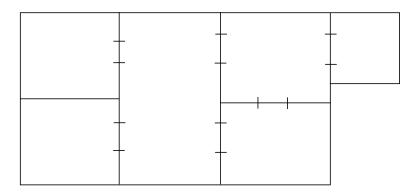
Bounding the identifying code number of a graph using its degree parameters

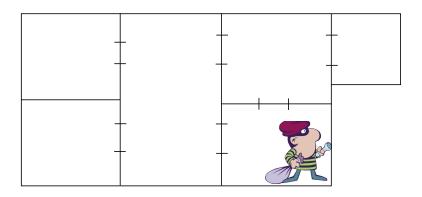
(a probabilistic approach)

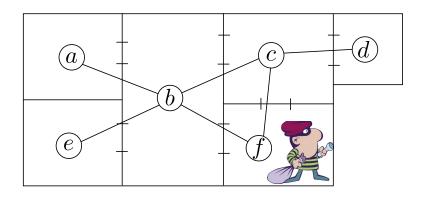
Florent Foucaud (LaBRI)

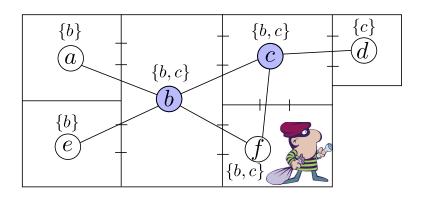
Turku - August 9th, 2011

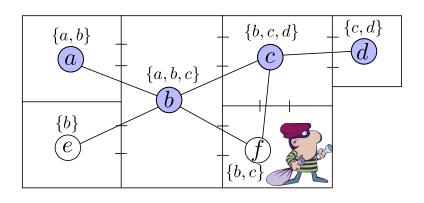
joint work with Guillem Perarnau (UPC, Barcelona)

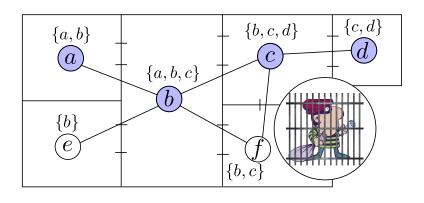


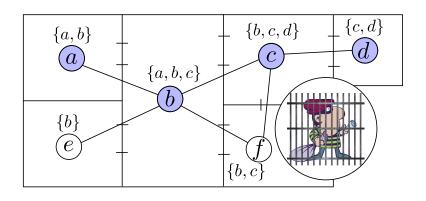












How many detectors do we need?

Identifying codes: definition

Let N[u] be the set of vertices v s.t. $d(u, v) \leq 1$

Definition - Identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V such that:

- C is a dominating set in G: $\forall u \in V, N[u] \cap C \neq \emptyset$, and
- C is a separating code in G: $\forall u \neq v$ of V, $N[u] \cap C \neq N[v] \cap C$

Identifying codes: definition

Let N[u] be the set of vertices v s.t. $d(u, v) \leq 1$

Definition - Identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V such that:

- C is a dominating set in $G: \forall u \in V, N[u] \cap C \neq \emptyset$, and
- C is a separating code in G: $\forall u \neq v$ of V, $N[u] \cap C \neq N[v] \cap C$

Notation - Identifying code number

 $\gamma^{\text{ID}}(G)$: minimum cardinality of an identifying code of G

Identifiable graphs

Let N[u] be the set of vertices v s.t. $d(u, v) \leq 1$

Remark

Not all graphs have an identifying code!

Twins = pair u, v such that N[u] = N[v].

A graph is identifiable iff it is twin-free (i.e. it has no twins).

Identifiable graphs

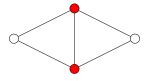
Let N[u] be the set of vertices v s.t. $d(u,v) \leq 1$

Remark

Not all graphs have an identifying code!

Twins = pair u, v such that N[u] = N[v].

A graph is identifiable iff it is twin-free (i.e. it has no twins).



Identifiable graphs

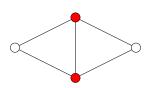
Let N[u] be the set of vertices v s.t. $d(u, v) \leq 1$

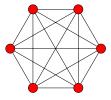
Remark

Not all graphs have an identifying code!

Twins = pair u, v such that N[u] = N[v].

A graph is identifiable iff it is twin-free (i.e. it has no twins).

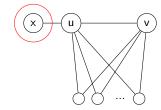




Forced vertices

$$u, v$$
 such that $N[v]\Delta N[u] = \{x\}$

Then $x \in C$, forced by uv.



Notation

Let f(G) be the proportion of non forced vertices of G

$$f(G) = \frac{\# \text{non-forced vertices in G}}{\# \text{vertices in G}}$$

Degree parameters of a graph

Graph
$$G = (V, E)$$
, vertex $v \in V$.

- degree of v: number of edges it is incident to
- maximum degree d of G: max. degree of a vertex in G
- d-regular graph: all vertices have degree d

Theorem (Karpovsky, Chakrabarty, Levitin, 1998 + Gravier, Moncel, 2007)

Let G be an identifiable graph with at least one edge, then

$$\lceil \log_2(n+1)
ceil \leq \gamma^{ ext{ID}}(G) \leq n-1$$

Theorem (Karpovsky, Chakrabarty, Levitin, 1998 + Gravier, Moncel, 2007)

Let G be an identifiable graph with at least one edge, then

$$\lceil \log_2(n+1)
ceil \leq \gamma^{ ext{ID}}(G) \leq n-1$$

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

Let G be an identifiable graph with maximum degree d, then

$$\frac{2n}{d+2} \le \gamma^{\mathsf{ID}}(\mathsf{G})$$

Theorem (Karpovsky, Chakrabarty, Levitin, 1998 + Gravier, Moncel, 2007)

Let G be an identifiable graph with at least one edge, then

$$\lceil \log_2(n+1)
ceil \leq \gamma^{ ext{ID}}(G) \leq n-1$$

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

Let G be an identifiable graph with maximum degree d, then

$$rac{2n}{d+2} \leq \gamma^{\mathrm{ID}}(G)$$

Conjecture (F., Klasing, Kosowski, Raspaud, 2009+)

Let G be a connected nontrivial identifiable graph of max. degree d. Then

$$\gamma^{\text{ID}}(G) \leq n - \frac{n}{d} + O(1)$$

Theorem (Karpovsky, Chakrabarty, Levitin, 1998 + Gravier, Moncel, 2007)

Let G be an identifiable graph with at least one edge, then

$$\lceil \log_2(n+1)
ceil \leq \gamma^{ ext{ID}}(G) \leq n-1$$

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

Let G be an identifiable graph with maximum degree d, then

$$\frac{2n}{d+2} \le \gamma^{\mathsf{ID}}(\mathsf{G})$$

Conjecture (F., Klasing, Kosowski, Raspaud, 2009+)

Let G be a connected nontrivial identifiable graph of max. degree d. Then

$$\gamma^{\text{ID}}(G) \leq n - \frac{n}{d} + O(1)$$

This would be tight. True for d = 2 and d = n - 1.

Conjecture (F., Klasing, Kosowski, Raspaud, 2009+)

Let G be a connected nontrivial identifiable graph of max. degree d. Then

$$\gamma^{ extsf{ID}}(G) \leq n - rac{n}{d} + O(1)$$

Theorem (F., Guerrini, Kovse, Naserasr, Parreau, Valicov, 2011)

Let G be a connected identifiable graph of maximum degree d. Then

$$\gamma^{\text{ID}}(G) \leq n - rac{n}{\Theta(d^5)}$$

If G is d-regular, $\gamma^{\text{ID}}(G) \leq n - \frac{n}{\Theta(d^3)}$

Conjecture (F., Klasing, Kosowski, Raspaud, 2009+)

Let G be a connected nontrivial identifiable graph of max. degree d. Then

$$\gamma^{ extsf{ID}}(G) \leq n - rac{n}{d} + O(1)$$

Theorem (F., Guerrini, Kovse, Naserasr, Parreau, Valicov, 2011)

Let G be a connected identifiable graph of maximum degree d. Then

$$\gamma^{\mathsf{ID}}(G) \leq n - \frac{n}{\Theta(d^5)}$$

If G is d-regular, $\gamma^{\text{ID}}(G) \leq n - \frac{n}{\Theta(d^3)}$

Theorem (F., Klasing, Kosowski, Raspaud, 2009+)

Let G be a connected identifiable triangle-free graph of max. degree d. Then

$$\gamma^{\text{ID}}(G) \leq n - \frac{n}{d(1+o_d(1))}$$

Technique initiated, among others, by Pál Erdős used mainly in combinatorics (Ramsey theory, graph theory, ...)

Define a suitable probability space

- Define a suitable probability space
- Select some object from this space using randomness

- Define a suitable probability space
- Select some object from this space using randomness
- Prove that with nonzero probability, certain "good" conditions hold

- Define a suitable probability space
- Select some object from this space using randomness
- Prove that with nonzero probability, certain "good" conditions hold
- Occidence of the contract o

Technique initiated, among others, by Pál Erdős used mainly in combinatorics (Ramsey theory, graph theory, ...)

- Define a suitable probability space
- Select some object from this space using randomness
- Prove that with nonzero probability, certain "good" conditions hold
- Occidence of the contract o

Classic reference: Noga Alon and Joel Spencer, The probabilistic method

Upper bounds for $\gamma^{\text{\tiny{ID}}}(G)$

Notation

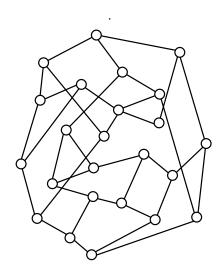
Let f(G) be the proportion of non forced vertices of G

$$f(G) = \frac{\text{\#non-forced vertices in G}}{\text{\#vertices in G}}$$

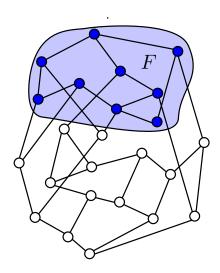
Theorem (F., Perarnau, 2011+)

There exists an integer d_0 such that for each identifiable graph G on n vertices having maximum degree $d \ge d_0$ and no isolated vertices,

$$\gamma^{\mathsf{ID}}(G) \leq n - \frac{n \cdot f(G)^2}{85d}$$

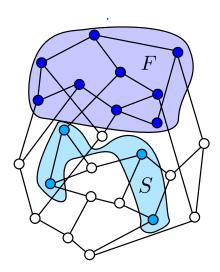


• F: forced vertices



• F: forced vertices

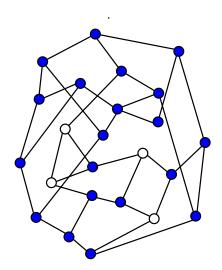
• Select a random set S from $V' = V \setminus F$: each vertex $v \in S$ with prob. p.



• F: forced vertices

Select a random set S from
 V' = V \ F: each vertex v ∈ S
 with prob. p.

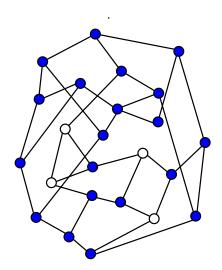
•
$$C = V \setminus S$$



• F: forced vertices

Select a random set S from
 V' = V \ F: each vertex v ∈ S
 with prob. p.

•
$$C = V \setminus S$$



Proof - Lovász Local Lemma

Theorem (Weighted Local Lemma: particular case of the Local Lemma Erdős, Lovász, 1973 - Molloy, Reed, 2001¹)

Let $0 and <math>\mathcal{E} = \{E_1, \dots, E_M\}$ be a set of "bad" events such that each E_i is mutually independent of $\mathcal{E} \setminus (\mathcal{D}_i \cup \{E_i\})$ where $\mathcal{D}_i \subseteq \mathcal{E}$, and

- $Pr(E_i) \leq p^{t_i}$
- $\sum_{E_j \in D_i} (2p)^{t_j} \leq \frac{t_i}{2}$

$$\text{Then } Pr(\bigcap_{i=1}^{M}\overline{E_i}) \geq \prod_{i=1}^{M}(1-(2p)^{t_i}) \geq \exp\left\{-2\log 2\sum_{i=1}^{m}(2p)^{t_i}\right\} > 0.$$

^{1:} Molloy and Reed - Graph colouring and the probabilistic method, 2001

Proof - Lovász Local Lemma

Theorem (Weighted Local Lemma: particular case of the Local Lemma Erdős, Lovász, 1973 - Molloy, Reed, 2001¹)

Let $0 and <math>\mathcal{E} = \{E_1, \dots, E_M\}$ be a set of "bad" events such that each E_i is mutually independent of $\mathcal{E} \setminus (\mathcal{D}_i \cup \{E_i\})$ where $\mathcal{D}_i \subseteq \mathcal{E}$, and

- $Pr(E_i) \leq p^{t_i}$
- $\sum_{E_j \in D_i} (2p)^{t_j} \leq \frac{t_i}{2}$

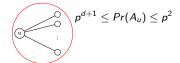
Then
$$Pr(\bigcap_{i=1}^{M}\overline{E_i}) \geq \prod_{i=1}^{M}(1-(2p)^{t_i}) \geq \exp\left\{-2\log 2\sum_{i=1}^{m}(2p)^{t_i}\right\} > 0.$$

⇒ If the dependencies are "rare":

with non-zero probability none of the bad events occur

^{1:} Molloy and Reed - Graph colouring and the probabilistic method, 2001

Set the bad events...

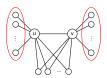


Event A_u

Set the bad events...

$$\bigcap_{0} p^{d+1} \leq Pr(A_u) \leq p^2$$

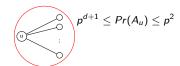
Event Au



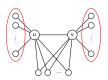
Event $B_{u,v}$

$$p^{2d-2} \leq Pr(B_{u,v}) \leq p^2$$

Set the bad events...

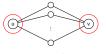


Event Au



Event $B_{u,v}$

$$p^{2d-2} \leq Pr(B_{u,v}) \leq p^2$$



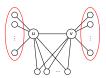
Event $C_{u,v}$

 $Pr(C_{u,v}) = p^2$

Set the bad events...

$$p^{d+1} \leq Pr(A_u) \leq p^2$$

Event A_u



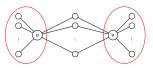
Event $B_{u,v}$

$$p^{2d-2} \leq Pr(B_{u,v}) \leq p^2$$



 $Pr(C_{u,v})=p^2$

Event $C_{u,v}$



Event $D_{u,v}$

$$p^{2d} \leq Pr(D_{u,v}) \leq p^4$$

Proof (regular case) - Lovász Local Lemma, technicalities

Theorem (Weighted Local Lemma)

Bad events:
$$\mathcal{E} = \{E_1, \dots, E_M\}$$
.

- $Pr(E_i) \le p^{t_i}$ $\sum_{E_i \in D_i} (2p)^{t_j} \le \frac{t_i}{2}$

Then
$$Pr(\bigcap_{i=1}^M \overline{E_i}) \geq \prod_{i=1}^M (1-(2p)^{t_i}) > 0.$$

Build the event-intersection table:

	A	В	С	D
Α	d ²	$d^3 - 2d^2 + 2d$	$d^4 + d^2 - 2d$	$d^2 - d + 1$
В	$2(d^2-d+1)$	$2d^3 - 4d^2 + 4d - 1$	$2d(d^3 - 3d^2 + 4d - 2)$	$d^2 - d$
С	$2d^2 + 2$	$2d(d^2-2d+2)$	$2d^4 - 6d^3 + 9d^2 - 5d - 1$	$d^2 + d - 2$
D	d + 2	$d^2 + d$	d^3-d	2d – 4

Proof (regular case) - Lovász Local Lemma, technicalities

Theorem (Weighted Local Lemma)

Bad events: $\mathcal{E} = \{E_1, \dots, E_M\}$. • $Pr(E_i) \leq p^{t_i}$ • $\sum_{E_j \in D_i} (2p)^{t_j} \leq \frac{t_i}{2}$

Then
$$Pr(\bigcap_{i=1}^{M}\overline{E_i})\geq \prod_{i=1}^{M}(1-(2p)^{t_i})>0.$$

Build the event-intersection table:

	Α	В	С	D
Α	d ²	$d^3 - 2d^2 + 2d$	$d^4 + d^2 - 2d$	$d^2 - d + 1$
В	$2(d^2-d+1)$	$2d^3 - 4d^2 + 4d - 1$	$2d(d^3 - 3d^2 + 4d - 2)$	$d^2 - d$
С	$2d^2 + 2$	$2d(d^2-2d+2)$	$2d^4 - 6d^3 + 9d^2 - 5d - 1$	$d^2 + d - 2$
D	d+2	$d^2 + d$	d^3-d	2d – 4

For an A-event, we need:

$$d^2(2p)^{d+1} + (d^3 - 2d^2 + 2d)(2p)^2 + (d^4 + d^2 - 2d)(2p)^3 + (d^2 - d + 1)(2p)^2 \le \frac{2}{2} = 1$$

Proof (regular case) - Lovász Local Lemma, technicalities

Theorem (Weighted Local Lemma)

Bad events:
$$\mathcal{E} = \{E_1, \dots, E_M\}$$
.

• $Pr(E_i) \leq p^{t_i}$

• $\sum_{E_j \in D_i} (2p)^{t_j} \leq \frac{t_i}{2}$

Then
$$Pr(\bigcap_{i=1}^{M}\overline{E_i})\geq \prod_{i=1}^{M}(1-(2p)^{t_i})>0.$$

Build the event-intersection table:

	Α	В	С	D
Α	d ²	$d^3 - 2d^2 + 2d$	$d^4 + d^2 - 2d$	$d^2 - d + 1$
В	$2(d^2-d+1)$	$2d^3 - 4d^2 + 4d - 1$	$2d(d^3 - 3d^2 + 4d - 2)$	$d^2 - d$
С	$2d^2 + 2$	$2d(d^2-2d+2)$	$2d^4 - 6d^3 + 9d^2 - 5d - 1$	$d^2 + d - 2$
D	d+2	$d^2 + d$	d^3-d	2d – 4

For an A-event, we need:

$$d^2(2p)^{d+1} + (d^3 - 2d^2 + 2d)(2p)^2 + (d^4 + d^2 - 2d)(2p)^3 + (d^2 - d + 1)(2p)^2 \leq \tfrac{2}{2} = 1$$

Taking
$$p = \frac{1}{kd} \Longrightarrow LLL$$
 can be applied

By the LLL we know that

There exists some set S with $\mathbb{E}(|S|) = \frac{nf(G)}{k \cdot d}$ such that no bad event occurs

By the LLL we know that

There exists some set S with $\mathbb{E}(|S|) = \frac{nf(G)}{k \cdot d}$ such that no bad event occurs

And we also know: if $S = \emptyset$, $C = V \setminus S = V$ is a trivial code!

By the LLL we know that

There exists some set S with $\mathbb{E}(|S|) = \frac{nf(G)}{k \cdot d}$ such that no bad event occurs

And we also know: if $S = \emptyset$, $C = V \setminus S = V$ is a trivial code!

But by the LLL we know more:

$$\Pr\left(\bigcap_{i=1}^{m} \overline{E_i}\right) > \exp\left\{-2\log 2\sum_{i=1}^{m} (2p)^{t_i}\right\}$$

By the LLL we know that

There exists some set S with $\mathbb{E}(|S|) = \frac{nf(G)}{k \cdot d}$ such that no bad event occurs

And we also know: if $S = \emptyset$, $C = V \setminus S = V$ is a trivial code!

But by the LLL we know more:

$$\Pr\left(\bigcap_{i=1}^{m}\overline{E_{i}}\right)>\exp\left\{-\frac{9}{k^{2}d}n\right\}$$

The probability to have a good set S is at least $\exp\left\{-\frac{9}{k^2d}n\right\}$

Proof (regular case) - concentration inequality

Theorem (Chernoff bound)

Let X_1,\ldots,X_m a set of i.i.d random variables s.t. $Pr(X_i=1)=p$ and $Pr(X_i=0)=1-p$ and $X=\sum X_i$. Then $\Pr(\mathbb{E}(X)-X>\alpha)\leq \exp\left\{-\frac{\alpha^2}{2mp}\right\}$

$$\Pr(\mathbb{E}(X) - X > \alpha) \le \exp\left\{-\frac{\alpha^2}{2mp}\right\}$$

Proof (regular case) - concentration inequality

Theorem (Chernoff bound)

Let X_1,\ldots,X_m a set of i.i.d random variables s.t. $Pr(X_i=1)=p$ and $Pr(X_i=0)=1-p$ and $X=\sum X_i$. Then $\Pr(\mathbb{E}(X)-X>\alpha)\leq \exp\left\{-\frac{\alpha^2}{2mp}\right\}$

$$\Pr(\mathbb{E}(X) - X > \alpha) \le \exp\left\{-\frac{\alpha^2}{2mp}\right\}$$

For each $v_i \in V \setminus F$ define the random variable:

$$X_i = \left\{ \begin{array}{ll} 1 & \text{if } v_i \in C \\ 0 & \text{otherwise} \end{array} \right.$$

Then, we set $\alpha = \frac{nf(G)}{cd}$. Using $mp = \frac{nf(G)}{kd}$:

$$\Pr\left(\mathbb{E}(X) - X > \frac{nf(G)}{cd}\right) \le \exp\left\{\frac{kf(G)}{2c^2d}n\right\}$$

Proof (regular case) - concentration inequality

Theorem (Chernoff bound)

Let X_1,\ldots,X_m a set of i.i.d random variables s.t. $Pr(X_i=1)=p$ and $Pr(X_i=0)=1-p$ and $X=\sum X_i$. Then $\Pr(\mathbb{E}(X)-X>\alpha)\leq \exp\left\{-\frac{\alpha^2}{2mp}\right\}$

$$\Pr(\mathbb{E}(X) - X > \alpha) \le \exp\left\{-\frac{\alpha^2}{2mp}\right\}$$

For each $v_i \in V \setminus F$ define the random variable:

$$X_i = \begin{cases} 1 & \text{if } v_i \in C \\ 0 & \text{otherwise} \end{cases}$$

Then, we set $\alpha = \frac{nf(G)}{cd}$. Using $mp = \frac{nf(G)}{kd}$:

$$\Pr\left(\mathbb{E}(X) - X > \frac{nf(G)}{cd}\right) \le \exp\left\{\frac{kf(G)}{2c^2d}n\right\}$$

Probability that S is too small: at most $\exp \left\{-\frac{kt(G)}{2c^2d}n\right\}$

Proof (regular case) - size of the code

$$Pr(S \text{ good}) - Pr(S \text{ too small}) > 0$$

Proof (regular case) - size of the code

$$Pr(S \text{ good}) - Pr(S \text{ too small}) > 0$$

There exist S such that $V \setminus S$ is an identifying code

$$|S| = X \ge \mathbb{E}(X) - \frac{nf(G)}{cd} = \frac{nf(G)}{kd} - \frac{nf(G)}{cd} \ge \dots \ge \frac{nf(G)^2}{85d}$$

Proof (regular case) - size of the code

$$Pr(S \text{ good}) - Pr(S \text{ too small}) > 0$$

There exist S such that $V \setminus S$ is an identifying code

$$|S| = X \ge \mathbb{E}(X) - \frac{nf(G)}{cd} = \frac{nf(G)}{kd} - \frac{nf(G)}{cd} \ge \dots \ge \frac{nf(G)^2}{85d}$$

$$|\mathcal{C}| = |V \setminus S| \le n - \frac{nf(G)^2}{85d}$$

Proposition

Let f(G) be the proportion of non forced vertices of G. Then

$$\frac{1}{d+1} \leq f(G) \leq 1$$

This result is tight for a graph of max. degree d = n - 1.

Lemma Bertrand, Hudry, 2005

Let G be an identifiable graph having no isolated vertices. Let x be a vertex of G. There exists a non forced vertex y in N[x].

Proposition

Let f(G) be the proportion of non forced vertices of G. Then

$$\frac{1}{d+1} \leq f(G) \leq 1$$

This result is tight for a graph of max. degree d = n - 1.

Lemma Bertrand, Hudry, 2005

Let G be an identifiable graph having no isolated vertices. Let x be a vertex of G. There exists a non forced vertex y in N[x].

Corollary

The set S of non-forced vertices forms a dominating set. Hence $|S| \geq \frac{n}{d+1}$.

clique number of G: max. size of a complete subgraph in G

Proposition

Let G be a graph of clique number at most k. There exists a function c such that:

$$\frac{1}{c(k)} \leq f(G) \leq 1$$

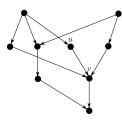
clique number of G: max. size of a complete subgraph in G

Proposition

Let G be a graph of clique number at most k. There exists a function c such that:

$$\frac{1}{c(k)} \leq f(G) \leq 1$$

- Define graph $\overrightarrow{H}(G)$
- Max. degree of $\overrightarrow{H}(G)$: 2k-3
- Longest directed chain of $\overrightarrow{H}(G)$: k-1
- Each component has a non-forced vertex
- $\Rightarrow c(k) \leq \sum_{i=0}^{k-2} (2k-3)^i$



$$u \to v \Leftrightarrow N[v] = N[u] \cup \{x\}$$

Corollaries

Theorem (F., Perarnau, 2011+)

There exists an integer d_0 such that for each identifiable graph G on n vertices having maximum degree $d \geq d_0$ and no isolated vertices,

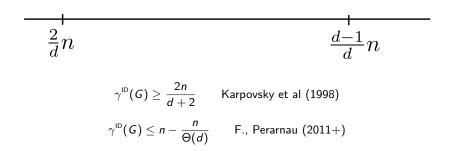
$$\gamma^{\text{ID}}(G) \leq n - \frac{n \cdot f(G)^2}{85d}$$

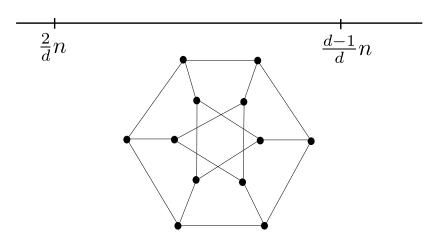
Corollary

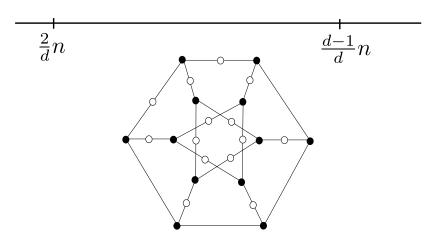
- In general, $f(G) \geq \frac{1}{d+1}$ and $\gamma^{\text{ID}}(G) \leq n \frac{n}{\Theta(d^3)}$
- If G is d-regular, f(G) = 1 and $\gamma^{\text{ID}}(G) \leq n \frac{n}{85d}$.
- If G has clique number bounded by k, $f(G) \ge \frac{1}{c(k)}$ and $\gamma^{\text{ID}}(G) \le n \frac{n}{\Theta(G)}$.

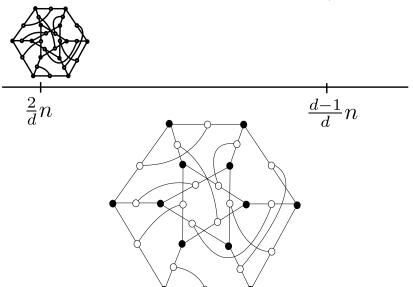
$$\gamma^{\mathsf{ID}}(\mathsf{G}) \geq rac{2n}{d+2}$$
 Karpovsky et al. (1998)

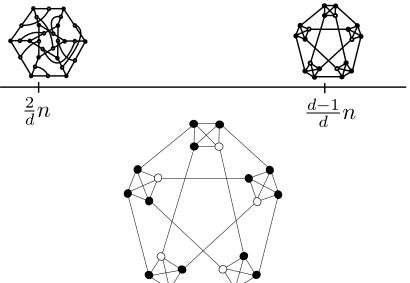
$$\gamma^{\text{ID}}(G) \leq n - \frac{n}{d} + O(1)$$
 Conjecture (2009)



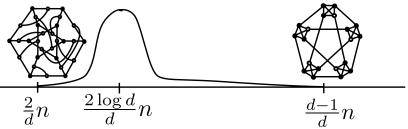








Let G be a d-regular graph.

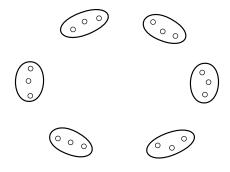


Theorem (F., Perarnau, 2011+)

Let G be a random d-regular graph. Then a.a.s.

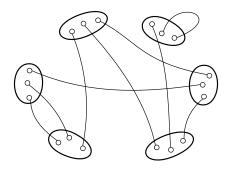
$$(1+o_d(1))rac{\log d}{d}n \leq \gamma^{ extsf{ID}}(G) \leq (1+o_d(1))rac{2\log d}{d}n$$

Probability space $\mathcal{G}_{n,d}^*$ of *d*-regular multigraphs on *n* vertices.



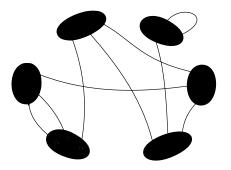
• Take *nd* vertices grouped in *n* buckets of size *d*

Probability space $\mathcal{G}_{n,d}^*$ of *d*-regular multigraphs on *n* vertices.



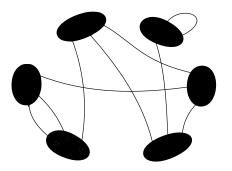
- Take nd vertices grouped in n buckets of size d
- Choose a random perfect matching of this graph

Probability space $\mathcal{G}_{n,d}^*$ of *d*-regular multigraphs on *n* vertices.



- Take nd vertices grouped in n buckets of size d
- Choose a random perfect matching of this graph
- Contract buckets

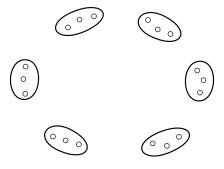
Probability space $\mathcal{G}_{n,d}^*$ of *d*-regular multigraphs on *n* vertices.



- Take nd vertices grouped in n buckets of size d
- Choose a random perfect matching of this graph
- Contract buckets

Problem: possible loops or multiple edges!

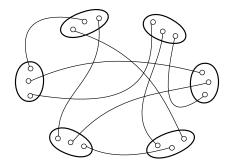
Probability space $\mathcal{G}_{n,d}^*$ of *d*-regular multigraphs on *n* vertices.



- Take nd vertices grouped in n buckets of size d
- Choose a random perfect matching of this graph
- Contract buckets

Problem : possible loops or multiple edges! Start over...

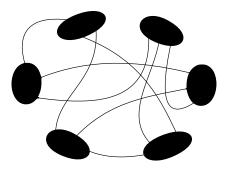
Probability space $\mathcal{G}_{n,d}^*$ of *d*-regular multigraphs on *n* vertices.



- Take nd vertices grouped in n buckets of size d
- Choose a random perfect matching of this graph
- Contract buckets

Problem : possible loops or multiple edges! Start over...

Probability space $\mathcal{G}_{n,d}^*$ of *d*-regular multigraphs on *n* vertices.



- Take nd vertices grouped in n buckets of size d
- Choose a random perfect matching of this graph
- Contract buckets

Problem : possible loops or multiple edges! Start over...

Probability space $\mathcal{G}_{n,d}^*$ of d-regular multigraphs on n vertices.

Let
$$G\in \mathcal{G}_{n,d}^*.$$
 Then $Pr(G \text{ is simple})\longrightarrow e^{\frac{1-d^2}{4}}>0$

Probability space $\mathcal{G}_{n,d}^*$ of *d*-regular multigraphs on *n* vertices.

Proposition (Bollobás, 1980 - Wormald, 1981)

Let
$$G \in \mathcal{G}_{n,d}^*$$
. Then $Pr(G \text{ is simple}) \longrightarrow e^{\frac{1-d^2}{4}} > 0$

Notation - Simple random regular graphs

Let $\mathcal{G}_{n,d}=\mathcal{G}_{n,d}^*$ | the graph is simple.

Probability space $\mathcal{G}_{n,d}^*$ of *d*-regular multigraphs on *n* vertices.

Proposition (Bollobás, 1980 - Wormald, 1981)

Let $G \in \mathcal{G}_{n,d}^*$. Then $Pr(G \text{ is simple}) \longrightarrow e^{\frac{1-d^2}{4}} > 0$

Notation - Simple random regular graphs

Let $\mathcal{G}_{n,d} = \mathcal{G}_{n,d}^*$ | the graph is simple.

 $\mathcal{G}_{n,d}^*$: non-uniform distribution. $\mathcal{G}_{n,d} = \mathcal{G}$: uniform distribution

Probability space $\mathcal{G}_{n,d}^*$ of *d*-regular multigraphs on *n* vertices.

Proposition (Bollobás, 1980 - Wormald, 1981)

Let $G \in \mathcal{G}_{n,d}^*$. Then $Pr(G \text{ is simple}) \longrightarrow e^{\frac{1-d^2}{4}} > 0$

Notation - Simple random regular graphs

Let $\mathcal{G}_{n,d} = \mathcal{G}_{n,d}^*$ | the graph is simple.

 $\mathcal{G}_{n,d}^*$: non-uniform distribution. $\mathcal{G}_{n,d} = \mathcal{G}$: uniform distribution

Any property which holds a.a.s. for $\mathcal{G}_{n,d}^*$, also does for $\mathcal{G}_{n,d}$.

Probability space $\mathcal{G}_{n,d}^*$ of *d*-regular multigraphs on *n* vertices.

Proposition (Bollobás, 1980 - Wormald, 1981)

Let $G \in \mathcal{G}_{n,d}^*$. Then $Pr(G \text{ is simple}) \longrightarrow e^{\frac{1-d^2}{4}} > 0$

Notation - Simple random regular graphs

Let $\mathcal{G}_{n,d} = \mathcal{G}_{n,d}^*$ | the graph is simple.

 $\mathcal{G}_{n,d}^*$: non-uniform distribution. $\mathcal{G}_{n,d} = \mathcal{G}$: uniform distribution

Any property which holds a.a.s. for $\mathcal{G}_{n,d}^*$, also does for $\mathcal{G}_{n,d}$.

Proposition (Bollobás, 1980 - Wormald, 1981)

 $\mathbb{E}(\text{number of }k\text{-cycles in }\mathcal{G}_{n,d}^*)\longrightarrow \frac{(d-1)^k}{2k}.$

Proposition (F., Perarnau, 2011+)

Let G be a d-regular graph with girth at least 5. Then

$$\gamma^{ extstyle extstyle$$

Proposition (F., Perarnau, 2011+)

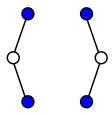
Let G be a d-regular graph with girth at least 5. Then

$$\gamma^{ ext{ID}}(G) \leq (1 + o_d(1)) rac{2 \log d}{d} n$$

Proposition (F., Perarnau, 2011+)

Let G be a d-regular graph with girth at least 5. Then

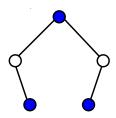
$$\gamma^{ ext{ID}}(G) \leq (1+o_d(1)) rac{2\log d}{d} n$$



Proposition (F., Perarnau, 2011+)

Let G be a d-regular graph with girth at least 5. Then

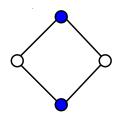
$$\gamma^{ ext{ID}}(G) \leq (1+o_d(1)) rac{2\log d}{d} n$$



Proposition (F., Perarnau, 2011+)

Let G be a d-regular graph with girth at least 5. Then

$$\gamma^{ extstyle extstyle$$

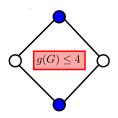


Proposition (F., Perarnau, 2011+)

Let G be a d-regular graph with girth at least 5. Then

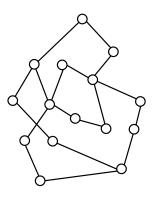
$$\gamma^{\text{ID}}(G) \leq (1 + o_d(1)) \frac{2 \log d}{d} n$$

2-dominating is "almost sufficient" to identify.

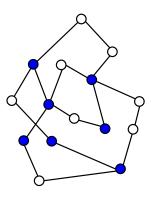


 $g(G) \ge 5$ makes identifying easier.

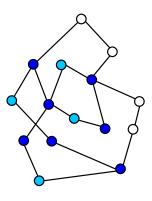
 S ⊆ V at random, each element with probability p.



 S ⊆ V at random, each element with probability p.



 S ⊆ V at random, each element with probability p.

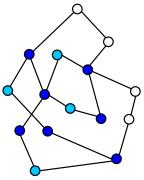


 S ⊆ V at random, each element with probability p.

•

$$X_{v} = \left\{ egin{array}{ll} 0 & \mbox{if } | extit{ extit{N}}[v] \cap extit{ extit{S}}| \geq 2 \ 1 & \mbox{otherwise} \end{array}
ight.$$

$$Pr(X_v = 1) = (1-p)^{d+1} + (d+1)p(1-p)^d$$



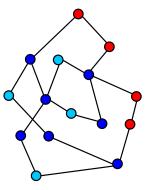
 S ⊆ V at random, each element with probability p.

0

$$X_v = \left\{ egin{array}{ll} 0 & \mbox{if } |{\it N}[v] \cap {\it S}| \geq 2 \\ 1 & \mbox{otherwise} \end{array}
ight.$$

$$Pr(X_v = 1) = (1-p)^{d+1} + (d+1)p(1-p)^d$$

• $X(S) = \sum X_{\nu}$ (# non 2-dominated).



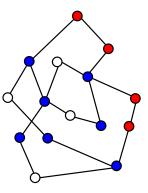
- S ⊆ V at random, each element with probability p.
- •

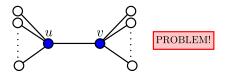
$$X_{v} = \left\{ egin{array}{ll} 0 & ext{if } |N[v] \cap S| \geq 2 \ 1 & ext{otherwise} \end{array}
ight.$$

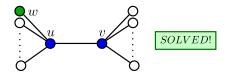
$$Pr(X_v = 1) = (1-p)^{d+1} + (d+1)p(1-p)^d$$

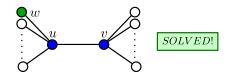
- $X(S) = \sum X_{\nu}$ (# non 2-dominated).
- $C = S \cup \{v : X_v = 1\}, p = \frac{\log d}{d}$

$$\mathbb{E}(|D|) = \mathbb{E}(|S|) + X(S) \le \frac{2 \log d}{d} n$$

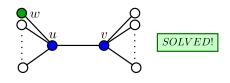








$$Pr(Y_{uv} = 1) = p^2(1-p)^{2d-2}$$
 SMALL



$$Y_{uv} = \left\{ \begin{array}{ll} 1 & \text{if } > \downarrow \\ 0 & \text{otherwise} \end{array} \right.$$

$$Pr(Y_{uv} = 1) = p^2(1-p)^{2d-2}$$
 SMALL

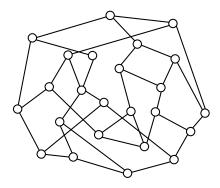
$$C = S \cup \{v : X_v = 1\} \cup \{w : w \in N(u), Y_{uv} = 1\}, \ p = \frac{\log d}{d}$$
$$\mathbb{E}(|C|) = (1 + o_d(1)) \frac{2 \log d}{d} n$$

Theorem (F., Perarnau, 2011+)

Let ${\it G}$ be a random ${\it d}$ -regular graph. Then a.a.s.

$$\gamma^{ extsf{ID}}(G) \leq (1+o_d(1)) rac{2\log d}{d} n$$

Let G be a d-regular graph of order n, taken u.a.r.: $G \in \mathcal{G}(n,d)$



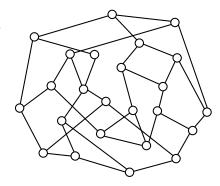
[**Theorem** (F., Perarnau, 2011+)]

Let G be a random d-regular graph. Then a.a.s.

$$\gamma^{\text{ID}}(G) \leq (1 + o_d(1)) \frac{2 \log d}{d} n$$

Let G be a d-regular graph of order n, taken u.a.r.: $G \in \mathcal{G}(n, d)$

$$\Pr(G \text{ identifiable}) \stackrel{n}{\longrightarrow} 1$$



Theorem (F., Perarnau, 2011+)

Let G be a random d-regular graph. Then a.a.s.

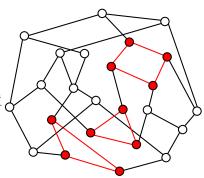
$$\gamma^{\text{ID}}(G) \leq (1+o_d(1)) \frac{2\log d}{d} n$$

Let G be a d-regular graph of order n, taken u.a.r.: $G \in \mathcal{G}(n, d)$

$$Pr(G \text{ identifiable}) \stackrel{n}{\longrightarrow} 1$$

$$\mathbb{E}(C_3's) = e^{\frac{(d-1)^3}{6}}$$
 $\mathbb{E}(C_4's) = e^{\frac{(d-1)^4}{8}}$

$$\mathbb{E}(C_4'\mathsf{s})=e^{\frac{(d-1)^4}{8}}$$



Theorem (F., Perarnau, 2011+)

Let G be a random d-regular graph. Then a.a.s.

$$\gamma^{\mathsf{ID}}(G) \leq (1 + o_d(1))^{\frac{2\log d}{d}} n$$

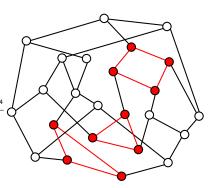
Let G be a d-regular graph of order n, taken u.a.r.: $G \in \mathcal{G}(n, d)$

$$Pr(G \text{ identifiable}) \stackrel{n}{\longrightarrow} 1$$

$$\mathbb{E}(C_3's) = e^{\frac{(d-1)^3}{6}}$$
 $\mathbb{E}(C_4's) = e^{\frac{(d-1)^4}{8}}$

$$\Pr(\#C_3 > \log \log n) \longrightarrow 0$$

$$\Pr(\#C_4 > \log\log n) \longrightarrow 0$$



${f Theorem}$ (F., Perarnau, 2011+)

Let G be a random d-regular graph. Then a.a.s.

$$\gamma^{\text{ID}}(G) \leq (1+o_d(1)) \frac{2\log d}{d} n$$

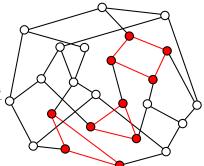
Let G be a d-regular graph of order n, taken u.a.r.: $G \in \mathcal{G}(n, d)$

$$\Pr(G \text{ identifiable}) \stackrel{n}{\longrightarrow} 1$$

$$\mathbb{E}(C_3's) = e^{\frac{(d-1)^3}{6}}$$
 $\mathbb{E}(C_4's) = e^{\frac{(d-1)^4}{8}}$

$$\Pr(\#C_3 > \log \log n) \longrightarrow 0$$

$$\Pr(\#C_4 > \log\log n) \longrightarrow 0$$



$$\gamma^{\mathsf{ID}}(G) \leq |\mathcal{C}| = (1 + o_d(1)) \frac{2 \log d}{d} n$$
 a.a.s.

Kiitos

