independence number $\geq n/2$. (e.g. bipartite)

Proof: every vertex cover of a twin-free graph is a locating-dominating set

Proof:

- Consider special maximum matching M
- Select one vertex in each edge of M

Proof:

- Consider special maximum matching M
- Select one vertex in each edge of M

Upper bound: a conjecture - special graph classes Conjecture (Garijo, González & Márquez, 2014 🙎 📓 🏹) G graph of order n, no isolated vertices, no twins. Then $LD(G) < \frac{n}{2}$. The conjecture is proved for specific graph classes: twin-free (conjecture) maximal vertex cover subcubic C₄-free cobinartite line number $< \frac{n}{2}$ outerplanar block bipartite girth > 5 cubic

- Garijo, González & Márquez, 2014
- F., Henning, Löwenstein, Sasse, 2016
- F. and Henning, 2016 and 2017
- Chakraborty, F., Henning, Wagler, 2024
- Chakraborty, Hakanen, Lehtilä, 2024+

twin-free graphs

Theorem (Chakraborty, F., Parreau, Wagler, 2024 😟 👧 🍂)

Any block graph can be partitioned into two LD-sets.

Proof sketch.

Block graphs

Theorem (Chakraborty, F., Parreau, Wagler, 2024 🗟 👧 🍂)

Any block graph can be partitioned into two LD-sets.

Proof sketch.

- Partition V(G) into two parts **R** and **B**.
- Both **R** and **B** are LD codes of *G*.
- Either one of $|\mathbf{R}|$ or $|\mathbf{B}| \leq \frac{1}{2}n$.

Conjecture (Garijo, González & Márquez, 2014 🙎 📓 🎆

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Question

Is it true that all isolate-free twin-free graphs can be partitioned into two locating-dominating sets?

Conjecture (Garijo, González & Márquez, 2014 🙎 📓 🏹)

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Question

Is it true that all isolate-free twin-free graphs can be partitioned into two locating-dominating sets?

Question

Is it true that all isolate-free twin-free graphs have their LD-number at most the matching number?

Every isolate-free (not necessarily twin-free) graph can be partitioned into a dominating set and a locating-dominating set.

Proof: • There exists a dominating set *D* such that each vertex of *D* has a private neighbour in $V(G) \setminus D$. (classic lemma by Bollobas-Cockayne, 1979)

Proof: • There exists a dominating set *D* such that each vertex of *D* has a private neighbour in $V(G) \setminus D$. (classic lemma by Bollobas-Cockayne, 1979)

proof of Lemma: consider a smallest dominating set D that maximizes the number of edges inside D. For every $d \in D$, there must be a vertex f(d) only dominated by d (otherwise $D \setminus \{d\}$ is a dominating set). If $f(d) \neq d$, it is a private neighbour of d. If f(d) = d, d has no neighbour in D. But since there is no isolated vertex in G, d has a neighbour c in $V(G) \setminus D$, that has 2 neighbours in D. Then, $D \setminus \{d\} \cup \{c\}$ contains more edges than D, a contradiction: so, $f(d) \neq d$.

• there is a LD-set of size $n - n_1 - n_2$

- there is a LD-set of size $n n_1 n_2$
- there is a LD-set of size $|D| + n_1$ because D is maximal

- there is a LD-set of size $n n_1 n_2$
- there is a LD-set of size $|D| + n_1$ because D is maximal

•
$$\min\{|D|+n_1, n-n_1-n_2\} \le \frac{2}{3}n$$

Theorem (Bousquet, Chuet, Falgas-Ravry, Jacques, Morelle, 2024)

G graph of order *n*, no isolated vertices, no twins. Then $LD(G) \le \frac{5}{8}n = 0.625n$.

Theorem (Cockayne, Dawes & Hedetniemi, 1980)

If G is a connected graph on n vertices, then $\gamma_t(G) \leq \frac{2}{3}n$.

A similar conjecture for Locating-total dominating sets

Theorem (Cockayne, Dawes & Hedetniemi, 1980)

If G is a connected graph on n vertices, then $\gamma_t(G) \leq \frac{2}{3}n$.

Conjecture (F., Henning, 2016

G graph of order *n*, no isolated vertices, no twins. Then $LTD(G) \leq \frac{2n}{3}$.

A similar conjecture for Locating-total dominating sets

The conjecture is proved for specific graph classes:

- F. and Henning, 2016 and 2017
- Chakraborty, F., Hakanen, Henning, Wagler, 2024

Florent Foucaud

Open identifying codes in graphs

(a.k.a. open locating-dominating sets)

Open identifying codes

G: undirected graph N(u): set of neighbours of v

Definition - open identifying code (Seo, Slater, 2010 🙎 🚵)

Subset *D* of V(G) such that:

- D is a total dominating set: $\forall u \in V(G)$, $N(u) \cap D \neq \emptyset$, and
- *D* is an open separating code: $\forall u \neq v$ of V(G), $N(u) \cap D \neq N(v) \cap D$

Notation. OID(G): open identifying code number of G, minimum size of an open identifying code in G

Open identifying codes

G: undirected graph N(u): set of neighbours of v

Definition - open identifying code (Seo, Slater, 2010 🙎 🚵)

Subset *D* of V(G) such that:

- *D* is a total dominating set: $\forall u \in V(G)$, $N(u) \cap D \neq \emptyset$, and
- *D* is an open separating code: $\forall u \neq v$ of V(G), $N(u) \cap D \neq N(v) \cap D$

Notation. OID(G): open identifying code number of G, minimum size of an open identifying code in G

Total domination number: $TOTDOM(P_n) \approx \left\lceil \frac{n}{2} \right\rceil$

Open id. code number: $OID(P_n) \approx \left\lceil \frac{2n}{3} \right\rceil$

An isolated vertex cannot be totally dominated.

An isolated vertex cannot be totally dominated.

Open twins = pair u, v such that N(u) = N(v).

Definition - Half-graph H_k (Erdős, Hajnal, 1983 🕅

Bipartite graph on vertex sets $\{v_1, \ldots, v_k\}$ and $\{w_1, \ldots, w_k\}$, with an edge $\{v_i, w_j\}$ if and only if $i \leq j$.

Some vertices forced in any open identifying code because of domination

Definition - Half-graph H_k (Erdős, Hajnal, 1983 🕅 🌌)

Bipartite graph on vertex sets $\{v_1, \ldots, v_k\}$ and $\{w_1, \ldots, w_k\}$, with an edge $\{v_i, w_j\}$ if and only if $i \leq j$.

 $H_1 = P_2 \qquad \qquad H_2 = P_4$

Some vertices forced in any open identifying code because of domination

Definition - Half-graph H_k (Erdős, Hajnal, 1983 🕅 🌌)

Bipartite graph on vertex sets $\{v_1, \ldots, v_k\}$ and $\{w_1, \ldots, w_k\}$, with an edge $\{v_i, w_j\}$ if and only if $i \leq j$.

Some vertices forced in any open identifying code because of domination or location

Definition - Half-graph H_k (Erdős, Hajnal, 1983 [] []) Bipartite graph on vertex sets $\{v_1, ..., v_k\}$ and $\{w_1, ..., w_k\}$, with an edge $\{v_i, w_j\}$ if and only if i < j.

Some vertices forced in any open identifying code because of domination or location

Definition - Half-graph H_k (Erdős, Hajnal, 1983 🕅 🌌)

Bipartite graph on vertex sets $\{v_1, \ldots, v_k\}$ and $\{w_1, \ldots, w_k\}$, with an edge $\{v_i, w_j\}$ if and only if $i \leq j$.

Some vertices forced in any open identifying code because of domination or location

PropositionFor every half-graph H_k of order n = 2k, $OID(H_k) = n$.

Proof:

• Such a graph has only *forced* vertices: location-forced or domination-forced.

Proof:

• Such a graph has only *forced* vertices: location-forced or domination-forced.

• By Bondy's theorem, there is at least one vertex x that is not location-forced: it is domination-forced. \rightarrow Its neighbour y is of degree 1.

Then, OID(G) = n if and only if G is a half-graph.

Proof:

- Such a graph has only *forced* vertices: location-forced or domination-forced.
- By Bondy's theorem, there is at least one vertex x that is not location-forced: it is domination-forced. \rightarrow Its neighbour y is of degree 1.
- $G' = G \{x, y\}$ is locatable, connected.

Let G be a connected locatable graph of order n. Then, OID(G) = n if and only if G is a half-graph.

Proof:

- Such a graph has only *forced* vertices: location-forced or domination-forced.
- By Bondy's theorem, there is at least one vertex x that is not location-forced: it is domination-forced. \rightarrow Its neighbour y is of degree 1.
- $G' = G \{x, y\}$ is locatable, connected.
- We have OID(G') = n 2: By contradiction, if OID(G') < n 2, we could add two vertices to a solution and obtain OID(G) < n, a contradiction.

Let G be a connected locatable graph of order n. Then, OID(G) = n if and only if G is a half-graph.

Proof:

- Such a graph has only forced vertices: location-forced or domination-forced.
- By Bondy's theorem, there is at least one vertex x that is not location-forced: it is domination-forced. \rightarrow Its neighbour y is of degree 1.
- $G' = G \{x, y\}$ is locatable, connected.
- We have OID(G') = n 2: By contradiction, if OID(G') < n 2, we could add two vertices to a solution and obtain OID(G) < n, a contradiction.

• By induction, G' is a half-graph. We can conclude that G is a half-graph too, after some case analysis.

Lower bounds (neighbourhood complexity)

Proposition

G graph, n vertices, LD(G) = k. Then, $n \leq 2^k + k - 1$.

Proposition

G graph, *n* vertices, LD(G) = k. Then, $n \leq 2^k + k - 1$. $\rightarrow LD(G) \geq \lceil \log_2(n+1) - 1 \rceil$

Proposition

G graph, *n* vertices, LD(G) = k. Then, $n \le 2^k + k - 1$. $\rightarrow LD(G) \ge \lceil \log_2(n+1) - 1 \rceil$

Proof: Let D be an LD-set of size k. Every vertex not in D is assigned a distinct nonempty subset of D.

Proposition

G graph, *n* vertices, LD(G) = k. Then, $n \leq 2^k + k - 1$. $\rightarrow LD(G) \geq \lceil \log_2(n+1) - 1 \rceil$

Tight example (k = 4):

Proposition

G graph, *n* vertices, LD(G) = k. Then, $n \le 2^k + k - 1$. $\rightarrow LD(G) \ge \lceil \log_2(n+1) - 1 \rceil$

Theorem (Slater, 1980's 📓)

G tree of order *n*, LD(G) = k. Then $n \leq 3k - 1 \rightarrow LD(G) \geq \frac{n+1}{3}$.

Proposition

G graph, *n* vertices, LD(G) = k. Then, $n \le 2^k + k - 1$. $\rightarrow LD(G) \ge \lceil \log_2(n+1) - 1 \rceil$

Theorem (Slater, 1980's 🚵)

G tree of order *n*, LD(G) = k. Then $n \leq 3k - 1 \rightarrow LD(G) \geq \frac{n+1}{3}$.

Proof: Recall: a tree of order *n* has n-1 edges. Consider a LD-set *S* of size *k*.

Proposition

G graph, *n* vertices, LD(G) = k. Then, $n \le 2^k + k - 1$. $\rightarrow LD(G) \ge \lceil \log_2(n+1) - 1 \rceil$

Theorem (Slater, 1980's 🚵)

G tree of order *n*, LD(G) = k. Then $n \leq 3k - 1 \rightarrow LD(G) \geq \frac{n+1}{3}$.

Proof: Recall: a tree of order *n* has n-1 edges. Consider a LD-set *S* of size *k*.

There are $c_1 \leq k$ vertices with exactly one neighbour in *S*.

The $c_2 = n - k - c_1$ others need to have (at least) 2 neighbours in S.

Proposition

G graph, *n* vertices, LD(G) = k. Then, $n \le 2^k + k - 1$. $\rightarrow LD(G) \ge \lceil \log_2(n+1) - 1 \rceil$

Theorem (Slater, 1980's 🚵)

G tree of order *n*, LD(G) = k. Then $n \leq 3k - 1 \rightarrow LD(G) \geq \frac{n+1}{3}$.

Proof: Recall: a tree of order *n* has n-1 edges. Consider a LD-set *S* of size *k*. There are $c_1 \le k$ vertices with exactly one neighbour in *S*. The $c_2 = n-k-c_1$ others need to have (at least) 2 neighbours in *S*. In total we need $c_1 + 2(n-k-c_1) = 2n-2k-c_1 \ge 2n-3k$ edges in the tree. So: $2n-3k \le n-1$ and so, $n \ge 3k-1$.

Proposition

G graph, *n* vertices, LD(G) = k. Then, $n \le 2^k + k - 1$. $\rightarrow LD(G) \ge \lceil \log_2(n+1) - 1 \rceil$

Theorem (Slater, 1980's 🚵)

G tree of order *n*, LD(G) = k. Then $n \leq 3k - 1 \rightarrow LD(G) \geq \frac{n+1}{3}$.

Theorem (Rall & Slater, 1980's 😰 🚵)

G planar graph, order *n*, LD(G) = k. Then $n \leq 7k - 10 \rightarrow LD(G) \geq \frac{n+10}{7}$.

Tight examples:

Neighbourhood complexity of a graph G:

maximum number $|\{N(v) \cap X\}|$ of neighbourhoods inside any set X of k vertices, as a function of k

Neighbourhood complexity of a graph G:

maximum number $|\{N(v) \cap X\}|$ of neighbourhoods inside any set X of k vertices, as a function of k

- General graphs : exponential neighbourhood complexity 2^k
- Trees/planar graphs : linear neighbourhood complexity O(k)

Definition - Interval graph

Intersection graph of intervals of the real line.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 🗰 🎥 👧 🖏

Then
$$n \leq \frac{k(k+1)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 跡 🎼 🗑

Then
$$n \leq rac{k(k+1)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.

- Identifying code D of size k.
- Define zones using the right points of intervals in *D*.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 🗰 🎥 👧 🕷

Then
$$n \leq rac{k(k+1)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.

- Identifying code D of size k.
- Define zones using the right points of intervals in *D*.
- Each vertex intersects a consecutive set of intervals of *D* when ordered by left points.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 🗰 🎥 👧 🕷

Then
$$n \leq rac{k(k+1)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.

- Identifying code *D* of size *k*.
- Define zones using the right points of intervals in *D*.
- Each vertex intersects a consecutive set of intervals of *D* when ordered by left points.

$$\rightarrow n \leq \sum_{i=1}^k (k-i) = \frac{k(k+1)}{2}.$$

Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 🗰 🎥 👧 🖏

G interval graph of order n, LD(G) = k.

Then
$$n \leq rac{k(k+1)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.

Tight:

	 	_
—	 —	

Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X, \mathscr{E}) (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered:

for every subset $S' \subseteq S$, there is an edge e with $e \cap S = S'$.

V-C dimension of H: maximum size of a shattered set in H

Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X, \mathscr{E}) (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered:

for every subset $S' \subseteq S$, there is an edge e with $e \cap S = S'$.

V-C dimension of H: maximum size of a shattered set in H

Vapnik-Červonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X, \mathscr{E}) (initial motivation: machine learning, 1971)

A set $S \subseteq X$ is shattered:

for every subset $S' \subseteq S$, there is an edge e with $e \cap S = S'$.

V-C dimension of H: maximum size of a shattered set in H

Typically bounded for geometric hypergraphs:

Florent Foucaud

Identification problems in graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:

 \rightarrow interval graphs (d = 2), C₄-free graphs (d = 2), line graphs (d = 4), permutation graphs (d = 3), unit disk graphs (d = 3), planar graphs (d = 4)...

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:

 \rightarrow interval graphs (d = 2), C₄-free graphs (d = 2), line graphs (d = 4), permutation graphs (d = 3), unit disk graphs (d = 3), planar graphs (d = 4)...

Theorem (Sauer-Shelah Lemma, 1972 P 🏙

Let H be a hypergraph of V-C dimension at most d. Then, any set S of vertices has at most $|S|^d$ distinct traces.

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:

 \rightarrow interval graphs (d = 2), C₄-free graphs (d = 2), line graphs (d = 4), permutation graphs (d = 3), unit disk graphs (d = 3), planar graphs (d = 4)...

Theorem (Sauer-Shelah Lemma, 1972 P 🏙

Let H be a hypergraph of V-C dimension at most d. Then, any set S of vertices has at most $|S|^d$ distinct traces.

Corollary

G graph of order n, LD(G) = k, V-C dimension $\leq d$. Then $n = O(k^d)$.
Vapnik-Červonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood hypergraph

Typically bounded for geometric intersection graphs:

 \rightarrow interval graphs (d = 2), C₄-free graphs (d = 2), line graphs (d = 4), permutation graphs (d = 3), unit disk graphs (d = 3), planar graphs (d = 4)...

Theorem (Sauer-Shelah Lemma, 1972 🎤 🏙

Let *H* be a hypergraph of V-C dimension at most *d*. Then, any set *S* of vertices has at most $|S|^d$ distinct traces.

Corollary

G graph of order n, LD(G) = k, V-C dimension $\leq d$. Then $n = O(k^d)$.

 $O(k^2)$: interval, permutation, line...

O(k): cographs, unit interval, bipartite permutation, block...

Florent Foucaud

Recently introduced structural measure: twin-width.

Theorem (Bonnet, F., Lehtilä, Parreau, 2024 🌌 🎎 👧)

Let G be a graph of twin-width at most d and order n, and LD(G) = k. Then, $n \leq (d+2)2^{d+1}k$.

Conclusion: identification problems

- Active field of research
- Both practical and theoretical applications
- Open problems: $LD(G) \leq \frac{n}{2}$ conjecture, partition into two LD-sets...
- Study this type of questions for other variants!
- Study digraphs
- Algorithmic complexity: open for e.g. proper interval graphs

Conclusion: identification problems

- Active field of research
- Both practical and theoretical applications
- Open problems: $LD(G) \leq \frac{n}{2}$ conjecture, partition into two LD-sets...
- Study this type of questions for other variants!
- Study digraphs
- Algorithmic complexity: open for e.g. proper interval graphs

THANKS FOR YOUR ATTENTION!

