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Florent Foucaud Identification problems in graphs 4 /37



Locating a burglar in a building
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Locating a burglar in a building

Detectors can detect movement in their room and adjacent rooms
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Locating a burglar in a building

Detectors can detect movement in their room and adjacent rooms
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Building: undirected graph (rooms: vertices, doors: edges)
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Domination

V(G): set of vertices of G

7

Definition - Dominating set (Ore, 1960's) £I

D C V(G) dominating set of G:

@ every vertex not in D has a neighbour in D
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Domination

V(G): set of vertices of G
N[v]: closed neighbourhood of vertex v (v together with its neighbours)
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Definition - Dominating set (Ore, 1960's) fl

D C V(G) dominating set of G:

@ every vertex not in D has a neighbour in D
e equivalently: for every v € V(G), N[v]ND # 0.
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Domination

V(G): set of vertices of G
N[v]: closed neighbourhood of vertex v (v together with its neighbours)

7

Definition - Dominating set (Ore, 1960's) fl

D C V(G) dominating set of G:

@ every vertex not in D has a neighbour in D
e equivalently: for every v € V(G), N[v]ND # 0.

Motivation: covering problems in telecommunication networks

Notation: domination number DOM(G): smallest size of a dominating set of G
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A classic upper bound

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then y(G) < 5.
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Theorem (Domination bound, Ore, 1960's £I)

G graph of order n, no isolated vertices. Then y(G) < 5.
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A classic upper bound

7

Theorem (Domination bound, Ore, 1960's £I)

G graph of order n, no isolated vertices. Then y(G) < 5.

e T O

Proof: Consider an inclusionwise minimal dominating set D of G.

— its complement set V(G)\ D is also a dominating set!

Thus, either D or V(G)\ D has size at most 7. O
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Location-domination

Definition - Locating-dominating set (Slater, 1980’s) ﬂ

D C V(G) locating-dominating set of G:

o for every vertex v € V(G), N[v]N D # 0 (domination).
@ Yu#v of V(G)\D, N(uynD # N(v)N D (location).

Notation. location-domination number LD(G),
smallest size of a locating-dominating set of G

| | {e,f}

%
{a} |
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Location-domination

Definition - Locating-dominating set (Slater, 1980’s) m

D C V(G) locating-dominating set of G:
o for every vertex v € V(G), N[v]N D # 0 (domination).
@ Yu#v of V(G)\D, N(uynD # N(v)N D (location).

Notation. location-domination number LD(G),
smallest size of a locating-dominating set of G

Domination number: ¥(Pn) = [ 5]

o0—e—OC—70C—e—O0—10C—8—0—10C—e—0—10C—e—O

Location-domination number: LD(P,) = [22]

o0—e—OC—"8—O0—0—08—0—08—0—0C—e—0—e—O
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Some variants of identification problems

1988: | LD-sets P. Slater

1998: | ID-codes M. Karpovsky, K. Chakrabarty & L. Levitin

2002: 0 ID-cod |. Honkala, T. Laihonen, S Ranto

2010: | PN TETCU | g Seo & P. Slater

2006: :_'ITDD—_:ttsS T. Haynes, M. Henning & J. Howard
OD-sets

2024: | FD-sets D. Chakraborty & A. Wagler
FTD-sets
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Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961 E)

Hypergraph (X,&). A separating set is a subset C C X such that each edge e € &
contains a distinct subset of C.

X={v1,v2,v3,v4,v5}

B aCon ) o &={{v1},{vi,v2,v3},{vz,va},{v3,va,v5}}
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Definition - Separating set (Rényi, 1961 E)

Hypergraph (X,&). A separating set is a subset C C X such that each edge e € &
contains a distinct subset of C.

Equivalently:
for any pair e, f of edges, there is a vertex in C contained in exactly one of e, f.
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Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961 E)

Hypergraph (X,&). A separating set is a subset C C X such that each edge e € &
contains a distinct subset of C.

Equivalently:
for any pair e, f of edges, there is a vertex in C contained in exactly one of e, f.

X:{V17V27V37V47V5}
aCon ) &={{w1},{vi,v2,v3},{v3,va},{v3,va,v5}}
— €=l
enC=0
esNC=0
e4ﬂC={V5}
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Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961 E)

Hypergraph (X,&). A separating set is a subset C C X such that each edge e € &
contains a distinct subset of C.

Equivalently:
for any pair e, f of edges, there is a vertex in C contained in exactly one of e, f.

X ={vi,va,v3,va,v5}
aCon ) & ={{v1},{v1,v2,v3},{v3,va},{v3,va,v5}}
— €=l
e @ etNC=0
EQQCZ{VQ}
esNC=0
e4ﬂC={V5}
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Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961 E)

Hypergraph (X,&). A separating set is a subset C C X such that each edge e € &
contains a distinct subset of C.

Equivalently:
for any pair e, f of edges, there is a vertex in C contained in exactly one of e, f.

X= {Vla V2,V3,Vva, V5}

e1 & ={{vi},{vi,va,v3},{v3,va},{v3,va,v5}}
- c=twwn}

e @ etNC=0
eNC={wv,v}

esNC={v3}
esNC= {V3,V5}
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Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961 E)

Hypergraph (X,&). A separating set is a subset C C X such that each edge e € &
contains a distinct subset of C.

Equivalently:

for any pair e, f of edges, there is a vertex in C contained in exactly one of e, f.
ov, X ={v1,v2,v3,v4,V5}
el@ & = {{V]_},{V]_,Vz,V3},{V3,V4},{V3,V4,V5}}
— €=lmm)
SRR
e2NC={vi,v3}
esNC={v3}
e4ﬂC={V3,V5}
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Separating sets in hypergraphs

Definition - Separating set (Rényi, 1961 E)

Hypergraph (X,&). A separating set is a subset C C X such that each edge e € &
contains a distinct subset of C.

Equivalently:
for any pair e, f of edges, there is a vertex in C contained in exactly one of e, f.

X= {Vla V2,V3,Vva, V5}

e1® & ={{vi},{vi,va,v3},{v3,va},{v3,va,v5}}
- — €=l

eNC={v,vs}
esNC={v3}
e4ﬂC={V3,V5}

Also known as Separating system, Distinguishing set, Test cover, Distinguishing
transversal, Discriminating code...
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Applications

o network-monitoring, fault detection (burglar)

e medical diagnostics: testing samples for diseases (test cover)

@ biological identification (attributes of individuals)

@ learning theory: teaching dimension

@ machine learning: V-C dimension (Vapnik, Cervonenkis, 1971)

@ graph isomorphism: canonical representation of graphs (Babai, 1982)

o logic definability of graphs (Kim, Pikhurko, Spencer, Verbitsky, 2005)
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Location-domination

Definition - Locating-dominating set (Slater, 1980’s) ﬂ

D C V(G) locating-dominating set of G:

o for every vertex v € V(G), N[v]N D # 0 (domination).
@ Yu#v of V(G)\D, N(uynD # N(v)N D (location).

Notation. location-domination number LD(G),
smallest size of a locating-dominating set of G

| | {e,f}

%
{a} |
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7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then y(G) < 5.
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Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then y(G) < 5.

Theorem (Location-domination bound, Slater, 1980's ﬂ)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

Proof: Take V(G)\ v, for any vertex v of G. O
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Theorem (Location-domination bound, Slater, 1980's ﬂ)
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Tight examples:
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7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then y(G) < 5.

Theorem (Location-domination bound, Slater, 1980's m)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

Proof: Take V(G)\ v, for any vertex v of G. O

Tight examples:

Remark: tight examples contain many twin-vertices!!

(Twins: vertices with the same sets of neighbours)
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then y(G) < 5.

7

Theorem (Location-domination bound, Slater, 1980’s ﬂ)

G graph of order n, no isolated vertices. Then LD(G) < n—1.
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then y(G) < 5.

7

Theorem (Location-domination bound, Slater, 1980’s ﬂ)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 I E)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then y(G) < 5.

7

Theorem (Location-domination bound, Slater, 1980’s ﬂ)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 I E)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

Remark:
e twins are easy to detect

e twins have a trivial behaviour w.r.t. location-domination
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then y(G) < 5.

7

Theorem (Location-domination bound, Slater, 1980’s ﬂ)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 I ﬂ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

If true, tight: 1. domination-extremal graphs

’
bobod
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then y(G) < 5.

7

Theorem (Location-domination bound, Slater, 1980’s II)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 2 ﬂ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

If true, tight: 2. a similar construction

?

)
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then y(G) < 5.

7

Theorem (Location-domination bound, Slater, 1980’s ﬂ)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 I )

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

If true, tight: 3. a family with domination number 2
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Upper bound: a conjecture

7

Theorem (Domination bound, Ore, 1960's fl)

G graph of order n, no isolated vertices. Then y(G) < 5.

7

Theorem (Location-domination bound, Slater, 1980’s ﬂ)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 I )

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

If true, tight: 4. family with dom. number 2: complements of half-graphs

Clique on {x: 1, ok}

Clique on {x1. ...k}
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Upper bound: a conjecture - special graph classes

Conjecture (Garijo, Gonzélez & Marquez, 2014 4 )

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

7

Theorem (Garijo, Gonzalez & Marquez, 2014 ) ¢ ﬂ )

Conjecture true if G has independence number > n/2. (e.g. bipartite)
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Upper bound: a conjecture - special graph classes

7

Conjecture (Garijo, Gonzalez & Marquez, 2014 4 ﬂ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

Theorem (Garijo, Gonzélez & Méarquez, 2014 ¢ )

Conjecture true if G has independence number > n/2. (e.g. bipartite)

Proof: every vertex cover of a twin-free graph is a locating-dominating set

Florent Foucaud Identification problems in graphs 17 / 37



Upper bound: a conjecture - special graph classes

7

Conjecture (Garijo, Gonzélez & Marquez, 2014 E )

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

o/(G): matching number of G

Theorem (Garijo, Gonzalez & Marquez, 2014 tH )

If G has no 4-cycles, then LD(G) < o/(G) < 5.

Proof:
e Consider special maximum matching M

e Select one vertex in each edge of M
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Upper bound: a conjecture - special graph classes

7

Conjecture (Garijo, Gonzélez & Marquez, 2014 E )

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

o/(G): matching number of G

Theorem (Garijo, Gonzalez & Marquez, 2014 tH )

If G has no 4-cycles, then LD(G) < o/(G) < 5.

Proof:
e Consider special maximum matching M

e Select one vertex in each edge of M

Florent Foucaud Identification problems in graphs 17 / 37



Upper bound: a conjecture - special graph class

Conjecture (Garijo, Gonzalez & Marquez, 2014 ) 4 ﬂ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

The conjecture is proved for specific graph classes:

twin-free (conjecture)

\
[ maximal vertex cover . 5 . \
X split outerplanar number < § subcubic Cy-free line cobipartite :
1
1 1
1 1
1 1
1 1

1
\ block bipartite cubic girth >5 \
1 1
1 1
| 1
‘\ tree "

e el il twin-free graphs [= = = 7

Garijo, Gonzélez & Mérquez, 2014

F., Henning, Léwenstein, Sasse, 2016
F. and Henning, 2016 and 2017
Chakraborty, F., Henning, Wagler, 2024
Chakraborty, Hakanen, Lehtila, 2024+
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Block graphs

[ [~
:

Theorem (Chakraborty, F., Parreau, Wagler, 2024 q 9 ‘)

Any block graph can be partitioned into two LD-sets.

Proof sketch.
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Block graphs

[ 2
»

Theorem (Chakraborty, F., Parreau, Wagler, 2024 q 9 ‘)

Any block graph can be partitioned into two LD-sets.

Proof sketch.

e Partition V(G) into two parts R and B.
e Both R and B are LD codes of G.
o Either one of |R| or |B| < 3n.

Florent Foucaud Identification problems in graphs 18 / 37



Two extensions of the conjecture

7

Conjecture (Garijo, Gonzélez & Marquez, 2014 4 )

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.
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Two extensions of the conjecture

7

Conjecture (Garijo, Gonzélez & Marquez, 2014 4 )

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

Question

Is it true that all isolate-free twin-free graphs can be partitioned into two locating-
dominating sets?
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Two extensions of the conjecture

7

Conjecture (Garijo, Gonzélez & Marquez, 2014 4 )

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

Question

Is it true that all isolate-free twin-free graphs can be partitioned into two locating-
dominating sets?

Question

Is it true that all isolate-free twin-free graphs have their LD-number at most the
matching number?

Florent Foucaud |dentification problems in graphs



A theorem about partitioning

7

g
Theorem (Chakraborty, F., Henning, Laihonen, 2025+ q #a m)

Every isolate-free (not necessarily twin-free) graph can be partitioned into
a dominating set and a locating-dominating set.

Florent Foucaud |dentification problems in graphs



Upper bound: a conjecture - general bound

Conjecture (Garijo, Gonzalez & Maérquez, 2014 ) ¢ E )

n LD(G) < 4.

G graph of order n, no isolated vertices, no twins. The

Theorem (F., Henning, Léwenstein, Sasse, 2016 ﬂ‘% . ﬁ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < %n

Identification problems in graphs

Florent Foucaud



Upper bound: a conjecture - general bound

Conjecture (Garijo, Gonzalez & Maérquez, 2014 ) ¢ E )

n LD(G) < 4.

G graph of order n, no isolated vertices, no twins. The

g 3
Theorem (F., Henning, Léwenstein, Sasse, 2016 &7 . ﬁ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < %n.

Proof: e There exists a dominating set D such that each vertex of D has a private
neighbour in V(G)\ D. (classic lemma by Bollobas-Cockayne, 1979)
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Upper bound: a conjecture - general bound

7

Conjecture (Garijo, Gonzalez & Maérquez, 2014 ) ¢ ﬂ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

g 3
Theorem (F., Henning, Léwenstein, Sasse, 2016 &7 . ﬁ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < %n.

Proof: e There exists a dominating set D such that each vertex of D has a private
neighbour in V(G)\ D. (classic lemma by Bollobas-Cockayne, 1979)

proof of Lemma: consider a smallest dominating set D that maximizes the number of
edges inside D. For every d € D, there must be a vertex f(d) only dominated by d
(otherwise D\ {d} is a dominating set). If f(d) # d, it is a private neighbour of d. If
f(d) =d, d has no neighbour in D. But since there is no isolated vertex in G, d has a
neighbour ¢ in V(G)\ D, that has 2 neighbours in D. Then, D\ {d}U{c} contains
more edges than D, a contradiction: so, f(d) #d.
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Upper bound: a conjecture - general bound

7

Conjecture (Garijo, Gonzalez & Maérquez, 2014 ) ¢ )

n

G graph of order n, no isolated vertices, no twins. Then LD(G) <

2"

Theorem (F., Henning, Léwenstein, Sasse, 2016 &7 . %)

G graph of order n, no isolated vertices, no twins. Then LD(G) <

< 2p
3N

Proof: e There exists a dominating set D such that each vertex of D has a private

neighbour in V(G)\ D. (classic lemma by Bollobas-Cockayne, 1979)
Thus |D| < n; + np. Take such D that is inclusionwise maximal.

Florent Foucaud Identification problems in graphs
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Upper bound: a conjecture - general bound

7

Conjecture (Garijo, Gonzalez & Maérquez, 2014 ) ¢ E)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

g 3
Theorem (F., Henning, Léwenstein, Sasse, 2016 &1 . ﬁ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < %

Proof: e There exists a dominating set D such that each vertex of D has a private
neighbour in V(G)\ D. (classic lemma by Bollobas-Cockayne, 1979)
Thus |D| < n; + np. Take such D that is inclusionwise maximal.

e there is a LD-set of size n—n; —ny
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Upper bound: a conjecture - general bound

7

Conjecture (Garijo, Gonzalez & Maérquez, 2014 ) ¢ E)

n

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

£ 3

Theorem (F., Henning, Léwenstein, Sasse, 2016 &1 . ﬁ)
G graph of order n, no isolated vertices, no twins. Then LD(G) < %

Proof: e There exists a dominating set D such that each vertex of D has a private

neighbour in V(G)\ D. (classic lemma by Bollobas-Cockayne, 1979)
Thus |D| < n; + np. Take such D that is inclusionwise maximal.

e there is a LD-set of size n—n; —ny

o there is a LD-set of size |D|+ ny because D is maximal

Florent Foucaud Identification problems in graphs
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Upper bound: a conjecture - general bound

7

Conjecture (Garijo, Gonzalez & Maérquez, 2014 ) ¢ E)

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

g 3
Theorem (F., Henning, Léwenstein, Sasse, 2016 &1 . ﬁ)

G graph of order n, no isolated vertices, no twins. Then LD(G) < %n.

Proof: e There exists a dominating set D such that each vertex of D has a private
neighbour in V(G)\ D. (classic lemma by Bollobas-Cockayne, 1979)
Thus |D| < n; + np. Take such D that is inclusionwise maximal.

e there is a LD-set of size n—n; —ny

o there is a LD-set of size |D|+ ny because D is maximal

1777 IR

e min{|D|+ny,n—n; —np} < 5n D
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Upper bound: a conjecture - general bound

Conjecture (Garijo, Gonzalez & Maérquez, 2014 ) ¢ E )

2"

G graph of order n, no isolated vertices, no twins. Then LD(G) < 5

Theorem (F Henning, Léwenstein, Sasse, 2016 & l.ﬁ

G graph of order n, no isolated vertices, no twins. Then LD(G) < %n.

Theorem (Bousquet, Chuet, Falgas-Ravry, Jacques, Morelle, 2024)]

G graph of order n, no isolated vertices, no twins. Then LD(G) < % =0.625n.

Florent Foucaud
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A similar conjecture for Locating-total dominating sets

Theorem (Cockayne, Dawes & Hedetniemi, 1980)]

. . 2
If G is a connected graph on n vertices, then %(G) < 5n.
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A similar conjecture for Locating-total dominating sets

Theorem (Cockayne, Dawes & Hedetniemi, 1980)]

. . 2
If G is a connected graph on n vertices, then %(G) < 5n.

g
Conjecture (F., Henning, 2016 &)

G graph of order n, no isolated vertices, no twins. Then LTD(G) < %
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A similar conjecture for Locating-total dominating sets

Theorem (Cockayne, Dawes & Hedetniemi, 1980)]

. . 2
If G is a connected graph on n vertices, then %(G) < 5n.

7

Conjecture (F., Henning, 2016 &

g
)

G graph of order n, no isolated vertices, no twins. Then LTD(G) <

2n
7.

The conjecture is proved for specific graph classes:

twin-free (conjecture)

cobipartite

split block subcubic Cy-free line

o F. and Henning, 2016 and 2017
o Chakraborty, F., Hakanen, Henning, Wagler, 2024

Florent Foucaud
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Open identifying codes in graphs

(a.k.a. open locating-dominating sets)
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Open identifying codes

G: undirected graph  N(u): set of neighbours of v

7

Definition - open identifying code (Seo, Slater, 2010 2 ﬂ)

Subset D of V(G) such that:
e D is a total dominating set: Yu € V(G), N(u)ND # 0, and

e D is an open separating code: Vu # v of V(G), N(u)NnD # N(v)ND

Notation. O/D(G): open identifying code number of G,
minimum size of an open identifying code in G

{b} | | {b.f} | {d}

{b,d}
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Open identifying codes

G: undirected graph  N(u): set of neighbours of v

Definition - open identifying code (Seo, Slater, 2010 2 ﬂ)

Subset D of V(G) such that:
e D is a total dominating set: Yu € V(G), N(u)ND # 0, and

e D is an open separating code: Vu # v of V(G), N(u)NnD # N(v)ND

Notation. OID(G): open identifying code number of G,
minimum size of an open identifying code in G

Total domination number: TOTDOM(P,) ~ 4]
o0—eo—e O0—C—0e—00O0—0C—"0 0 (O0—0 0O

Open id. code number: OID(P,) ~ [4]
*——OCO—0—0 000 O O0O—0 00 0 O
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Locatable graphs

Remark

Not all graphs have an open identifying code!

An isolated vertex cannot be totally dominated.
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Locatable graphs

Remark

Not all graphs have an open identifying code!

An isolated vertex cannot be totally dominated.

Open twins = pair u, v such that N(u) = N(v).
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Locatable graphs

Remark
Not all graphs have an open identifying code!
An isolated vertex cannot be totally dominated.
Open twins = pair u, v such that N(u) = N(v).
Proposition

A graph is locatable if and only if it has no isolated vertices and open twins.
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Upper bound on OID(G)?

Definition - Half-graph Hy (Erd&s, Hajnal, 1983 H)

Bipartite graph on vertex sets {vi,..., v} and {wy,...,wy}, with an edge {v;, w;}
if and only if i <.

V1 %1 Vo Vi V2 v3 Vg V5
w1 wi w2 w1 w2 w3 Iz ws

Hi =P, Hy =Py Hs
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Upper bound on OID(G)?

7

Definition - Half-graph H, (Erdés, Hajnal, 1983 -)

Bipartite graph on vertex sets {vy,..., v} and {wy,...,wy}, with an edge {v;, w;}
if and only if i <j.

&)

&)

Hi =P

Some vertices forced in any open identifying code because of domination
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Upper bound on OID(G)?

7

Definition - Half-graph H, (Erdés, Hajnal, 1983 H)

Bipartite graph on vertex sets {vy,..., v} and {wy,...,wy}, with an edge {v;, w;}

if and only if i <j.
9 ?
O

Hi =P Hy =Py

Some vertices forced in any open identifying code because of domination
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Upper bound on OID(G)?

7

Definition - Half-graph H, (Erdés, Hajnal, 1983 H)

Bipartite graph on vertex sets {vy,..., v} and {wy,...,wy}, with an edge {v;, w;}
if and only if i <j.

Hi =P Hy =Py

Some vertices forced in any open identifying code because of domination or location
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Upper bound on OID(G)?

7

Definition - Half-graph Hj (Erdés, Hajnal, 1983 H)

Bipartite graph on vertex sets {vy,..., v} and {wy,...,wy}, with an edge {v;, w;}
if and only if i <j.

Hi =P Hy =Py Hs

Some vertices forced in any open identifying code because of domination or location
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Upper bound on OID(G)?

7

Definition - Half-graph Hj (Erdés, Hajnal, 1983 n)

Bipartite graph on vertex sets {vy,..., v} and {wy,...,wy}, with an edge {v;, w;}
if and only if i <j.

Hi =P Hy =Py Hs

Some vertices forced in any open identifying code because of domination or location

Proposition

For every half-graph Hy of order n =2k, OID(Hy) = n.
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Characterizing “bad graphs” for open identifying codes

7

=T ]

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 ;

Let G be a connected locatable graph of order n.
Then, OID(G) = n if and only if G is a half-graph.
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Characterizing “bad graphs” for open identifying codes

7

=T ]

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 ;

Let G be a connected locatable graph of order n.
Then, OID(G) = n if and only if G is a half-graph.

Proof:

e Such a graph has only forced vertices: location-forced or domination-forced.
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Characterizing “bad graphs” for open identifying codes

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 ;

7

Let G be a connected locatable graph of order n.
Then, OID(G) = n if and only if G is a half-graph.

Proof:
e Such a graph has only forced vertices: location-forced or domination-forced.

e By Bondy's theorem, there is at least one vertex x that is not location-forced: it is
domination-forced. — lIts neighbour y is of degree 1.

Florent Foucaud Identification problems in graphs 27 / 37



Characterizing “bad graphs” for open identifying codes

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 ;

7

Let G be a connected locatable graph of order n.
Then, OID(G) = n if and only if G is a half-graph.

Proof:

e Such a graph has only forced vertices: location-forced or domination-forced.

e By Bondy's theorem, there is at least one vertex x that is not location-forced: it is
domination-forced. — lIts neighbour y is of degree 1.

e G' = G—{x,y} is locatable, connected.
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Characterizing “bad graphs” for open identifying codes

7

=T ]

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 :

Let G be a connected locatable graph of order n.
Then, OID(G) = n if and only if G is a half-graph.

Proof:
e Such a graph has only forced vertices: location-forced or domination-forced.

e By Bondy's theorem, there is at least one vertex x that is not location-forced: it is
domination-forced. — lIts neighbour y is of degree 1.

e G' = G—{x,y} is locatable, connected.

e We have OID(G') = n—2: By contradiction, if OID(G') < n—2, we could add two
vertices to a solution and obtain OID(G) < n, a contradiction.
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Characterizing “bad graphs” for open identifying codes

7

=Y ]

Theorem (F., Ghareghani, Roshany Tabrizi, Sharifani, 2021 :

Let G be a connected locatable graph of order n.
Then, OID(G) = n if and only if G is a half-graph.

Proof:
e Such a graph has only forced vertices: location-forced or domination-forced.

e By Bondy's theorem, there is at least one vertex x that is not location-forced: it is
domination-forced. — lIts neighbour y is of degree 1.

e G' = G—{x,y} is locatable, connected.

e We have OID(G') = n—2: By contradiction, if OID(G') < n—2, we could add two
vertices to a solution and obtain OID(G) < n, a contradiction.

e By induction, G’ is a half-graph. We can conclude that G is a half-graph too, after
some case analysis. O
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Lower bounds
(neighbourhood complexity)
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Proposition

G graph, n vertices, LD(G) = k. Then, n <2k 4+ k—1.
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Proposition

G graph, n vertices, LD(G) = k. Then, n<2K+4+k—1. — LD(G) > [logy(n+1)—1]
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Proposition

G graph, n vertices, LD(G) = k. Then, n<2K+4+k—1. — LD(G) > [logy(n+1)—1]

Proof: Let D be an LD-set of size k. Every vertex not in D is assigned a distinct
nonempty subset of D. O
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Proposition

G graph, n vertices, LD(G) = k. Then, n<2K+4+k—1. — LD(G) > [logy(n+1)—1]

Tight example (k = 4):
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Proposition

G graph, n vertices, LD(G) = k. Then, n<2K+4+k—1. — LD(G) > [logy(n+1)—1]

Theorem (Slater, 1980's ﬂ)

G tree of order n, LD(G) = k. Then n<3k—1 — LD(G) > ”TH
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Proposition

G graph, n vertices, LD(G) = k. Then, n<2K+4+k—1. — LD(G) > [logy(n+1)—1]

Theorem (Slater, 1980's ﬂ)

G tree of order n, LD(G) = k. Then n<3k—1 — LD(G) > ”TH

Tight examples: 6.2, TeeT2

Proof: Recall: a tree of order n has n—1 edges. Consider a LD-set S of size k.
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Proposition

G graph, n vertices, LD(G) = k. Then, n<2K+4+k—1. — LD(G) > [logy(n+1)—1]

Theorem (Slater, 1980's ﬂ)

G tree of order n, LD(G) = k. Then n<3k—1 — LD(G) > ”TH

Proof: Recall: a tree of order n has n—1 edges. Consider a LD-set S of size k.
There are c1 < k vertices with exactly one neighbour in S.

The ¢g = n— k — ¢ others need to have (at least) 2 neighbours in S.
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Proposition

G graph, n vertices, LD(G) = k. Then, n<2K+4+k—1. — LD(G) > [logy(n+1)—1]

Theorem (Slater, 1980's ﬂ)

G tree of order n, LD(G) = k. Then n<3k—1 — LD(G) > ”TH

Proof: Recall: a tree of order n has n—1 edges. Consider a LD-set S of size k.

There are c1 < k vertices with exactly one neighbour in S.

The ¢g = n— k — ¢ others need to have (at least) 2 neighbours in S.

In total we need c¢; +2(n—k—c1) =2n—2k —c¢; > 2n— 3k edges in the tree. So:
2n—3k<n—1and so, n>3k—1. O
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Lower bounds

Proposition

G graph, n vertices, LD(G) = k. Then, n<2K+4+k—1. — LD(G) > [logy(n+1)—1]

Theorem (Slater, 1980's ﬂ)

G tree of order n, LD(G) = k. Then n<3k—1 — LD(G) > ”TH

7

Theorem (Rall & Slater, 1080's £ i)

— 10
G planar graph, order n, LD(G) = k. Then n < 7k—10 — LD(G) > 210,

Tight examples: —
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Neighbourhood complexity

Neighbourhood complexity of a graph G:

maximum number [{N(v)N X}| of neighbourhoods inside any set X of k vertices, as a
function of k

{N(v)N X} =9
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Neighbourhood complexity

Neighbourhood complexity of a graph G:

maximum number [{N(v)N X}| of neighbourhoods inside any set X of k vertices, as a
function of k

{N(v)N X} =9

o General graphs : exponential neighbourhood complexity 2%

o Trees/planar graphs : linear neighbourhood complexity O(k)
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Interval graphs

Definition - Interval graph]

Intersection graph of intervals of the real line.

I
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 ﬁ “ E )

G interval graph of order n, LD(G) = k.
Then n < X5 ie 1D(G) = Q(v/n).
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 ﬁ “ }) )

G interval graph of order n, LD(G) = k.
Then n < X5 ie 1D(G) = Q(v/n).

o Identifying code D of size k.

@ Define zones using the right points of intervals in D.
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 ﬁ “ E )

G interval graph of order n, LD(G) =
Then n < X5 ie 1D(G) = Q(v/n).

1 2
— —
1-1 2-3
3
—
1-2 2-4
1-4 4
—
1-3 3-4

o Identifying code D of size k.
@ Define zones using the right points of intervals in D.

@ Each vertex intersects a consecutive set of intervals of D when ordered by left
points.
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 ﬁ “ E )

G interval graph of order n, LD(G) =
Then n < X5 ie 1D(G) = Q(v/n).

1 2
— —
1-1 2-3
3
—
1-2 2-4
1-4 4
—
1-3 3-4

o Identifying code D of size k.
@ Define zones using the right points of intervals in D.

@ Each vertex intersects a consecutive set of intervals of D when ordered by left
points.

— n < T (k—i) = U,
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2017 ﬁ “ }) )

G interval graph of order n, LD(G) = k.
Then n < X5 ie 1D(G) = Q(v/n).

Tight:
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Vapnik-Cervonenkis dimension

Measure of intersection complexity of sets in a hypergraph (X, &)
(initial motivation: machine learning, 1971)

A set S C X is shattered:
for every subset S’ C S, there is an edge e with eNS=5'.

V-C dimension of H: maximum size of a shattered set in H
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Vapnik-Cervonenkis dimension

na

Measure of intersection complexity of sets in a hypergraph (X, &)
(initial motivation: machine learning, 1971)

A set S C X is shattered:
for every subset S’ C S, there is an edge e with eNS=5'.

V-C dimension of H: maximum size of a shattered set in H

Typically bounded for geometric hypergraphs: @ o o
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood
hypergraph

/NI (G
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood
hypergraph

Typically bounded for geometric intersection graphs:

— interval graphs (d = 2), Cs-free graphs (d = 2), line graphs (d = 4), permutation
graphs (d = 3), unit disk graphs (d = 3), planar graphs (d =4)...
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood
hypergraph

Typically bounded for geometric intersection graphs:

— interval graphs (d = 2), Cs-free graphs (d = 2), line graphs (d = 4), permutation
graphs (d = 3), unit disk graphs (d = 3), planar graphs (d =4)...

7

Theorem (Sauer-Shelah Lemma, 1972 B ﬁ)

Let H be a hypergraph of V-C dimension at most d. Then, any set S of vertices
has at most |S|? distinct traces.
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood
hypergraph

Typically bounded for geometric intersection graphs:

— interval graphs (d = 2), Cs-free graphs (d = 2), line graphs (d = 4), permutation
graphs (d = 3), unit disk graphs (d = 3), planar graphs (d =4)...

7

Theorem (Sauer-Shelah Lemma, 1972 B ﬁ)

Let H be a hypergraph of V-C dimension at most d. Then, any set S of vertices
has at most |S|? distinct traces.

Corollary

G graph of order n, LD(G) = k, V-C dimension < d. Then n= O(k9).
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Vapnik-Cervonenkis dimension - graphs

V-C dimension of a graph: V-C dimension of its open/closed neighbourhood
hypergraph

Typically bounded for geometric intersection graphs:

— interval graphs (d = 2), Cs-free graphs (d = 2), line graphs (d = 4), permutation
graphs (d = 3), unit disk graphs (d = 3), planar graphs (d =4)...

7

Theorem (Sauer-Shelah Lemma, 1972 B i)

Let H be a hypergraph of V-C dimension at most d. Then, any set S of vertices
has at most |S|? distinct traces.

Corollary

G graph of order n, LD(G) = k, V-C dimension < d. Then n= O(k9).

O(k?): interval, permutation, line...
O(k): cographs, unit interval, bipartite permutation, block...
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Sparse/structured graphs

Graph classes of bounded expansion: all shallow minors of its members have bounded
average degree — e.g. planar graphs, minor-closed classes, bounded degree...

Theorem (Reidl, Sanchez-Villaamil, Stavropoulos, 2019 . &)

Let € be a graph class of bounded expansion. Let G in ¢, order n, and LD(G) = k.
Then, n < f(%)k.

Recently introduced structural measure: twin-width.

Theorem (Bonnet, F., Lehtild, Parreau, 2024 ﬂ e E)

Let G be a graph of twin-width at most d and order n, and LD(G) = k.
Then, n < (d+42)29F1k.
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exponential
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. ' o '

ine} 1Permutations tlntervalt
o Vo

quasi-linear

Bounded Twin-Width

Bounded Clique-Width

linear

ECographs:
3 H
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Conclusion: identification problems

o Active field of research

@ Both practical and theoretical applications

@ Open problems: LD(G) < 7 conjecture, partition into two LD-sets...
o Study this type of questions for other variants!

@ Study digraphs

@ Algorithmic complexity: open for e.g. proper interval graphs
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Conclusion: identification problems

Active field of research

Both practical and theoretical applications

Open problems: LD(G) < § conjecture, partition into two LD-sets...
Study this type of questions for other variants!

Study digraphs

Algorithmic complexity: open for e.g. proper interval graphs

THANKS FOR YOUR ATTENTION!
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