Graph algorithms

Background on algorithms and complexity classes

Florent Foucaud

Organisation

- 3 lectures this week and next week, 2 more lectures in about 6 weeks
- 4 more lectures by Laurent Beaudou
- contact : florent.foucaud@uca.fr

Contents :

- Background on algorithms and complexity
- Algorithms for specific graphs
- Parameterized complexity

- First algorithms :
 - Babylone, -2500 / ancient Egypt, -1500 / India, -800 : first algorithms (ex : division)
 - Ancient Greece, -250 : prime numbers (Euclid, Ératosthenes)
 - India, 450 : solving equations (Kuttaka)
 - arab-persian world, 850 : cryptography, arithmetics (Muhammad ibn Musa al Khwarizmi, most read mathematician in the middle ages)
 - ▶ 1230 : \rightarrow Alchoarismi \rightarrow Algorismo : notion of an algorithm

Muhammad ibn Musa al Khwarizmi (780-850)

al-Kitab al-mukhtasar fi hisab al-jabr wal-muqabala (820)

- First algorithms :
 - Babylone, -2500 / ancient Egypt, -1500 / India, -800 : first algorithms (ex : division)
 - Ancient Greece, -250 : prime numbers (Euclid, Ératosthenes)
 - India, 450 : solving equations (Kuttaka)
 - arab-persian world, 850 : cryptography, arithmetics (Muhammad ibn Musa al Khwarizmi, most read mathematician in the middle ages)
 - ▶ 1230 : \rightarrow Alchoarismi \rightarrow Algorismo : notion of an algorithm
- David Hilbert, 1928 : is there an algorithm to solve any mathematical question? (*Entscheidungsproblem*, translated : "decision problem")

David Hilbert (1862-1943)

- First algorithms :
 - Babylone, -2500 / ancient Egypt, -1500 / India, -800 : first algorithms (ex : division)
 - Ancient Greece, -250 : prime numbers (Euclid, Ératosthenes)
 - India, 450 : solving equations (Kuttaka)
 - arab-persian world, 850 : cryptography, arithmetics (Muhammad ibn Musa al Khwarizmi, most read mathematician in the middle ages)
 - ▶ 1230 : \rightarrow Alchoarismi \rightarrow Algorismo : notion of an algorithm
- David Hilbert, 1928 : is there an algorithm to solve any mathematical question? (*Entscheidungsproblem*, translated : "decision problem")
- Kurt Gödel, 1931 : incompleteness theorem (mathematical logic)

Kurt Gödel (1906-1978)

- First algorithms :
 - Babylone, -2500 / ancient Egypt, -1500 / India, -800 : first algorithms (ex : division)
 - Ancient Greece, -250 : prime numbers (Euclid, Ératosthenes)
 - India, 450 : solving equations (Kuttaka)
 - arab-persian world, 850 : cryptography, arithmetics (Muhammad ibn Musa al Khwarizmi, most read mathematician in the middle ages)
 - ▶ 1230 : \rightarrow Alchoarismi \rightarrow Algorismo : notion of an algorithm
- David Hilbert, 1928 : is there an algorithm to solve any mathematical question? (*Entscheidungsproblem*, translated : "decision problem")
- Kurt Gödel, 1931 : incompleteness theorem (mathematical logic)
- Alonzo Church and Alan Turing, 1936 : solution of the Entscheidungsproblem : NO !

 $(\rightarrow$ Halting problem, Turing machines)

Alan Turing (1912-1954)

Alonzo Church (1903-1995)

- First algorithms :
 - Babylone, -2500 / ancient Egypt, -1500 / India, -800 : first algorithms (ex : division)
 - Ancient Greece, -250 : prime numbers (Euclid, Ératosthenes)
 - India, 450 : solving equations (Kuttaka)
 - arab-persian world, 850 : cryptography, arithmetics (Muhammad ibn Musa al Khwarizmi, most read mathematician in the middle ages)
 - ▶ 1230 : \rightarrow Alchoarismi \rightarrow Algorismo : notion of an algorithm
- David Hilbert, 1928 : is there an algorithm to solve any mathematical question? (*Entscheidungsproblem*, translated : "decision problem")
- Kurt Gödel, 1931 : incompleteness theorem (mathematical logic)
- Alonzo Church and Alan Turing, 1936 : solution of the Entscheidungsproblem : NO !

 $(\rightarrow$ Halting problem, Turing machines)

• Alan Cobham and Jack Edmonds, 1965 :

an algorithm is efficient if it is polynomial-time

Alan B. Cobham (1927-2011)

Jack Edmonds (1934-)

- First algorithms :
 - Babylone, -2500 / ancient Egypt, -1500 / India, -800 : first algorithms (ex : division)
 - Ancient Greece, -250 : prime numbers (Euclid, Ératosthenes)
 - India, 450 : solving equations (Kuttaka)
 - arab-persian world, 850 : cryptography, arithmetics (Muhammad ibn Musa al Khwarizmi, most read mathematician in the middle ages)
 - ▶ 1230 : \rightarrow Alchoarismi \rightarrow Algorismo : notion of an algorithm
- David Hilbert, 1928 : is there an algorithm to solve any mathematical question? (*Entscheidungsproblem*, translated : "decision problem")
- Kurt Gödel, 1931 : incompleteness theorem (mathematical logic)
- Alonzo Church and Alan Turing, 1936 : solution of the Entscheidungsproblem : NO !

 $(\rightarrow$ Halting problem, Turing machines)

• Alan Cobham and Jack Edmonds, 1965 :

an algorithm is efficient if it is polynomial-time

• 1970s : complexity theory

Algorithmic problem : input, output

Exemples :

- Multiply two numbers n_1 et n_2 encoded in binary
- Sort a table of n integers
- Find a shortest path from A to B in a graph on *n* vertices
- Cover a network with *n* vertices with *k* radio antennas

Complexity of an algorithm : quantity of ressources needed by the algorithms, as a function of the size n of the input

Algorithmic problem : input, output

Exemples :

- Multiply two numbers n_1 et n_2 encoded in binary
- Sort a table of n integers
- Find a shortest path from A to B in a graph on *n* vertices
- Cover a network with *n* vertices with *k* radio antennas

Complexity of an algorithm : quantity of ressources needed by the algorithms, as a function of the size n of the input

Complexity of algorithmic problem P : lowest complexity of any algorithm solving P

Algorithmic problem : input, output

Exemples :

- Multiply two numbers n_1 et n_2 encoded in binary
- Sort a table of n integers
- Find a shortest path from A to B in a graph on *n* vertices
- Cover a network with *n* vertices with *k* radio antennas

Complexity of an algorithm : quantity of ressources needed by the algorithms, as a function of the size n of the input

Complexity of algorithmic problem P : lowest complexity of any algorithm solving P

What ressources?

- **Time complexity** *T*(*n*) : lowest number of steps
- Space complexity S(n) : lowest memory size

• ...

Algorithmic problem : input, output

Exemples :

- Multiply two numbers n_1 et n_2 encoded in binary
- Sort a table of n integers
- Find a shortest path from A to B in a graph on *n* vertices
- Cover a network with *n* vertices with *k* radio antennas

Complexity of an algorithm : quantity of ressources needed by the algorithms, as a function of the size n of the input

Complexity of algorithmic problem P : lowest complexity of any algorithm solving P

What ressources?

- **Time complexity** *T*(*n*) : lowest number of steps
- **Space complexity** *S*(*n*) : lowest memory size

```
• ... Remark : S(n) \le T(n)
```

Algorithmic problem : input, output

Exemples :

- Multiply two numbers n_1 et n_2 encoded in binary
- Sort a table of n integers
- Find a shortest path from A to B in a graph on *n* vertices
- Cover a network with *n* vertices with *k* radio antennas

Complexity of an algorithm : quantity of ressources needed by the algorithms, as a function of the size n of the input

Complexity of algorithmic problem P : lowest complexity of any algorithm solving P

What ressources?

- **Time complexity** *T*(*n*) : lowest number of steps
- Space complexity S(n) : lowest memory size

```
• ... Remark : S(n) \le T(n)
```

How to measure them?

- Worst-case complexity
- Average complexity

 \rightarrow according to some probability distribution of the input

Input size

Beware of the encoding !

Beware of the encoding !

• Integer $n \rightarrow \lceil \log_2(n) \rceil$ bits

Input size

Beware of the encoding !

- Integer $n \rightarrow \lceil \log_2(n) \rceil$ bits
- Integer in C language \rightarrow 8 bytes (constant)

Beware of the encoding !

- Integer $n \rightarrow \lceil \log_2(n) \rceil$ bits
- Integer in C language \rightarrow 8 bytes (constant)
- Graph with *n* vertices, *m* edges \rightarrow (*n* + *m*)× (size of integer) \rightarrow adjacency list

Time complexity : *T*(*n*)

Best of the best problems : constant complexity $T(n) \rightarrow 1$, 10 or logarithmic complexity $T(n) \rightarrow \log_2(n)$, $3 \log(n)$...

Very good problems : linear complexity $T(n) \rightarrow 10n$, 2n, 1000n, n ...

Reasonable problems : polynomial complexity $T(n) \rightarrow 4n^2$, $10n^3$, n^{1000} ... (in practice n^3 or more, not so good)

Difficult problems : exponential complexity $T(n) \rightarrow 2^n$, n!, n^n , 2^{2^n} ...

 \rightarrow Intuition : check all possible solutions

Time complexity : *T*(*n*)

Best of the best problems : constant complexity $T(n) \rightarrow 1$, 10 or logarithmic complexity $T(n) \rightarrow \log_2(n)$, $3 \log(n)$...

Very good problems : linear complexity $T(n) \rightarrow 10n$, 2n, 1000n, n ...

Reasonable problems : polynomial complexity $T(n) \rightarrow 4n^2$, $10n^3$, n^{1000} ... (in practice n^3 or more, not so good)

Difficult problems : exponential complexity $T(n) \rightarrow 2^n$, n!, n^n , 2^{2^n} ...

 \rightarrow Intuition : *check all possible solutions*

T(n)	n = 10	<i>n</i> = 50	n = 100	<i>n</i> = 200	<i>n</i> = 300
n	10	50	100	200	300
100 <i>n</i>	1000	5000	10000	20000	30000
n ²	100	2500	10000	40000	90000
2 ⁿ	1024	(16 digits)	(31 digits)	(60 digits)	(91 digits)
n!	3628800	(64 digits)	(157 digits)	(374 digits)	(614 digits)

Time complexity : *T*(*n*)

Best of the best problems : constant complexity $T(n) \rightarrow 1$, 10 or logarithmic complexity $T(n) \rightarrow \log_2(n)$, $3 \log(n)$...

Very good problems : linear complexity $T(n) \rightarrow 10n, 2n, 1000n, n \dots$

Reasonable problems : polynomial complexity $T(n) \rightarrow 4n^2$, $10n^3$, n^{1000} ... (in practice n^3 or more, not so good)

Difficult problems : exponential complexity $T(n) \rightarrow 2^n$, n!, n^n , 2^{2^n} ...

→ Intuition : *check all possible solutions*

Time complexity : *T*(*n*)

Best of the best problems : constant complexity $T(n) \rightarrow 1$, 10 or logarithmic complexity $T(n) \rightarrow \log_2(n)$, $3 \log(n)$...

Very good problems : linear complexity $T(n) \rightarrow 10n, 2n, 1000n, n \dots$

Reasonable problems : polynomial complexity $T(n) \rightarrow 4n^2$, $10n^3$, n^{1000} ... (in practice n^3 or more, not so good)

Difficult problems : exponential complexity $T(n) \rightarrow 2^n$, n!, n^n , 2^{2^n} ...

→ Intuition : *check all possible solutions*

Time complexity : *T*(*n*)

Best of the best problems : constant complexity $T(n) \rightarrow 1$, 10 or logarithmic complexity $T(n) \rightarrow \log_2(n)$, $3 \log(n)$...

Very good problems : linear complexity $T(n) \rightarrow 10n, 2n, 1000n, n \dots$

Reasonable problems : polynomial complexity $T(n) \rightarrow 4n^2$, $10n^3$, n^{1000} ... (in practice n^3 or more, not so good)

Difficult problems : exponential complexity $T(n) \rightarrow 2^n$, n!, n^n , 2^{2^n} ...

→ Intuition : *check all possible solutions*

Asymptotic notations

Most of the time, only need to distinguish types of complexity \rightarrow logarithmic, linear, quadratic, exponential...

Asymptotic notations

Most of the time, only need to distinguish types of complexity \rightarrow logarithmic, linear, quadratic, exponential...

Exact complexity depends on the machine, the programming language, the compiler...

Asymptotic notations

Most of the time, only need to distinguish types of complexity \rightarrow logarithmic, linear, quadratic, exponential...

Exact complexity depends on the machine, the programming language, the compiler...

Use asymptotic notations that omit constant factors and "pathological base cases".

Invented from 1894 to 1960 by Bachmann, Hardy, Knuth, Landau, Littlewood...

Definition (Big Oh)

Two functions $f, g : \mathbb{N} \to \mathbb{N}$. $f(n) \in O(g(n))$ if there exists a constant $c > 0 \in \mathbb{R}$ and a rank $n_0 \in \mathbb{N}$ s.t. for any integer $i \ge n_0$, we have $f(i) \le c \cdot g(i)$.

Invented from 1894 to 1960 by Bachmann, Hardy, Knuth, Landau, Littlewood...

Definition (Big Oh)

Two functions $f, g : \mathbb{N} \to \mathbb{N}$. $f(n) \in O(g(n))$ if there exists a constant $c > 0 \in \mathbb{R}$ and a rank $n_0 \in \mathbb{N}$ s.t. for any integer $i \ge n_0$, we have $f(i) \le c \cdot g(i)$.

Invented from 1894 to 1960 by Bachmann, Hardy, Knuth, Landau, Littlewood...

Definition (Big Oh)

Two functions $f, g : \mathbb{N} \to \mathbb{N}$. $f(n) \in O(g(n))$ if there exists a constant $c > 0 \in \mathbb{R}$ and a rank $n_0 \in \mathbb{N}$ s.t. for any integer $i \ge n_0$, we have $f(i) \le c \cdot g(i)$.

Intuitively : f does not grow faster than g (up to constant factors) when n is large

Invented from 1894 to 1960 by Bachmann, Hardy, Knuth, Landau, Littlewood...

Definition (Big Oh)

Two functions $f, g : \mathbb{N} \to \mathbb{N}$. $f(n) \in O(g(n))$ if there exists a constant $c > 0 \in \mathbb{R}$ and a rank $n_0 \in \mathbb{N}$ s.t. for any integer $i \ge n_0$, we have $f(i) \le c \cdot g(i)$.

Intuitively : f does not grow faster than g (up to constant factors) when n is large

Invented from 1894 to 1960 by Bachmann, Hardy, Knuth, Landau, Littlewood...

Definition (Big Oh)

Two functions $f, g : \mathbb{N} \to \mathbb{N}$. $f(n) \in O(g(n))$ if there exists a constant $c > 0 \in \mathbb{R}$ and a rank $n_0 \in \mathbb{N}$ s.t. for any integer $i \ge n_0$, we have $f(i) \le c \cdot g(i)$.

Intuitively : f does not grow faster than g (up to constant factors) when n is large Abuse of notation : $10n = O(n^2)$

Big Omega

"The reverse of Big Oh"

Definition (Big Omega)

Two functions $f, g: \mathbb{N} \to \mathbb{N}$. $f(n) \in \Omega(g(n))$ if there exists a constant $c > 0 \in \mathbb{R}$ and a rank $n_0 \in \mathbb{N}$ s.t. for any integer $i \ge n_0$, we have $f(i) \ge c \cdot g(i)$.

Definition (Big Omega)

Two functions $f, g : \mathbb{N} \to \mathbb{N}$. $f(n) \in \Omega(g(n))$ if there exists a constant $c > 0 \in \mathbb{R}$ and a rank $n_0 \in \mathbb{N}$ s.t. for any integer $i \ge n_0$, we have $f(i) \ge c \cdot g(i)$.

Definition (Big Omega)

Two functions $f, g : \mathbb{N} \to \mathbb{N}$. $f(n) \in \Omega(g(n))$ if there exists a constant $c > 0 \in \mathbb{R}$ and a rank $n_0 \in \mathbb{N}$ s.t. for any integer $i \ge n_0$, we have $f(i) \ge c \cdot g(i)$.

Intuitively : f does not grow slower than g (up to constant factors) when n is large

Definition (Big Omega)

Two functions $f, g : \mathbb{N} \to \mathbb{N}$. $f(n) \in \Omega(g(n))$ if there exists a constant $c > 0 \in \mathbb{R}$ and a rank $n_0 \in \mathbb{N}$ s.t. for any integer $i \ge n_0$, we have $f(i) \ge c \cdot g(i)$.

Intuitively : f does not grow slower than g (up to constant factors) when n is large

Definition (Big Omega)

Two functions $f, g : \mathbb{N} \to \mathbb{N}$. $f(n) \in \Omega(g(n))$ if there exists a constant $c > 0 \in \mathbb{R}$ and a rank $n_0 \in \mathbb{N}$ s.t. for any integer $i \ge n_0$, we have $f(i) \ge c \cdot g(i)$.

Intuitively : f does not grow slower than g (up to constant factors) when n is large Remark : if $f(n) \in O(g(n))$, then $g(n) \in \Omega(f(n))$ and conversely

Big Theta

"Combination of Big Oh and Big Omega"

Definition (Big Theta)

Two functions $f, g : \mathbb{N} \to \mathbb{N}$. $f(n) \in \Theta(g(n))$ if $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$.

Big Theta

"Combination of Big Oh and Big Omega"

Definition (Big Theta)

Two functions $f, g : \mathbb{N} \to \mathbb{N}$. $f(n) \in \Theta(g(n))$ if $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$.

Big Theta

"Combination of Big Oh and Big Omega"

Definition (Big Theta)

Two functions $f, g : \mathbb{N} \to \mathbb{N}$. $f(n) \in \Theta(g(n))$ if $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$.

Intuitively : f and g grow equally fast (up to constant factors) when n is large

Big Theta

"Combination of Big Oh and Big Omega"

Definition (Big Theta)

Two functions $f, g : \mathbb{N} \to \mathbb{N}$. $f(n) \in \Theta(g(n))$ if $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$.

Intuitively : f and g grow equally fast (up to constant factors) when n is large

Complexity classes

- logarithmic : Θ(log(n))
- linear : $\Theta(n)$
- quadratic : Θ(n²)
- cubic : Θ(n³)

• ...

- polynomial : $\Theta(n^c)$ pour c > 1
- single-exponential : $\Theta(c^n)$ for c > 1
- double-exponential : $\Theta(c_1^{c_2^n})$ for $c_1, c_2 > 1$

Binary search in an ordered set of size n : log₂(n)

(logarithmic)

• Binary search in an ordered set of size n : log₂(n)

(logarithmic)

• Go through an unordered set of size *n* : *n*

(linear)

• Binary search in an ordered set of size n : log₂(n)

(logarithmic)

- Go through an unordered set of size *n* : *n*
- Sort an integer table, explore a graph, find a shortest path, etc. : n^c

(polynomial)

(linear)

• Binary search in an ordered set of size n : log₂(n)

(logarithmic)

- Go through an unordered set of size *n* : *n*
- Sort an integer table, explore a graph, find a shortest path, etc. : n^c

(polynomial)

(linear)

• k nested loops each of length n : n^k

• Binary search in an ordered set of size *n* : log₂(*n*)

• Go through an unordered set of size *n* : *n*

• Sort an integer table, explore a graph, find a shortest path, etc. : n^c

(polynomial)

- k nested loops each of length n : n^k
- Go through all subsets of a set of size *n* : 2^{*n*}

(single-exponential)

(logarithmic)

(linear)

- Binary search in an ordered set of size *n* : log₂(*n*)
- Go through an unordered set of size *n* : *n*
- Sort an integer table, explore a graph, find a shortest path, etc. : n^c

(polynomial)

- k nested loops each of length $n : n^k$
- Go through all subsets of a set of size *n* : 2^{*n*}

(single-exponential)

Go through all partitions of a set of size n : nⁿ

 $(=2^{n\log_2(n)}, \text{ super-exponential})$

(logarithmic)

(linear)

• Binary search in an ordered set of size *n* : log₂(*n*)

(logarithmic)

- Go through an unordered set of size *n* : *n*
- Sort an integer table, explore a graph, find a shortest path, etc. : *n^c*

(polynomial)

(linear)

- k nested loops each of length $n : n^k$
- Go through all subsets of a set of size *n* : 2^{*n*}

(single-exponential)

Go through all partitions of a set of size n : nⁿ

 $(=2^{n\log_2(n)}, \text{ super-exponential})$

• Go through all permutations of a set of size n : n! $\approx n^n$ by Stirling's formula $n! \sim \sqrt{2\pi n} \left(\frac{n}{2n}\right)^n$

- Binary search in an ordered set of size *n* : log₂(*n*)
- Go through an unordered set of size *n* : *n*
- Sort an integer table, explore a graph, find a shortest path, etc. : n^c

(polynomial)

- *k* nested loops each of length $n : n^k$
- Go through all subsets of a set of size *n* : 2^{*n*}

(single-exponential)

Go through all partitions of a set of size n : nⁿ

 $(=2^{n\log_2(n)}, \text{ super-exponential})$

- Go through all permutations of a set of size n : n! $\approx n^n$ by Stirling's formula $n! \sim \sqrt{2\pi n} \left(\frac{n}{2n}\right)^n$
- Go through all subsets of subsets : 2^{2ⁿ}

(double-exponential)

(logarithmic)

(linear)

- Binary search in an ordered set of size *n* : log₂(*n*)
- Go through an unordered set of size *n* : *n*
- Sort an integer table, explore a graph, find a shortest path, etc. : *n^c*

(polynomial)

(logarithmic)

(linear)

- *k* nested loops each of length $n : n^k$
- Go through all subsets of a set of size *n* : 2^{*n*}

(single-exponential)

• Go through all partitions of a set of size *n* : *nⁿ*

 $(=2^{n\log_2(n)}, \text{ super-exponential})$

- Go through all permutations of a set of size n : n! $\approx n^n$ by Stirling's formula $n! \sim \sqrt{2\pi n} \left(\frac{n}{2n}\right)^n$
- Go through all subsets of subsets : 2^{2ⁿ}

(double-exponential)

• ...

Decision problems

Goal : classify algorithmic problems according to their complexities.

Decision problems

Goal : classify algorithmic problems according to their complexities.

Simplest problems :

 \rightarrow Decision problem : input, question with YES/NO answer

- Is this list sorted?
- Is this graph 3-colorable?
- Does this program always stop?

• ...

Decision problems

Goal : classify algorithmic problems according to their complexities.

Simplest problems :

 \rightarrow Decision problem : input, question with YES/NO answer

- Is this list sorted?
- Is this graph 3-colorable?
- Does this program always stop?
- .

3-Coloring Input: A graph *G* Question: Is *G* 3-colorable?

Barber paradox

In a village, a barber shaves exactly all men that do not shave themselves..

Question : Who shaves the barber?

Bertrand Russell (1872-1970)

Barber paradox

In a village, a barber shaves exactly all men that do not shave themselves..

Question : Who shaves the barber?

PARADOX !

Bertrand Russell (1872-1970)

Halting problem

Goven a computer code and an input parameter for it, decide in finite time :

1. if it will stop one day or 2. if it will loop forever?

Halting problem

Goven a computer code and an input parameter for it, decide in finite time :1. if it will stop one dayor2. if it will loop forever?

Theorem (Alan Turing, 1936)

There is no algorithm that solves the Halting problem.

Alan Turing (1912-1954)

Halting problem

Goven a computer code and an input parameter for it, decide in finite time :1. if it will stop one dayor2. if it will loop forever?

Theorem (Alan Turing, 1936)

There is no algorithm that solves the Halting problem.

Proof : Suppose by contradiction there is such a finite-time algorithm :

halt(code, parameter)

that returns • YES if the given code and parameter stop one day, and • NO if it loops forever.

Halting problem

Goven a computer code and an input parameter for it, decide in finite time :1. if it will stop one dayor2. if it will loop forever?

Theorem (Alan Turing, 1936)

There is no algorithm that solves the Halting problem.

Proof : Suppose by contradiction there is such a finite-time algorithm :

halt(code, parameter)

that returns • YES if the given code and parameter stop one day, and • NO if it loops forever.

Define the following algorithm :

def diag(x):

- if halt(x,x) returns YES then:
 - loop forever
- else:
 - return YES

Halting problem

Goven a computer code and an input parameter for it, decide in finite time :1. if it will stop one dayor2. if it will loop forever?

Theorem (Alan Turing, 1936)

There is no algorithm that solves the Halting problem.

Proof : Suppose by contradiction there is such a finite-time algorithm :

halt(code, parameter)

that returns • YES if the given code and parameter stop one day, and • NO if it loops forever.

Define the following algorithm :

def diag(x):

- if halt(x,x) returns YES then:
 - loop forever
- else:
 - return YES

What is returned by diag(diag)?

Halting problem

Goven a computer code and an input parameter for it, decide in finite time :1. if it will stop one dayor2. if it will loop forever?

Theorem (Alan Turing, 1936)

There is no algorithm that solves the Halting problem.

Proof : Suppose by contradiction there is such a finite-time algorithm :

halt(code, parameter)

that returns • YES if the given code and parameter stop one day, and • NO if it loops forever.

Define the following algorithm :

def diag(x):

- if halt(x,x) returns YES then:
 - loop forever
- else:
 - return YES

What is returned by diag(diag)?

PARADOX !

Undecidable problems

Undecidable problems :

Halting problem

(Alan Turing, 1936)

- Word correspondence : two sets of words a_1, \ldots, a_n and b_1, \ldots, b_n \rightarrow Can we re-arrange them to create two identical words? (Emil Post, 1946)
- Integer solutions of Diophantine equations of the form $2x^2 + 3y^3 - 2z = 0$ (Hilbert's 10th problem, 1900 - Youri Matyasevitch, 1970)
- Determine the winner of the card game "Magic : The gathering"

(Churchill-Biderman-Herrick, 2019)

Alan Turing (1912-1954)

Emil L. Post (1897-1954)

Youri Matyasevitch (1947-)

David Hilbert (1862-1943)

Some complexity classes

Class P ("polynomial") : "reasonable problems" (Cobham-Edmonds, 1965)

Jack Edmonds (1934-)

Alan B. Cobham (1927-2011)

Some complexity classes

Class P ("polynomial") : "reasonable problems" (Cobham-Edmonds, 1965)

Jack Edmonds (1934-) Higher up : probably hard problems

Alan B. Cobham (1927-2011)

P and NP complexity classes

Definition (Class P)

Decision problems that can be solved in polynomial time.

P and NP complexity classes

Definition (Class P)

Decision problems that can be solved in polynomial time.

Definition (Class NP = "non-deterministic polynomial")

Decision problems for which there exists a certificate (function of input) s.t., for an input I and its certificate C(I), one can check in time polynomial in I, whether I is a YES-input or not.

P and NP complexity classes

Definition (Class P)

Decision problems that can be solved in polynomial time.

Definition (Class NP = "non-deterministic polynomial")

Decision problems for which there exists a certificate (function of input) s.t., for an input I and its certificate C(I), one can check in time polynomial in I, whether I is a YES-input or not.

Examples :

- All problems in P
- Graph coloring
- ...

Do checking a solution and finding a solution inherently have the same complexity?

Do checking a solution and finding a solution inherently have the same complexity?

 \rightarrow Intuitively, no...

Do checking a solution and finding a solution inherently have the same complexity?

 \rightarrow Intuitively, no...

Question (P versus NP - a question worth a million US\$)

Is it true that P = NP?

Do checking a solution and finding a solution inherently have the same complexity?

 \rightarrow Intuitively, no...

Question (P versus NP - a question worth a million US\$)

Is it true that P = NP?

7 millenium problems woth 1 million US\$

Grigori Perelman (1966-)

Some problems are easier than others

Minimum « easier » than Sorting

- know how to sort a list --- know how to find the minimum
- can build an algorithm for Minimum using an algorithm for Sorting

(Polynomial) reduction

 \mathcal{P}_1

- Input : E₁
- Question : Does *E*₁ have property *P*₁?

 \mathcal{P}_2

- Input : E₂
- Question : Does *E*₂ have property *P*₂ ?
- Transform E_1 into $f(E_1) = E_2$ (in polynomial time) such that E_1 has property $P_1 \iff E_2$ has property P_2

\mathcal{P}_1 reduces to \mathcal{P}_2 (in polynomial time)

- Algorithm for \mathcal{P}_2 : A_2 (polynomial)
- Algo for $\mathcal{P}_1 : E_1 \rightsquigarrow E_2 \stackrel{A_2}{\rightsquigarrow}$ YES or NO (in polynomial time)

 \mathcal{P}_1 is « easier » than \mathcal{P}_2

Definition (NP-hard and NP-complete problems)

Decision problem P_1 is NP-hard if all problems in NP admit a reduction to P_1 . Decision problem P_1 is NP-complete if it belongs to NP and is NP-hard.

Definition (NP-hard and NP-complete problems)

Decision problem P_1 is NP-hard if all problems in NP admit a reduction to P_1 . Decision problem P_1 is NP-complete if it belongs to NP and is NP-hard.

Definition (NP-hard and NP-complete problems)

Decision problem P_1 is NP-hard if all problems in NP admit a reduction to P_1 . Decision problem P_1 is NP-complete if it belongs to NP and is NP-hard.

Definition (NP-hard and NP-complete problems)

Decision problem P_1 is NP-hard if all problems in NP admit a reduction to P_1 . Decision problem P_1 is NP-complete if it belongs to NP and is NP-hard.

Intuitively : An NP-hard problem is "at least as hard" as all problems of NP (up to polynomial factors).

SAT

Input: A boolean formula *F* in CNF Question: is *F* satisfiable?

SAT

Input: A boolean formula *F* in CNF Question: is *F* satisfiable?

Theorem (Cook-Levin, 1971)

SAT is NP-complete.

Stephen Cook (1939-)

Leonid Levin (1948-)

Richard C. Karp (1935-)

SAT

Input: A boolean formula *F* in CNF Question: is *F* satisfiable?

Theorem (Cook-Levin, 1971)

SAT is NP-complete.

Stephen Cook (1939-)

Leonid Levin (1948-)

Richard C. Karp (1935-)

3-SAT Input: A boolean formula *F* in 3-CNF Question: Is *F* satisfiable?

SAT

Input: A boolean formula *F* in CNF Question: is *F* satisfiable?

Theorem (Cook-Levin, 1971)

SAT is NP-complete.

Stephen Cook (1939-)

Leonid Levin (1948-)

Richard C. Karp (1935-)

3-SAT Input: A boolean formula *F* in 3-CNF Question: Is *F* satisfiable?

Theorem (Karp, 1972)

3-SAT is NP-complete.

SAT

Input: A boolean formula *F* in CNF Question: is *F* satisfiable?

Theorem (Cook-Levin, 1971)

SAT is NP-complete.

Stephen Cook (1939-)

Leonid Levin (1948-)

Richard C. Karp (1935-)

3-SAT Input: A boolean formula *F* in 3-CNF Question: Is *F* satisfiable?

Theorem (Karp, 1972)

3-SAT is NP-complete.

Consequence

in P

If one finds a polynomial-time algorithm for **SAT** or **3-SAT**, there is one for each problem of NP! (and we win 1 million US\$) 23/26

Recall : P_1 is NP-hard = all problems in NP admit a polynomial reduction to P_1

Proposition

Recall : P_1 is NP-hard = all problems in NP admit a polynomial reduction to P_1

Proposition

Recall : P_1 is NP-hard = all problems in NP admit a polynomial reduction to P_1

Proposition

Recall : P_1 is NP-hard = all problems in NP admit a polynomial reduction to P_1

Proposition

3-SAT

Input: A boolean formula *F* in 3-CNF Question: Is *F* satisfiable?

 $Example: (x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_3)$

3-Coloring Input: A graph *G* Question: Is *G* 3-colorable?

Theorem (Garey, Johnson, Stockmeyer, 1976)

3-Coloring is NP-complete.

3-SAT

Input: A boolean formula *F* in 3-CNF Question: Is *F* satisfiable?

Example : $(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_3)$

3-Coloring Input: A graph *G* Question: Is *G* 3-colorable?

Theorem (Garey, Johnson, Stockmeyer, 1976)

3-Coloring is NP-complete.

1) **3-Coloring** Is in NP : for a 3-coloring of G (= the certificate), one can check in polynomial time if it is valid (for each edge, check that the colors are distinct).

3-SAT

Input: A boolean formula *F* in 3-CNF Question: Is *F* satisfiable?

Example : $(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_3)$

3-Coloring Input: A graph *G* Question: Is *G* 3-colorable?

Theorem (Garey, Johnson, Stockmeyer, 1976)

3-Coloring is NP-complete.

2) **3-Coloring** is NP-hard : build a polynomial reduction from **3-SAT** to **3-Coloring** : for every 3-CNF formula *F*, create a graph G(F) such that *F* is satisfiaable $\Leftrightarrow G(F)$ is 3-colorable.

3-SAT

Input: A boolean formula *F* in 3-CNF Question: Is *F* satisfiable?

Example : $(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_3)$

3-Coloring Input: A graph *G* Question: Is *G* 3-colorable?

Theorem (Garey, Johnson, Stockmeyer, 1976)

3-Coloring is NP-complete.

2.1) model a variable x_i :

3-SAT

Input: A boolean formula *F* in 3-CNF Question: Is *F* satisfiable?

Example : $(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_3)$

3-Coloring Input: A graph *G* Question: Is *G* 3-colorable?

Theorem (Garey, Johnson, Stockmeyer, 1976)

3-Coloring is NP-complete.

2.1) model a variable x_i :

2.2) model a clause $(x_i \lor x_j \lor x_k)$:

3-SAT

Input: A boolean formula *F* in 3-CNF Question: Is *F* satisfiable?

Example : $(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_3)$

3-Coloring Input: A graph *G* Question: Is *G* 3-colorable?

Theorem (Garey, Johnson, Stockmeyer, 1976)

3-Coloring is NP-complete.

2.3) Put everything together!

3-SAT

Input: A boolean formula *F* in 3-CNF Question: Is *F* satisfiable?

Example : $(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_3)$

3-Coloring Input: A graph *G* Question: Is *G* 3-colorable?

Theorem (Garey, Johnson, Stockmeyer, 1976)

3-Coloring is NP-complete.

3-SAT

Input: A boolean formula *F* in 3-CNF Question: Is *F* satisfiable?

Example : $(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_3)$

3-Coloring Input: A graph *G* Question: Is *G* 3-colorable?

Theorem (Garey, Johnson, Stockmeyer, 1976)

3-Coloring is NP-complete.

If F is satisfiable, then G(F) is 3-colorable

3-SAT

Input: A boolean formula *F* in 3-CNF Question: Is *F* satisfiable?

Example : $(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_3)$

3-Coloring Input: A graph *G* Question: Is *G* 3-colorable?

Theorem (Garey, Johnson, Stockmeyer, 1976)

3-Coloring is NP-complete.

If F is satisfiable, then G(F) is 3-colorable

3-SAT

Input: A boolean formula *F* in 3-CNF Question: Is *F* satisfiable?

Example : $(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_3)$

3-Coloring Input: A graph *G* Question: Is *G* 3-colorable?

Theorem (Garey, Johnson, Stockmeyer, 1976)

3-Coloring is NP-complete.

If G(F) is 3-colorable, then F is satisfiable

3-SAT

Input: A boolean formula *F* in 3-CNF Question: Is *F* satisfiable?

Example : $(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_3)$

3-Coloring Input: A graph *G* Question: Is *G* 3-colorable?

Theorem (Garey, Johnson, Stockmeyer, 1976)

3-Coloring is NP-complete.

If G(F) is 3-colorable, then F is satisfiable

3-SAT

Input: A boolean formula *F* in 3-CNF Question: Is *F* satisfiable?

Example : $(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_3)$

3-Coloring Input: A graph *G* Question: Is *G* 3-colorable?

Theorem (Garey, Johnson, Stockmeyer, 1976)

3-Coloring is NP-complete.

If G(F) is 3-colorable, then F is satisfiable

Super Mario

Super Mario Input: A Super Mario level. Question: Can Mario go from start to finish?

Theorem (Aloupis, Demaine, Guo, 2012)

Super Mario is NP-hard.

Reduction from **3-SAT** :

