Graph algorithms

Master 2 ICS

Background on algorithms and complexity classes

Florent Foucaud

Organisation

- 3 lectures this week and next week, 2 more lectures in about 6 weeks
- 4 more lectures by Laurent Beaudou
- contact : florent.foucaud@uca.fr

Contents :

- Background on algorithms and complexity
- Algorithms for specific graphs
- Parameterized complexity

History

- First algorithms :
- Babylone, -2500 / ancient Egypt, -1500 / India, -800 : first algorithms (ex : division)
- Ancient Greece, -250 : prime numbers (Euclid, Ératosthenes)
- India, 450 : solving equations (Kuttaka)
- arab-persian world, 850 : cryptography, arithmetics
(Muhammad ibn Musa al Khwarizmi, most read mathematician in the middle ages)
- 1230 : \rightarrow Alchoarismi \rightarrow Algorismo : notion of an algorithm

History

- First algorithms :
- Babylone, -2500 / ancient Egypt, -1500 / India, -800 : first algorithms (ex : division)
- Ancient Greece, -250 : prime numbers (Euclid, Ératosthenes)
- India, 450 : solving equations (Kuttaka)
- arab-persian world, 850 : cryptography, arithmetics
(Muhammad ibn Musa al Khwarizmi, most read mathematician in the middle ages)
- 1230 : \rightarrow Alchoarismi \rightarrow Algorismo : notion of an algorithm
- David Hilbert, 1928 : is there an algorithm to solve any mathematical question?
(Entscheidungsproblem, translated : "decision problem")

David Hilbert (1862-1943)

History

- First algorithms :
- Babylone, -2500 / ancient Egypt, -1500 / India, -800 : first algorithms (ex : division)
- Ancient Greece, -250 : prime numbers (Euclid, Ératosthenes)
- India, 450 : solving equations (Kuttaka)
- arab-persian world, 850 : cryptography, arithmetics
(Muhammad ibn Musa al Khwarizmi, most read mathematician in the middle ages)
- 1230: \rightarrow Alchoarismi \rightarrow Algorismo : notion of an algorithm
- David Hilbert, 1928 : is there an algorithm to solve any mathematical question? (Entscheidungsproblem, translated : "decision problem")
- Kurt Gödel, 1931 : incompleteness theorem (mathematical logic)

History

- First algorithms :
- Babylone, -2500 / ancient Egypt, -1500 / India, -800 : first algorithms (ex : division)
- Ancient Greece, -250 : prime numbers (Euclid, Ératosthenes)
- India, 450 : solving equations (Kuttaka)
- arab-persian world, 850 : cryptography, arithmetics
(Muhammad ibn Musa al Khwarizmi, most read mathematician in the middle ages)
- 1230 : \rightarrow Alchoarismi \rightarrow Algorismo : notion of an algorithm
- David Hilbert, 1928 : is there an algorithm to solve any mathematical question? (Entscheidungsproblem, translated : "decision problem")
- Kurt Gödel, 1931 : incompleteness theorem (mathematical logic)
- Alonzo Church and Alan Turing, 1936 : solution of the Entscheidungsproblem : NO!
$(\rightarrow$ Halting problem, Turing machines)

Alan Turing (1912-1954)

Alonzo Church (1903-1995)

History

- First algorithms :
- Babylone, -2500 / ancient Egypt, -1500 / India, -800 : first algorithms (ex : division)
- Ancient Greece, -250 : prime numbers (Euclid, Ératosthenes)
- India, 450 : solving equations (Kuttaka)
- arab-persian world, 850 : cryptography, arithmetics
(Muhammad ibn Musa al Khwarizmi, most read mathematician in the middle ages)
- 1230: \rightarrow Alchoarismi \rightarrow Algorismo : notion of an algorithm
- David Hilbert, 1928 : is there an algorithm to solve any mathematical question? (Entscheidungsproblem, translated : "decision problem")
- Kurt Gödel, 1931 : incompleteness theorem (mathematical logic)
- Alonzo Church and Alan Turing, 1936 : solution of the Entscheidungsproblem : NO!
$(\rightarrow$ Halting problem, Turing machines)
- Alan Cobham and Jack Edmonds, 1965:
an algorithm is efficient if it is polynomial-time

History

- First algorithms :
- Babylone, -2500 / ancient Egypt, -1500 / India, -800 : first algorithms (ex : division)
- Ancient Greece, -250 : prime numbers (Euclid, Ératosthenes)
- India, 450 : solving equations (Kuttaka)
- arab-persian world, 850 : cryptography, arithmetics
(Muhammad ibn Musa al Khwarizmi, most read mathematician in the middle ages)
\rightarrow 1230 $: \rightarrow$ Alchoarismi \rightarrow Algorismo : notion of an algorithm
- David Hilbert, 1928 : is there an algorithm to solve any mathematical question? (Entscheidungsproblem, translated : "decision problem")
- Kurt Gödel, 1931 : incompleteness theorem (mathematical logic)
- Alonzo Church and Alan Turing, 1936 : solution of the Entscheidungsproblem : NO!
(\rightarrow Halting problem, Turing machines)
- Alan Cobham and Jack Edmonds, 1965:
an algorithm is efficient if it is polynomial-time
- 1970s : complexity theory

Complexity of an algorithmic problem

Algorithmic problem : input, output

Exemples:

- Multiply two numbers n_{1} et n_{2} encoded in binary
- Sort a table of n integers
- Find a shortest path from A to B in a graph on n vertices
- Cover a network with n vertices with k radio antennas

Complexity of an algorithm : quantity of ressources needed by the algorithms, as a function of the size n of the input

Complexity of an algorithmic problem

Algorithmic problem : input, output

Exemples:

- Multiply two numbers n_{1} et n_{2} encoded in binary
- Sort a table of n integers
- Find a shortest path from A to B in a graph on n vertices
- Cover a network with n vertices with k radio antennas

Complexity of an algorithm : quantity of ressources needed by the algorithms, as a function of the size n of the input

Complexity of algorithmic problem P : lowest complexity of any algorithm solving P

Complexity of an algorithmic problem

Algorithmic problem : input, output

Exemples:

- Multiply two numbers n_{1} et n_{2} encoded in binary
- Sort a table of n integers
- Find a shortest path from A to B in a graph on n vertices
- Cover a network with n vertices with k radio antennas

Complexity of an algorithm : quantity of ressources needed by the algorithms, as a function of the size n of the input

Complexity of algorithmic problem P : lowest complexity of any algorithm solving P
What ressources?

- Time complexity $T(n)$: lowest number of steps
- Space complexity $S(n)$: lowest memory size
- ...

Complexity of an algorithmic problem

Algorithmic problem : input, output
Exemples:

- Multiply two numbers n_{1} et n_{2} encoded in binary
- Sort a table of n integers
- Find a shortest path from A to B in a graph on n vertices
- Cover a network with n vertices with k radio antennas

Complexity of an algorithm : quantity of ressources needed by the algorithms, as a function of the size n of the input

Complexity of algorithmic problem P : lowest complexity of any algorithm solving P
What ressources?

- Time complexity $T(n)$: lowest number of steps
- Space complexity $S(n)$: lowest memory size

Remark: $S(n) \leq T(n)$

Complexity of an algorithmic problem

Algorithmic problem : input, output

Exemples:

- Multiply two numbers n_{1} et n_{2} encoded in binary
- Sort a table of n integers
- Find a shortest path from A to B in a graph on n vertices
- Cover a network with n vertices with k radio antennas

Complexity of an algorithm : quantity of ressources needed by the algorithms, as a function of the size n of the input

Complexity of algorithmic problem P : lowest complexity of any algorithm solving P
What ressources?

- Time complexity $T(n)$: lowest number of steps
- Space complexity $S(n)$: lowest memory size

Remark: $S(n) \leq T(n)$
How to measure them?

- Worst-case complexity
- Average complexity
\rightarrow according to some probability distribution of the input

Input size

Beware of the encoding!

Input size

Beware of the encoding!

- Integer $n \rightarrow\left\lceil\log _{2}(n)\right\rceil$ bits

Input size

> Beware of the encoding!

- Integer $n \rightarrow\left\lceil\log _{2}(n)\right\rceil$ bits
- Integer in C language $\rightarrow 8$ bytes (constant)

Input size

> Beware of the encoding!

- Integer $n \rightarrow\left\lceil\log _{2}(n)\right\rceil$ bits
- Integer in C language $\rightarrow 8$ bytes (constant)
- Graph with n vertices, m edges $\rightarrow(n+m) \times$ (size of integer) \rightarrow adjacency list

Combinatorial explosion

Time complexity : $T(n)$
Best of the best problems : constant complexity $T(n) \rightarrow 1,10$ or logarithmic complexity $T(n) \rightarrow \log _{2}(n), 3 \log (n) \ldots$

Very good problems : linear complexity $T(n) \rightarrow 10 n, 2 n, 1000 n, n \ldots$
Reasonable problems: polynomial complexity $T(n) \rightarrow 4 n^{2}, 10 n^{3}, n^{1000} \ldots$
(in practice n^{3} or more, not so good)
Difficult problems : exponential complexity $T(n) \rightarrow 2^{n}, n!, n^{n}, 2^{2^{n}} \ldots$
\rightarrow Intuition: check all possible solutions

Combinatorial explosion

Time complexity : $T(n)$
Best of the best problems : constant complexity $T(n) \rightarrow 1,10$ or logarithmic complexity $T(n) \rightarrow \log _{2}(n), 3 \log (n) \ldots$

Very good problems : linear complexity $T(n) \rightarrow 10 n, 2 n, 1000 n, n \ldots$
Reasonable problems : polynomial complexity $T(n) \rightarrow 4 n^{2}, 10 n^{3}, n^{1000}$ (in practice n^{3} or more, not so good)

Difficult problems: exponential complexity $T(n) \rightarrow 2^{n}, n!, n^{n}, 2^{2^{n}} \ldots$
\rightarrow Intuition : check all possible solutions

$T(n)$	$n=10$	$n=50$	$n=100$	$n=200$	$n=300$
n	10	50	100	200	300
$100 n$	1000	5000	10000	20000	30000
n^{2}	100	2500	10000	40000	90000
2^{n}	1024	(16 digits)	(31 digits)	(60 digits)	(91 digits)
$n!$	3628800	(64 digits)	(157 digits)	(374 digits)	(614 digits)

Combinatorial explosion

Time complexity : $T(n)$
Best of the best problems : constant complexity $T(n) \rightarrow 1,10$ or logarithmic complexity $T(n) \rightarrow \log _{2}(n), 3 \log (n) \ldots$

Very good problems : linear complexity $T(n) \rightarrow 10 n, 2 n, 1000 n, n \ldots$
Reasonable problems : polynomial complexity $T(n) \rightarrow 4 n^{2}, 10 n^{3}, n^{1000}$.. (in practice n^{3} or more, not so good)

Difficult problems : exponential complexity $T(n) \rightarrow 2^{n}, n!, n^{n}, 2^{2^{n}} \ldots$
\rightarrow Intuition : check all possible solutions

Combinatorial explosion

Time complexity : $T(n)$
Best of the best problems : constant complexity $T(n) \rightarrow 1,10$ or logarithmic complexity $T(n) \rightarrow \log _{2}(n), 3 \log (n) \ldots$

Very good problems : linear complexity $T(n) \rightarrow 10 n, 2 n, 1000 n, n \ldots$
Reasonable problems : polynomial complexity $T(n) \rightarrow 4 n^{2}, 10 n^{3}, n^{1000}$ (in practice n^{3} or more, not so good)

Difficult problems : exponential complexity $T(n) \rightarrow 2^{n}, n!, n^{n}, 2^{2^{n}} \ldots$
\rightarrow Intuition : check all possible solutions

n between 0 and 100

Combinatorial explosion

Time complexity : $T(n)$
Best of the best problems : constant complexity $T(n) \rightarrow 1,10$ or logarithmic complexity $T(n) \rightarrow \log _{2}(n), 3 \log (n) \ldots$

Very good problems : linear complexity $T(n) \rightarrow 10 n, 2 n, 1000 n, n \ldots$
Reasonable problems : polynomial complexity $T(n) \rightarrow 4 n^{2}, 10 n^{3}, n^{1000}$.. (in practice n^{3} or more, not so good)

Difficult problems: exponential complexity $T(n) \rightarrow 2^{n}, n!, n^{n}, 2^{2^{n}} \ldots$
\rightarrow Intuition : check all possible solutions

n between 0 and 1000

Asymptotic notations

Most of the time, only need to distinguish types of complexity \rightarrow logarithmic, linear, quadratic, exponential...

Asymptotic notations

Most of the time, only need to distinguish types of complexity \rightarrow logarithmic, linear, quadratic, exponential...

Exact complexity depends on the machine, the programming language, the compiler...

Asymptotic notations

Most of the time, only need to distinguish types of complexity \rightarrow logarithmic, linear, quadratic, exponential...

Exact complexity depends on the machine, the programming language, the compiler...

Use asymptotic notations that omit constant factors and "pathological base cases".

Big Oh

Invented from 1894 to 1960 by Bachmann, Hardy, Knuth, Landau, Littlewood...

Definition (Big Oh)

Two functions $f, g: \mathbb{N} \rightarrow \mathbb{N} . f(n) \in O(g(n))$ if there exists a constant $c>0 \in \mathbb{R}$ and a rank $n_{0} \in \mathbb{N}$ s.t. for any integer $i \geq n_{0}$, we have $f(i) \leq c \cdot g(i)$.

Big Oh

Invented from 1894 to 1960 by Bachmann, Hardy, Knuth, Landau, Littlewood...

Definition (Big Oh)

Two functions $f, g: \mathbb{N} \rightarrow \mathbb{N} . f(n) \in O(g(n))$ if there exists a constant $c>0 \in \mathbb{R}$ and a rank $n_{0} \in \mathbb{N}$ s.t. for any integer $i \geq n_{0}$, we have $f(i) \leq c \cdot g(i)$.

Big Oh

Invented from 1894 to 1960 by Bachmann, Hardy, Knuth, Landau, Littlewood...

Definition (Big Oh)

Two functions $f, g: \mathbb{N} \rightarrow \mathbb{N} . f(n) \in O(g(n))$ if there exists a constant $c>0 \in \mathbb{R}$ and a rank $n_{0} \in \mathbb{N}$ s.t. for any integer $i \geq n_{0}$, we have $f(i) \leq c \cdot g(i)$.

Intuitively : f does not grow faster than g (up to constant factors) when n is large

Big Oh

Invented from 1894 to 1960 by Bachmann, Hardy, Knuth, Landau, Littlewood...

Definition (Big Oh)

Two functions $f, g: \mathbb{N} \rightarrow \mathbb{N} . f(n) \in O(g(n))$ if there exists a constant $c>0 \in \mathbb{R}$ and a rank $n_{0} \in \mathbb{N}$ s.t. for any integer $i \geq n_{0}$, we have $f(i) \leq c \cdot g(i)$.

Intuitively : f does not grow faster than g (up to constant factors) when n is large

Big Oh

Invented from 1894 to 1960 by Bachmann, Hardy, Knuth, Landau, Littlewood...

Definition (Big Oh)

Two functions $f, g: \mathbb{N} \rightarrow \mathbb{N} . f(n) \in O(g(n))$ if there exists a constant $c>0 \in \mathbb{R}$ and a rank $n_{0} \in \mathbb{N}$ s.t. for any integer $i \geq n_{0}$, we have $f(i) \leq c \cdot g(i)$.

Intuitively : f does not grow faster than g (up to constant factors) when n is large Abuse of notation : $10 n=O\left(n^{2}\right)$

Big Omega

"The reverse of Big Oh"

Definition (Big Omega)

Two functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$. $f(n) \in \Omega(g(n)$) if there exists a constant $c>0 \in \mathbb{R}$ and a rank $n_{0} \in \mathbb{N}$ s.t. for any integer $i \geq n_{0}$, we have $f(i) \geq c \cdot g(i)$.

Big Omega

"The reverse of Big Oh"

Definition (Big Omega)

Two functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$. $f(n) \in \Omega(g(n))$ if there exists a constant $c>0 \in \mathbb{R}$ and a rank $n_{0} \in \mathbb{N}$ s.t. for any integer $i \geq n_{0}$, we have $f(i) \geq c \cdot g(i)$.

$\mathrm{f}(\mathrm{n})=$ Omega $(\mathrm{g}(\mathrm{n})$)

Big Omega

"The reverse of Big Oh"

Definition (Big Omega)

Two functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$. $f(n) \in \Omega(g(n))$ if there exists a constant $c>0 \in \mathbb{R}$ and a rank $n_{0} \in \mathbb{N}$ s.t. for any integer $i \geq n_{0}$, we have $f(i) \geq c \cdot g(i)$.

Intuitively: f does not grow slower than g (up to constant factors) when n is large

Big Omega

"The reverse of Big Oh"

Definition (Big Omega)

Two functions $f, g: \mathbb{N} \rightarrow \mathbb{N} . f(n) \in \Omega(g(n))$ if there exists a constant $c>0 \in \mathbb{R}$ and a rank $n_{0} \in \mathbb{N}$ s.t. for any integer $i \geq n_{0}$, we have $f(i) \geq c \cdot g(i)$.

> Examples :
> - $2^{1000} \in \Omega(1)$
> - $n^{2} / 1000 \in \Omega\left(100000 n^{2}\right)$
> - $n \log (n) / 10 \in \Omega(100 n)$
> - $n^{3}-n^{2} \in \Omega\left(n^{2}\right)$

Intuitively: f does not grow slower than g (up to constant factors) when n is large

Big Omega

"The reverse of Big Oh"

Definition (Big Omega)

Two functions $f, g: \mathbb{N} \rightarrow \mathbb{N} . f(n) \in \Omega(g(n))$ if there exists a constant $c>0 \in \mathbb{R}$ and a rank $n_{0} \in \mathbb{N}$ s.t. for any integer $i \geq n_{0}$, we have $f(i) \geq c \cdot g(i)$.

> Examples:
> - $2^{1000} \in \Omega(1)$
> - $n^{2} / 1000 \in \Omega\left(100000 n^{2}\right)$
> - $n \log (n) / 10 \in \Omega(100 n)$
> - $n^{3}-n^{2} \in \Omega\left(n^{2}\right)$

Intuitively: f does not grow slower than g (up to constant factors) when n is large Remark : if $f(n) \in O(g(n))$, then $g(n) \in \Omega(f(n))$ and conversely

Big Theta

"Combination of Big Oh and Big Omega"

Definition (Big Theta)

Two functions $f, g: \mathbb{N} \rightarrow \mathbb{N} . f(n) \in \Theta(g(n))$ if $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$.

Big Theta

"Combination of Big Oh and Big Omega"

Definition (Big Theta)

Two functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$. $f(n) \in \Theta(g(n))$ if $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$.

Big Theta

"Combination of Big Oh and Big Omega"

Definition (Big Theta)

Two functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$. $f(n) \in \Theta(g(n))$ if $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$.

Intuitively : f and g grow equally fast (up to constant factors) when n is large

Big Theta

"Combination of Big Oh and Big Omega"

Definition (Big Theta)

Two functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$. $f(n) \in \Theta(g(n))$ if $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$.

$$
\begin{aligned}
& \text { Examples: } \\
& \text { - } 2^{1000} \in \Theta(1) \\
& \text { - } 1000 n \in \Theta(n / 1000) \\
& \text { - } 10 n^{2}+36 n \in \Theta\left(n^{2}\right) \\
& \text { - } n^{3}-n^{2} \in \Theta\left(n^{3}\right)
\end{aligned}
$$

Intuitively: f and g grow equally fast (up to constant factors) when n is large

Complexity classes

- logarithmic : $\Theta(\log (n))$
- linear: $\Theta(n)$
- quadratic: $\Theta\left(n^{2}\right)$
- cubic: $\Theta\left(n^{3}\right)$
- polynomial : $\Theta\left(n^{c}\right)$ pour $c>1$
- single-exponential : $\Theta\left(c^{n}\right)$ for $c>1$
- double-exponential : $\Theta\left(c_{1}^{c_{2}^{n}}\right)$ for $c_{1}, c_{2}>1$

Typical complexities: concrete examples

- Binary search in an ordered set of size $n: \log _{2}(n)$
(logarithmic)

Typical complexities: concrete examples

- Binary search in an ordered set of size $n: \log _{2}(n)$
(logarithmic)
- Go through an unordered set of size $n: n$
(linear)

Typical complexities: concrete examples

- Binary search in an ordered set of size $n: \log _{2}(n)$
(logarithmic)
- Go through an unordered set of size $n: n$
- Sort an integer table, explore a graph, find a shortest path, etc. : n^{c}
(polynomial)

Typical complexities: concrete examples

- Binary search in an ordered set of size $n: \log _{2}(n)$
(logarithmic)
- Go through an unordered set of size $n: n$
- Sort an integer table, explore a graph, find a shortest path, etc. : n^{c}
(polynomial)
- k nested loops each of length $n: n^{k}$

Typical complexities : concrete examples

- Binary search in an ordered set of size $n: \log _{2}(n)$
(logarithmic)
- Go through an unordered set of size $n: n$
- Sort an integer table, explore a graph, find a shortest path, etc. : n^{c}
(polynomial)
- k nested loops each of length $n: n^{k}$
- Go through all subsets of a set of size $n: 2^{n}$

Typical complexities : concrete examples

- Binary search in an ordered set of size $n: \log _{2}(n)$
(logarithmic)
- Go through an unordered set of size $n: n$
- Sort an integer table, explore a graph, find a shortest path, etc. : n^{c}
(polynomial)
- k nested loops each of length $n: n^{k}$
- Go through all subsets of a set of size $n: 2^{n}$
- Go through all partitions of a set of size $n: n^{n}$

$$
\left(=2^{n \log _{2}(n)}\right. \text {, super-exponential) }
$$

Typical complexities : concrete examples

- Binary search in an ordered set of size $n: \log _{2}(n)$
(logarithmic)
- Go through an unordered set of size $n: n$
- Sort an integer table, explore a graph, find a shortest path, etc. : n^{c}
(polynomial)
- k nested loops each of length $n: n^{k}$
- Go through all subsets of a set of size $n: 2^{n}$
- Go through all partitions of a set of size $n: n^{n}$

$$
\left(=2^{n \log _{2}(n)}\right. \text {, super-exponential) }
$$

- Go through all permutations of a set of size $n: n$!
$\approx n^{n}$ by Stirling's formula $n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$

Typical complexities : concrete examples

- Binary search in an ordered set of size $n: \log _{2}(n)$
(logarithmic)
- Go through an unordered set of size $n: n$
- Sort an integer table, explore a graph, find a shortest path, etc. : n^{c}
(polynomial)
- k nested loops each of length $n: n^{k}$
- Go through all subsets of a set of size $n: 2^{n}$
- Go through all partitions of a set of size $n: n^{n}$

$$
\left(=2^{n \log _{2}(n)}\right. \text {, super-exponential) }
$$

- Go through all permutations of a set of size $n: n$!
$\approx n^{n}$ by Stirling's formula $n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$
- Go through all subsets of subsets : $2^{2^{n}}$

Typical complexities : concrete examples

- Binary search in an ordered set of size $n: \log _{2}(n)$
(logarithmic)
- Go through an unordered set of size $n: n$
- Sort an integer table, explore a graph, find a shortest path, etc. : n^{c}
(polynomial)
- k nested loops each of length $n: n^{k}$
- Go through all subsets of a set of size $n: 2^{n}$
- Go through all partitions of a set of size $n: n^{n}$

$$
\left(=2^{n \log _{2}(n)}\right. \text {, super-exponential) }
$$

- Go through all permutations of a set of size $n: n$!

$$
\approx n^{n} \text { by Stirling's formula } n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

- Go through all subsets of subsets : $2^{2^{n}}$
(double-exponential)

Decision problems

Goal : classify algorithmic problems according to their complexities.

Decision problems

Goal : classify algorithmic problems according to their complexities.

Simplest problems:
\rightarrow Decision problem : input, question with YES/NO answer

- Is this list sorted?
- Is this graph 3-colorable?
- Does this program always stop?
- ...

Decision problems

Goal : classify algorithmic problems according to their complexities.

Simplest problems:
\rightarrow Decision problem : input, question with YES/NO answer

- Is this list sorted?
- Is this graph 3-colorable?
- Does this program always stop?
- ...

3-Coloring

Input: A graph G
Question: Is G 3-colorable?

Barber paradox

In a village, a barber shaves exactly all men that do not shave themselves..

Question: Who shaves the barber?

Bertrand Russell (1872-1970)

Barber paradox

In a village, a barber shaves exactly all men that do not shave themselves..

Question: Who shaves the barber?

PARADOX!

Bertrand Russell (1872-1970)

To stop or not to stop? That is the question

Halting problem

Goven a computer code and an input parameter for it, decide in finite time :

1. if it will stop one day
or
2. if it will loop forever?

To stop or not to stop? That is the question

Halting problem

Goven a computer code and an input parameter for it, decide in finite time :

1. if it will stop one day
or
2. if it will loop forever?

Theorem (Alan Turing, 1936)
There is no algorithm that solves the Halting problem.

Alan Turing (1912-1954)

To stop or not to stop? That is the question

Halting problem

Goven a computer code and an input parameter for it, decide in finite time :

1. if it will stop one day
or
2. if it will loop forever?

Theorem (Alan Turing, 1936)

There is no algorithm that solves the Halting problem.

Proof : Suppose by contradiction there is such a finite-time algorithm :
halt(code, parameter)
that returns - YES if the given code and parameter stop one day, and

- NO if it loops forever.

To stop or not to stop? That is the question

Halting problem

Goven a computer code and an input parameter for it, decide in finite time :

1. if it will stop one day
or
2. if it will loop forever?

Theorem (Alan Turing, 1936)

There is no algorithm that solves the Halting problem.

Proof : Suppose by contradiction there is such a finite-time algorithm :
halt(code, parameter)
that returns • YES if the given code and parameter stop one day, and - NO if it loops forever.

Define the following algorithm :
def diag(x):

- if halt(x,x) returns YES then:
- loop forever
- else:
- return YES

To stop or not to stop? That is the question

Halting problem

Goven a computer code and an input parameter for it, decide in finite time :

1. if it will stop one day
or
2. if it will loop forever?

Theorem (Alan Turing, 1936)

There is no algorithm that solves the Halting problem.

Proof : Suppose by contradiction there is such a finite-time algorithm :
halt(code, parameter)
that returns - YES if the given code and parameter stop one day, and - NO if it loops forever.

Define the following algorithm :
def diag(x):
What is returned by diag(diag) ?

- if halt(x,x) returns YES then:
- loop forever
- else:
- return YES

To stop or not to stop? That is the question

Halting problem

Goven a computer code and an input parameter for it, decide in finite time :

1. if it will stop one day
or
2. if it will loop forever?

Theorem (Alan Turing, 1936)

There is no algorithm that solves the Halting problem.

Proof : Suppose by contradiction there is such a finite-time algorithm :
halt(code, parameter)
that returns - YES if the given code and parameter stop one day, and - NO if it loops forever.

Define the following algorithm :
def diag(x):

- if halt(x,x) returns YES then:
- loop forever
- else:
- return YES

What is returned by diag(diag)?

PARADOX!

Undecidable problems

Undecidable problems:

- Halting problem
(Alan Turing, 1936)
- Word correspondence : two sets of words a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} \rightarrow Can we re-arrange them to create two identical words ?
- Integer solutions of Diophantine equations of the form $2 x^{2}+3 y^{3}-2 z=0 \quad$ (Hilbert's 10th problem, 1900 - Youri Matyasevitch, 1970)
- Determine the winner of the card game "Magic : The gathering"
(Churchill-Biderman-Herrick, 2019)

Alan Turing (1912-1954)

Emil L. Post (1897-1954)

Youri Matyasevitch (1947-)

David Hilbert (1862-1943)

Some complexity classes

Class P ("polynomial") : "reasonable problems" (Cobham-Edmonds, 1965)

Jack Edmonds (1934-)

Alan B. Cobham (1927-2011)

Some complexity classes

Class P ("polynomial") : "reasonable problems" (Cobham-Edmonds, 1965)

Jack Edmonds (1934-)
Higher up : probably hard problems

Alan B. Cobham (1927-2011)

P and NP complexity classes

Definition (Class P)

Decision problems that can be solved in polynomial time.

Definition (Class P)

Decision problems that can be solved in polynomial time.

Definition (Class NP = "non-deterministic polynomial")

Decision problems for which there exists a certificate (function of input) s.t., for an input I and its certificate $C(I)$, one can check in time polynomial in I, whether I is a YES-input or not.

Definition (Class P)

Decision problems that can be solved in polynomial time.

Definition (Class NP = "non-deterministic polynomial")

Decision problems for which there exists a certificate (function of input) s.t., for an input I and its certificate $C(I)$, one can check in time polynomial in I, whether I is a YES-input or not.

Examples:

- All problems in P
- Graph coloring
- ...

P versus NP

Do checking a solution and finding a solution inherently have the same complexity ?

P versus NP

Do checking a solution and finding a solution inherently have the same complexity ?
\rightarrow Intuitively, no...

P versus NP

Do checking a solution and finding a solution inherently have the same complexity?
\rightarrow Intuitively, no...

Question (P versus NP - a question worth a million US\$)

Is it true that $P=N P$?

P versus NP

Do checking a solution and finding a solution inherently have the same complexity ?
\rightarrow Intuitively, no...

Question (P versus NP - a question worth a million US\$)

Is it true that $P=N P$?

Some problems are easier than others

Minimum < easier» than Sorting

- know how to sort a list m know how to find the minimum
- can build an algorithm for Minimum using an algorithm for Sorting

(Polynomial) reduction

\mathcal{P}_{1}

- Input: E_{1}
- Question : Does E_{1} have property P_{1} ?
\mathcal{P}_{2}
- Input: E_{2}
- Question: Does E_{2} have property P_{2} ?

> Transform E_{1} into $f\left(E_{1}\right)=E_{2}$ (in polynomial time) such that
> E_{1} has property $P_{1} \Longleftrightarrow E_{2}$ has property P_{2}
\mathcal{P}_{1} reduces to \mathcal{P}_{2} (in polynomial time)

- Algorithm for $\mathcal{P}_{2}: A_{2}$ (polynomial)
- Algo for $\mathcal{P}_{1}: E_{1} \rightsquigarrow E_{2}{ }^{A_{2}}$ YES or NO (in polynomial time)
\mathcal{P}_{1} is «easier» than \mathcal{P}_{2}

NP-complete problems

Definition (NP-hard and NP-complete problems)

Decision problem P_{1} is NP-hard if all problems in NP admit a reduction to P_{1}. Decision problem P_{1} is NP-complete if it belongs to NP and is NP-hard.

NP-complete problems

Definition (NP-hard and NP-complete problems)

Decision problem P_{1} is NP-hard if all problems in NP admit a reduction to P_{1}. Decision problem P_{1} is NP-complete if it belongs to NP and is NP-hard.

NP-complete problems

Definition (NP-hard and NP-complete problems)

Decision problem P_{1} is NP-hard if all problems in NP admit a reduction to P_{1}. Decision problem P_{1} is NP-complete if it belongs to NP and is NP-hard.

NP-complete problems

Definition (NP-hard and NP-complete problems)

Decision problem P_{1} is NP-hard if all problems in NP admit a reduction to P_{1}. Decision problem P_{1} is NP-complete if it belongs to NP and is NP-hard.

Intuitively : An NP-hard problem is "at least as hard" as all problems of NP (up to polynomial factors).

The first NP-complete problem

SAT
Input: A boolean formula F in CNF
Question: is F satisfiable?

The first NP-complete problem

SAT

Input: A boolean formula F in CNF

Question: is F satisfiable?

Theorem (Cook-Levin, 1971)

SAT is NP-complete.

Stephen Cook (1939-)

Leonid Levin (1948-)

Richard C. Karp (1935-)

The first NP-complete problem

SAT

Input: A boolean formula F in CNF

Question: is F satisfiable?

Theorem (Cook-Levin, 1971)
SAT is NP-complete.

Stephen Cook (1939-)

Leonid Levin (1948-)

Richard C. Karp (1935-)

```
3-SAT
Input: A boolean formula F in 3-CNF
Question: Is F satisfiable?
```


The first NP-complete problem

SAT
Input: A boolean formula F in CNF
Question: is F satisfiable?

Theorem (Cook-Levin, 1971)

SAT is NP-complete.

Stephen Cook (1939-)

Leonid Levin (1948-)

Richard C. Karp (1935-)

3-SAT

Input: A boolean formula F in 3-CNF
Question: Is F satisfiable?

Theorem (Karp, 1972)
3-SAT is NP-complete.

The first NP-complete problem

SAT
Input: A boolean formula F in CNF
Question: is F satisfiable?

Theorem (Cook-Levin, 1971)

SAT is NP-complete.

Stephen Cook (1939-)

Leonid Levin (1948-)

Richard C. Karp (1935-)

3-SAT

Input: A boolean formula F in 3-CNF
Question: Is F satisfiable?

Theorem (Karp, 1972)

3-SAT is NP-complete.

Consequence

If one finds a polynomial-time algorithm for SAT or 3-SAT, there is one for each problem of NP!

How to show a problem is NP-hard?

Recall : P_{1} is NP-hard $=$ all problems in NP admit a polynomial reduction to P_{1}

Proposition

If P_{1} is NP-hard and P_{1} has a polynomial reduction to P_{2}, then P_{2} is also NP-hard

How to show a problem is NP-hard?

Recall : P_{1} is NP-hard $=$ all problems in NP admit a polynomial reduction to P_{1}

Proposition

If P_{1} is NP-hard and P_{1} has a polynomial reduction to P_{2}, then P_{2} is also NP-hard

How to show a problem is NP-hard?

Recall : P_{1} is NP-hard $=$ all problems in NP admit a polynomial reduction to P_{1}

Proposition

If P_{1} is NP-hard and P_{1} has a polynomial reduction to P_{2}, then P_{2} is also NP-hard

How to show a problem is NP-hard?

Recall : P_{1} is NP-hard $=$ all problems in NP admit a polynomial reduction to P_{1}

Proposition

If P_{1} is NP-hard and P_{1} has a polynomial reduction to P_{2}, then P_{2} is also NP-hard

A reduction from 3-SAT to 3-Coloring

```
3-SAT
Input: A boolean formula F in 3-CNF
Question: Is F satisfiable?
```

Example: $\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right)$

```
3-Coloring
Input: A graph G
Question: Is G 3-colorable?
```

Theorem (Garey, Johnson, Stockmeyer, 1976)
3-Coloring is NP-complete.

A reduction from 3-SAT to 3-Coloring

3-SAT

Input: A boolean formula F in 3-CNF
Question: Is F satisfiable?
Example: $\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right)$

```
3-Coloring
Input: A graph G
Question: Is G 3-colorable?
```

Theorem (Garey, Johnson, Stockmeyer, 1976)
3-Coloring is NP-complete.

1) 3-Coloring Is in NP : for a 3-coloring of G (= the certificate), one can check in polynomial time if it is valid (for each edge, check that the colors are distinct).

A reduction from 3-SAT to 3-Coloring

3-SAT

Input: A boolean formula F in 3-CNF
Question: Is F satisfiable?
Example: $\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right)$

```
3-Coloring
Input: A graph G
Question: Is G 3-colorable?
```

Theorem (Garey, Johnson, Stockmeyer, 1976)
3-Coloring is NP-complete.
2) 3-Coloring is NP-hard : build a polynomial reduction from 3-SAT to 3-Coloring : for every 3 -CNF formula F, create a graph $G(F)$ such that F is satisfiaable $\Leftrightarrow G(F)$ is 3-colorable.

A reduction from 3-SAT to 3-Coloring

```
3-SAT
Input: A boolean formula F in 3-CNF
Question: Is F satisfiable?
Example: \(\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right)\)
```

```
3-Coloring
Input: A graph G
Question: Is G 3-colorable?
```

Theorem (Garey, Johnson, Stockmeyer, 1976)
3-Coloring is NP-complete.
2.1) model a variable x_{i} :

A reduction from 3-SAT to 3-Coloring

3-SAT

Input: A boolean formula F in 3-CNF
Question: Is F satisfiable?
Example: $\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right)$

```
3-Coloring
Input: A graph G
Question: Is G 3-colorable?
```

Theorem (Garey, Johnson, Stockmeyer, 1976)
3-Coloring is NP-complete.
2.1) model a variable x_{i} :

2.2) model a clause ($x_{i} \vee x_{j} \vee x_{k}$):

A reduction from 3-SAT to 3-Coloring

3-SAT

Input: A boolean formula F in 3-CNF
Question: Is F satisfiable?
Example: $\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right)$

```
3-Coloring
Input: A graph G
Question: Is G 3-colorable?
```

Theorem (Garey, Johnson, Stockmeyer, 1976)
3-Coloring is NP-complete.
2.3) Put everything together!

A reduction from 3-SAT to 3-Coloring

3-SAT
Input: A boolean formula F in 3-CNF
Question: Is F satisfiable?
Example: $\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right)$

3-Coloring
 Input: A graph G
 Question: Is G 3-colorable?

Theorem (Garey, Johnson, Stockmeyer, 1976)

3-Coloring is NP-complete.

A reduction from 3-SAT to 3-Coloring

3-SAT
Input: A boolean formula F in 3-CNF
Question: Is F satisfiable?
Example: $\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right)$

3-Coloring
 Input: A graph G
 Question: Is G 3-colorable?

Theorem (Garey, Johnson, Stockmeyer, 1976)
3-Coloring is NP-complete.

If F is satisfiable, then $G(F)$ is 3-colorable

A reduction from 3-SAT to 3-Coloring

3-SAT
Input: A boolean formula F in 3-CNF
Question: Is F satisfiable?
Example: $\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right)$

3-Coloring
 Input: A graph G
 Question: Is G 3-colorable?

Theorem (Garey, Johnson, Stockmeyer, 1976)
3-Coloring is NP-complete.

If F is satisfiable, then $G(F)$ is 3-colorable

A reduction from 3-SAT to 3-Coloring

3-SAT
Input: A boolean formula F in 3-CNF
Question: Is F satisfiable?
Example: $\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right)$

3-Coloring
 Input: A graph G
 Question: Is G 3-colorable?

Theorem (Garey, Johnson, Stockmeyer, 1976)

3-Coloring is NP-complete.

If $G(F)$ is 3-colorable, then F is satisfiable

A reduction from 3-SAT to 3-Coloring

3-SAT
Input: A boolean formula F in 3-CNF
Question: Is F satisfiable?
Example: $\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right)$

3-Coloring
 Input: A graph G
 Question: Is G 3-colorable?

Theorem (Garey, Johnson, Stockmeyer, 1976)

3-Coloring is NP-complete.

If $G(F)$ is 3-colorable, then F is satisfiable

A reduction from 3-SAT to 3-Coloring

3-SAT
Input: A boolean formula F in 3-CNF
Question: Is F satisfiable?
Example: $\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right)$

3-Coloring
 Input: A graph G
 Question: Is G 3-colorable?

Theorem (Garey, Johnson, Stockmeyer, 1976)

3-Coloring is NP-complete.

If $G(F)$ is 3-colorable, then F is satisfiable

Super Mario

```
Super Mario
Input: A Super Mario level.
Question: Can Mario go from start to finish?
```

Theorem (Aloupis, Demaine, Guo, 2012)
Super Mario is NP-hard.
Reduction from 3-SAT :

