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Organisation

• 3 lectures this week and next week, 2 more lectures in about 6 weeks
• 4 more lectures by Laurent Beaudou
• contact : florent.foucaud@uca.fr

Contents :
• Background on algorithms and complexity
• Algorithms for specific graphs
• Parameterized complexity
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History

• First algorithms :
▶ Babylone, -2500 / ancient Egypt, -1500 / India, -800 : first algorithms (ex : division)
▶ Ancient Greece, -250 : prime numbers (Euclid, Ératosthenes)
▶ India, 450 : solving equations (Kuttaka)
▶ arab-persian world, 850 : cryptography, arithmetics

(Muhammad ibn Musa al Khwarizmi, most read mathematician in the middle ages)
▶ 1230 : → Alchoarismi → Algorismo : notion of an algorithm

Muhammad ibn Musa al Khwarizmi
(780-850)

al-Kitab al-mukhtasar fi hisab
al-jabr wal-muqabala (820)
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• First algorithms :
▶ Babylone, -2500 / ancient Egypt, -1500 / India, -800 : first algorithms (ex : division)
▶ Ancient Greece, -250 : prime numbers (Euclid, Ératosthenes)
▶ India, 450 : solving equations (Kuttaka)
▶ arab-persian world, 850 : cryptography, arithmetics

(Muhammad ibn Musa al Khwarizmi, most read mathematician in the middle ages)
▶ 1230 : → Alchoarismi → Algorismo : notion of an algorithm

• David Hilbert, 1928 : is there an algorithm to solve any mathematical
question? (Entscheidungsproblem, translated : “decision problem”)

David Hilbert (1862-1943)
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History

• First algorithms :
▶ Babylone, -2500 / ancient Egypt, -1500 / India, -800 : first algorithms (ex : division)
▶ Ancient Greece, -250 : prime numbers (Euclid, Ératosthenes)
▶ India, 450 : solving equations (Kuttaka)
▶ arab-persian world, 850 : cryptography, arithmetics

(Muhammad ibn Musa al Khwarizmi, most read mathematician in the middle ages)
▶ 1230 : → Alchoarismi → Algorismo : notion of an algorithm

• David Hilbert, 1928 : is there an algorithm to solve any mathematical
question? (Entscheidungsproblem, translated : “decision problem”)

• Kurt Gödel, 1931 : incompleteness theorem (mathematical logic)

Kurt Gödel (1906-1978)



3/26

History

• First algorithms :
▶ Babylone, -2500 / ancient Egypt, -1500 / India, -800 : first algorithms (ex : division)
▶ Ancient Greece, -250 : prime numbers (Euclid, Ératosthenes)
▶ India, 450 : solving equations (Kuttaka)
▶ arab-persian world, 850 : cryptography, arithmetics

(Muhammad ibn Musa al Khwarizmi, most read mathematician in the middle ages)
▶ 1230 : → Alchoarismi → Algorismo : notion of an algorithm

• David Hilbert, 1928 : is there an algorithm to solve any mathematical
question? (Entscheidungsproblem, translated : “decision problem”)

• Kurt Gödel, 1931 : incompleteness theorem (mathematical logic)

• Alonzo Church and Alan Turing, 1936 : solution of the Entscheidungsproblem :
NO!

(→ Halting problem, Turing machines)

Alan Turing (1912-1954) Alonzo Church (1903-1995)
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• First algorithms :
▶ Babylone, -2500 / ancient Egypt, -1500 / India, -800 : first algorithms (ex : division)
▶ Ancient Greece, -250 : prime numbers (Euclid, Ératosthenes)
▶ India, 450 : solving equations (Kuttaka)
▶ arab-persian world, 850 : cryptography, arithmetics

(Muhammad ibn Musa al Khwarizmi, most read mathematician in the middle ages)
▶ 1230 : → Alchoarismi → Algorismo : notion of an algorithm

• David Hilbert, 1928 : is there an algorithm to solve any mathematical
question? (Entscheidungsproblem, translated : “decision problem”)

• Kurt Gödel, 1931 : incompleteness theorem (mathematical logic)

• Alonzo Church and Alan Turing, 1936 : solution of the Entscheidungsproblem :
NO!

(→ Halting problem, Turing machines)

• Alan Cobham and Jack Edmonds, 1965 :
an algorithm is efficient if it is polynomial-time

Jack Edmonds (1934-) Alan B. Cobham (1927-2011)
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History

• First algorithms :
▶ Babylone, -2500 / ancient Egypt, -1500 / India, -800 : first algorithms (ex : division)
▶ Ancient Greece, -250 : prime numbers (Euclid, Ératosthenes)
▶ India, 450 : solving equations (Kuttaka)
▶ arab-persian world, 850 : cryptography, arithmetics

(Muhammad ibn Musa al Khwarizmi, most read mathematician in the middle ages)
▶ 1230 : → Alchoarismi → Algorismo : notion of an algorithm

• David Hilbert, 1928 : is there an algorithm to solve any mathematical
question? (Entscheidungsproblem, translated : “decision problem”)

• Kurt Gödel, 1931 : incompleteness theorem (mathematical logic)

• Alonzo Church and Alan Turing, 1936 : solution of the Entscheidungsproblem :
NO!

(→ Halting problem, Turing machines)

• Alan Cobham and Jack Edmonds, 1965 :
an algorithm is efficient if it is polynomial-time

• 1970s : complexity theory
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Complexity of an algorithmic problem
Algorithmic problem : input, output

Exemples :
• Multiply two numbers n1 et n2 encoded in binary
• Sort a table of n integers
• Find a shortest path from A to B in a graph on n vertices
• Cover a network with n vertices with k radio antennas

Complexity of an algorithm : quantity of ressources needed by the algorithms, as a
function of the size n of the input

Complexity of algorithmic problem P : lowest complexity of any algorithm solving P

What ressources ?
• Time complexity T(n) : lowest number of steps
• Space complexity S(n) : lowest memory size
• ...

Remark : S(n) ≤ T(n)

How to measure them ?
• Worst-case complexity
• Average complexity

→ according to some probability distribution of the input
• ...
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Input size

Beware of the encoding !

• Integer n → ⌈ log2(n)⌉ bits

• Integer in C language → 8 bytes (constant)

• Graph with n vertices, m edges → (n +m)× (size of integer) → adjacency list
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Input size
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Combinatorial explosion

Time complexity : T(n)

Best of the best problems : constant complexity T(n)→ 1,10 or logarithmic
complexity T(n)→ log2(n),3 log(n)...

Very good problems : linear complexity T(n)→ 10n,2n,1000n, n ...

Reasonable problems : polynomial complexity T(n)→ 4n2,10n3, n1000 ...
(in practice n3 or more, not so good)

Difficult problems : exponential complexity T(n)→ 2n, n!, nn, 22
n

...

→ Intuition : check all possible solutions
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Combinatorial explosion
Time complexity : T(n)

Best of the best problems : constant complexity T(n)→ 1,10 or logarithmic
complexity T(n)→ log2(n),3 log(n)...

Very good problems : linear complexity T(n)→ 10n,2n,1000n, n ...

Reasonable problems : polynomial complexity T(n)→ 4n2,10n3, n1000 ...
(in practice n3 or more, not so good)

Difficult problems : exponential complexity T(n)→ 2n, n!, nn, 22
n

...

→ Intuition : check all possible solutions

T(n) n = 10 n = 50 n = 100 n = 200 n = 300
n 10 50 100 200 300

100n 1000 5000 10000 20000 30000
n2 100 2500 10000 40000 90000
2n 1024 (16 digits) (31 digits) (60 digits) (91 digits)
n! 3628800 (64 digits) (157 digits) (374 digits) (614 digits)
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Combinatorial explosion
Time complexity : T(n)

Best of the best problems : constant complexity T(n)→ 1,10 or logarithmic
complexity T(n)→ log2(n),3 log(n)...

Very good problems : linear complexity T(n)→ 10n,2n,1000n, n ...

Reasonable problems : polynomial complexity T(n)→ 4n2,10n3, n1000 ...
(in practice n3 or more, not so good)

Difficult problems : exponential complexity T(n)→ 2n, n!, nn, 22
n

...

→ Intuition : check all possible solutions

n

log2(n)

n2
n

p
n

2n

n between 0 and 10
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Combinatorial explosion
Time complexity : T(n)

Best of the best problems : constant complexity T(n)→ 1,10 or logarithmic
complexity T(n)→ log2(n),3 log(n)...

Very good problems : linear complexity T(n)→ 10n,2n,1000n, n ...

Reasonable problems : polynomial complexity T(n)→ 4n2,10n3, n1000 ...
(in practice n3 or more, not so good)

Difficult problems : exponential complexity T(n)→ 2n, n!, nn, 22
n

...

→ Intuition : check all possible solutions

nlog2(n)

n2

n

2n

n between 0 and 1000
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Asymptotic notations

Most of the time, only need to distinguish types of complexity
→ logarithmic, linear, quadratic, exponential...

Exact complexity depends on the machine, the programming language, the
compiler...

Use asymptotic notations that omit constant factors and “pathological base cases”.
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Big Oh

Invented from 1894 to 1960 by Bachmann, Hardy, Knuth, Landau, Littlewood...

Definition (Big Oh)

Two functions ƒ , g : N→ N. ƒ (n) ∈ O(g(n)) if there exists a constant c > 0 ∈ R and a
rank n0 ∈ N s.t. for any integer  ≥ n0, we have ƒ () ≤ c · g().
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Examples :
• 21000 ∈ O(1)
• 100n ∈ O(n/1000)
• 1000n ∈ O(n2/10)
• n + n2 + log(n) ∈ O(n3)
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Big Oh
Invented from 1894 to 1960 by Bachmann, Hardy, Knuth, Landau, Littlewood...

Definition (Big Oh)

Two functions ƒ , g : N→ N. ƒ (n) ∈ O(g(n)) if there exists a constant c > 0 ∈ R and a
rank n0 ∈ N s.t. for any integer  ≥ n0, we have ƒ () ≤ c · g().

Examples :
• 21000 ∈ O(1)
• 100n ∈ O(n/1000)
• 1000n ∈ O(n2/10)
• n + n2 + log(n) ∈ O(n3)

Intuitively : ƒ does not grow faster than g (up to constant factors) when n is large

Abuse of notation : 10n = O(n2)
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Big Omega

“The reverse of Big Oh”

Definition (Big Omega)

Two functions ƒ , g : N→ N. ƒ (n) ∈ Ω(g(n)) if there exists a constant c > 0 ∈ R and a
rank n0 ∈ N s.t. for any integer  ≥ n0, we have ƒ () ≥ c · g().
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Definition (Big Omega)

Two functions ƒ , g : N→ N. ƒ (n) ∈ Ω(g(n)) if there exists a constant c > 0 ∈ R and a
rank n0 ∈ N s.t. for any integer  ≥ n0, we have ƒ () ≥ c · g().
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Big Omega
“The reverse of Big Oh”

Definition (Big Omega)

Two functions ƒ , g : N→ N. ƒ (n) ∈ Ω(g(n)) if there exists a constant c > 0 ∈ R and a
rank n0 ∈ N s.t. for any integer  ≥ n0, we have ƒ () ≥ c · g().

Examples :
• 21000 ∈ Ω(1)
• n2/1000 ∈ Ω(100000n2)
• n log(n)/10 ∈ Ω(100n)
• n3 − n2 ∈ Ω(n2)

Intuitively : ƒ does not grow slower than g (up to constant factors) when n is large

Remark : if ƒ (n) ∈ O(g(n)), then g(n) ∈ Ω(ƒ (n)) and conversely
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Big Theta

“Combination of Big Oh and Big Omega”

Definition (Big Theta)

Two functions ƒ , g : N→ N. ƒ (n) ∈ Θ(g(n)) if ƒ (n) ∈ O(g(n)) and ƒ (n) ∈ Ω(g(n)).
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Big Theta
“Combination of Big Oh and Big Omega”

Definition (Big Theta)

Two functions ƒ , g : N→ N. ƒ (n) ∈ Θ(g(n)) if ƒ (n) ∈ O(g(n)) and ƒ (n) ∈ Ω(g(n)).

Intuitively : ƒ and g grow equally fast (up to constant factors) when n is large
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Big Theta
“Combination of Big Oh and Big Omega”

Definition (Big Theta)

Two functions ƒ , g : N→ N. ƒ (n) ∈ Θ(g(n)) if ƒ (n) ∈ O(g(n)) and ƒ (n) ∈ Ω(g(n)).

Examples :
• 21000 ∈ Θ(1)
• 1000n ∈ Θ(n/1000)
• 10n2 + 36n ∈ Θ(n2)
• n3 − n2 ∈ Θ(n3)

Intuitively : ƒ and g grow equally fast (up to constant factors) when n is large
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Complexity classes

• logarithmic : Θ(log(n))

• linear : Θ(n)

• quadratic : Θ(n2)

• cubic : Θ(n3)

• polynomial : Θ(nc) pour c > 1

• single-exponential : Θ(cn) for c > 1

• double-exponential : Θ(c
cn2
1 ) for c1, c2 > 1

• ...
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Typical complexities : concrete examples

• Binary search in an ordered set of size n : log2(n)
(logarithmic)

• Go through an unordered set of size n : n
(linear)

• Sort an integer table, explore a graph, find a shortest path, etc. : nc

(polynomial)

• k nested loops each of length n : nk

• Go through all subsets of a set of size n : 2n

(single-exponential)

• Go through all partitions of a set of size n : nn

(= 2n log2(n), super-exponential)

• Go through all permutations of a set of size n : n!
≈ nn by Stirling’s formula n! ∼

p
2πn
� n
e

�n

• Go through all subsets of subsets : 22
n

(double-exponential)
• ...
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Decision problems

Goal : classify algorithmic problems according to their complexities.

Simplest problems :
→ Decision problem : input, question with YES/NO answer

• Is this list sorted?
• Is this graph 3-colorable ?
• Does this program always stop?
• ...

3-Coloring
Input: A graph G
Question: Is G 3-colorable ?
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Barber paradox

In a village, a barber shaves exactly all men that
do not shave themselves..

Question : Who shaves the barber ?

PARADOX!

Bertrand Russell (1872-1970)
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To stop or not to stop? That is the question
Halting problem

Goven a computer code and an input parameter for it, decide in finite time :

1. if it will stop one day or 2. if it will loop forever ?

Proof : Suppose by contradiction there is such a finite-time algorithm :

halt(code, parameter)

that returns • YES if the given code and parameter stop one day, and
• NO if it loops forever.

Define the following algorithm :

def diag(x):
• if halt(x,x) returns YES then:
▶ loop forever

• else:
▶ return YES

What is returned by diag(diag)?

PARADOX!
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Undecidable problems

Undecidable problems :

• Halting problem (Alan Turing, 1936)

• Word correspondence : two sets of words 1, . . . , n and b1, . . . , bn
→ Can we re-arrange them to create two identical words ? (Emil Post, 1946)

• Integer solutions of Diophantine equations
of the form 22 + 3y3 − 2z = 0 (Hilbert’s 10th problem, 1900 - Youri Matyasevitch, 1970)

• Determine the winner of the card game “Magic : The gathering”
(Churchill-Biderman-Herrick, 2019)

Alan Turing (1912-1954) Emil L. Post (1897-1954) Youri Matyasevitch (1947-) David Hilbert (1862-1943)
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Some complexity classes

Class P (“polynomial”) : “reasonable problems” (Cobham-Edmonds, 1965)

Jack Edmonds (1934-) Alan B. Cobham (1927-2011)

Higher up : probably hard problems
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P and NP complexity classes

Definition (Class P)

Decision problems that can be solved in polynomial time.

Definition (Class NP = “non-deterministic polynomial”)

Decision problems for which there exists a certificate (function of input) s.t., for an
input  and its certificate C(), one can check in time polynomial in , whether  is a
YES-input or not.

Examples :
• All problems in P
• Graph coloring
• ...
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P versus NP

Do checking a solution and finding a solution inherently have the same complexity ?

→ Intuitively, no...

Question (P versus NP - a question worth a million US$)

Is it true that P = NP ?

7 millenium problems woth 1 million US$ Grigori Perelman (1966-)
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Some problems are easier than others

Minimum « easier » than Sorting

• know how to sort a list ⇝ know how to find the minimum
• can build an algorithm for Minimum using an algorithm for Sorting
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(Polynomial) reduction

P1

• Input : E1
• Question : Does E1 have property
P1 ?

P2

• Input : E2
• Question : Does E2 have property
P2 ?

Transform E1 into ƒ (E1) = E2 (in polynomial time)
such that

E1 has property P1 ⇐⇒ E2 has property P2

P1 reduces to P2 (in polynomial time)
• Algorithm for P2 : A2 (polynomial)

• Algo for P1 : E1 ⇝ E2
A2
⇝ YES or NO (in polynomial time)

P1 is « easier » than P2
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NP-complete problems

Definition (NP-hard and NP-complete problems)

Decision problem P1 is NP-hard if all problems in NP admit a reduction to P1.
Decision problem P1 is NP-complete if it belongs to NP and is NP-hard.

Intuitively : An NP-hard problem is “at least as hard” as all problems of NP (up to
polynomial factors).
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The first NP-complete problem
SAT
Input: A boolean formula F in CNF
Question: is F satisfiable ?

Theorem (Cook-Levin, 1971)

SAT is NP-complete.

Stephen Cook (1939-) Leonid Levin (1948-) Richard C. Karp (1935-)

3-SAT
Input: A boolean formula F in 3-CNF
Question: Is F satisfiable?

Theorem (Karp, 1972)

3-SAT is NP-complete.

Consequence

If one finds a polynomial-time algorithm for SAT or 3-SAT, there is one for each
problem of NP ! (and we win 1 million US$)
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How to show a problem is NP-hard?

Recall : P1 is NP-hard = all problems in NP admit a polynomial reduction to P1

Proposition

If P1 is NP-hard and P1 has a polynomial reduction to P2, then P2 is also NP-hard
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A reduction from 3-SAT to 3-Coloring
3-SAT
Input: A boolean formula F in 3-CNF
Question: Is F satisfiable?

Example : (1 ∨ 2 ∨ 3)∧ (1 ∨ 2)∧ (1 ∨ 2 ∨ 3)

3-Coloring
Input: A graph G
Question: Is G 3-colorable ?

Theorem (Garey, Johnson, Stockmeyer, 1976)

3-Coloring is NP-complete.
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Question: Is F satisfiable?

Example : (1 ∨ 2 ∨ 3)∧ (1 ∨ 2)∧ (1 ∨ 2 ∨ 3)

3-Coloring
Input: A graph G
Question: Is G 3-colorable ?

Theorem (Garey, Johnson, Stockmeyer, 1976)

3-Coloring is NP-complete.

1) 3-Coloring Is in NP : for a 3-coloring of G (= the certificate), one can check in
polynomial time if it is valid (for each edge, check that the colors are distinct).
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A reduction from 3-SAT to 3-Coloring
3-SAT
Input: A boolean formula F in 3-CNF
Question: Is F satisfiable?

Example : (1 ∨ 2 ∨ 3)∧ (1 ∨ 2)∧ (1 ∨ 2 ∨ 3)

3-Coloring
Input: A graph G
Question: Is G 3-colorable ?

Theorem (Garey, Johnson, Stockmeyer, 1976)

3-Coloring is NP-complete.

2) 3-Coloring is NP-hard : build a polynomial reduction from 3-SAT to 3-Coloring :
for every 3-CNF formula F, create a graph G(F) such that F is satisfiaable⇔ G(F) is
3-colorable.
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A reduction from 3-SAT to 3-Coloring
3-SAT
Input: A boolean formula F in 3-CNF
Question: Is F satisfiable?

Example : (1 ∨ 2 ∨ 3)∧ (1 ∨ 2)∧ (1 ∨ 2 ∨ 3)

3-Coloring
Input: A graph G
Question: Is G 3-colorable ?

Theorem (Garey, Johnson, Stockmeyer, 1976)

3-Coloring is NP-complete.

2.3) Put everything together !
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3-Coloring
Input: A graph G
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Theorem (Garey, Johnson, Stockmeyer, 1976)

3-Coloring is NP-complete.

If G(F) is 3-colorable,
then F is satisfiable
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Super Mario

Super Mario
Input: A Super Mario level.
Question: Can Mario go from start to finish?

Theorem (Aloupis, Demaine, Guo, 2012)

Super Mario is NP-hard.

Reduction from 3-SAT :
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