Graph algorithms lecture of Florent Foucaud
(Master ICS, ISIMA)

Notes by Lucas Lorieau

December 2024

1 Dominating Set for Intervals

Suppose G is an interval graph with vertex set V' corresponding to a set of intervals Z. We prove that the
following algorithm solves Dominating Set in polynomial time on G:

o Sort intervals by increasing end time, i.e. Z = {I; | i < n}. We denote by v; the vertex of G associated
to IZ

e While there exist an interval not covered by the current solution, consider the first interval I; that is
not already covered. Pick in the solution the last interval in the considered ordering that covers I;. (In
the graph G, this corresponds to picking the last vertex adjacent to v;).

Proof. Consider D# the dominating set obtained by the algorithm above and D* an optimal solution with
the largest common prefix with D4 (with respect to the ordering considered in the algorithm). We build
a new solution D** that will be optimal and share a bigger prefix with D#, thus creating a contradiction.
Consider I} # I the first intervals different in both solutions. We define D** = D* \ I} U I{!. This set
of intervals is also a solution : indeed by definition of I}, any interval that is not covered by the common
prefix of both solution but covered by I} is also covered by I ,?. Furthermore, this new solution is of the size
of D*, thus it is an optimal one with a bigger common prefix with D4. O

This proof technique based on maximum common prefix is very useful and can be applied to a variety of
problems on interval graphs.

2 Trees and Treewidth

2.1 Independent Set on trees

Consider a r-rooted tree T of depth 1. Intuitively, choosing leaves for an independent set will be better than
choosing only the root r (which is by definition adjacent to all other vertices of the tree). This intuition is
the foundation of an algorithm based on dynamic programming that solves the problem on trees:

e S=10
° M:@
« While M U S # V(T):

2 TREES AND TREEWIDTH 2

— Pick aleaf in T\ (M US) and add it to S
— Mark its parent by adding it to M

The proof for this algorithm is fairly simple, and will not be described here since the next algorithm
solves a generalization of this problem.

Consider now the weighted version of Independent Set : for some weight function w : V' — N, compute
the independent set S of maximum weight in a given graph (here, we keep focusing on trees).

The following observation will be used to define a similar dynamic programming algorithm solving this
generalised version of the algorithm. Consider some vertex v of the tree and denote by 7;, the subtree rooted
in v. Either it is a part of the solution, and none of its children will be in the solution, or it is not a part of
the solution and its children may or not be in the solution. Based on this, we define two inductive functions
that will be useful to define the algorithm:

i(v, 1) = maximum weight of an Independant Set of T, with v ¢ S

i(v,0) = maximum weight of an Independant Set of T,

The goal of the algorithm is then to compute v(r,0). To do so, we can consider the following rules:

o if v is a leaf:

—i(v,1)=0
— i(v,0) = w(v)
e if v is not a leaf, let vq,...,v; be the children of v. Then

—i(vi1) = 27, i(v5,0)
— i(v,0) = max {w(v) + 8 iy, 1), (o, 1)}

The algorithm is then fairly simple: we compute the two values i(v,0) and (v, 1) for each vertex in a
bottom-up fashion, which yields an algorithm with complexity O(n).

Proof of correctness. By induction on the height of T,:
o if v is a leaf, the base cases are clearly correct

o if v has children vy, ..., vy, by induction the values i(v;, out) for any j € [k] and out € [0, 1] are correct.

Let us now prove the correctness of formula i(v,1). In each subtree T, consider a maximum weight

S; with value i(v;,0). Construct S = U?:l S; and remark that w(S) = 2?21 i(v;,0). This means

that i(v,1) > Z?:o i(v,1). On the other hand, consider now S* an optimal independent set of T, and
. k . koo
consider the sets 57 = S*NT,;. By iduction, w(S}) < i(v;,0), sow(S*) = > w(S7) < 325, i(v;,0).
The same type of reasoning can be applied to the second formula by constructing two independent
set St = {v} U U§=1 S} where Sj1 is a maximum weight independent set of T, not containing v,
and S? = Ule S? where S7 is a maximum weight independent set of T, to prove that i(v,0) >
max {w(S 1),w(5’2)}. The remaining inequality is proven by also taking an optimal independent set
S* of T, and using a similar case analysis on whether v belongs to S* or not. O

2 TREES AND TREEWIDTH 3

2.2 Tree decompositions and Tree Width

We have seen that Dynamic Programming can be very efficient to design algorithm on trees. A natural
question that one can ask from the previous observation is the following : is it possible to adapt and
generalize DP algorithms to graphs that are “similar” to trees? We will in the following describe some
notions of “similarity to trees" and see how to adapt DP techniques with respect to said notions.

Definition 1 (k-tree). Let k > 1 be an integer.
e The complete graph Ky, is a k-tree

e a k-tree can be obtained by another k-tree by selecting a k-clique C of G and by adding a new vertex
adjacent to all vertices of C

As a remark, 1-trees are exactly trees (thus the notion of “similarity" to trees). In fact, these types
of graphs look like a “tree of cliques”: by contracting the cliques that were selected during the inductive
construction of the graph, one obtains a tree. Furthermore, every k-tree is chordal since it has a simplicial
elimination scheme.

Definition 2 (partial k-tree). A graph is a partial k-tree if it is a subgraph of a k-tree.

For instance, forests are partial 1-trees, cycles are partial 2-trees, and in general every graph of order n
is a partial n-tree.

Definition 3 (Tree decomposition (Robertson-Seymour 1984)). Let G be a graph. A tree decomposition
of G is a couple (T,B) composed of a tree T and a set of vertex bags B containing a bag X, for each node
v e V(T) so that:

o (every vertex of G belongs to some bag of B)

o for every two vertices a,b € V(G) adjacent in G, there exists a node v of T so that a and b belong to
Xo

e the set of nodes of T whose bag contains a given vertex a of G forms a connected subtree of T'.

Furthermore, we call the width of a tree decomposition the size of the largest bag of the decomposition
minus one. The tree-width of the graph is the minimum width of a tree decomposition of G.

Few properties / theorems concerning tree decompositions:
Theorem 1. G has treewidth at most k if and only if G is a partial k-tree.

Proof sketch. If G is a partial k-tree, we get the tree decomposition by considering the order of construction
of the graph.

For the converse, one can use induction on the size of the tree decomposition, remove a leaf node, and
proceed. In the k-tree of which G is a subgraph, every bag is a clique. O

Proposition 1. Fvery clique of a graph G is contained in a bag of any tree decomposition of G.

Proof sketch. Take three vertices forming a triangle, and look at their corresponding subtrees of the tree
decomposition 7. One can check that the three subtrees must intersect in one node of T' (this property is
called Helly’s property for subtrees of a tree). By induction, all the subtrees corresponding to the vertices
of a clique can be shown to intersect in a same node of T': its bag contains the clique. O

2 TREES AND TREEWIDTH 4

2.3 Dynamic programming on a tree decomposition

Given a tree decomposition of a graph G of width w (bags of size at most w + 1), the goal is to design an
algorithm to solve the independent set problem on general graphs using a similar technique to the one used
for trees. We will obtain through the dynamic programming technique an FPT algorithm (algorithm with
complexity O(f(w)-n¢) for f an increasing function and ¢ a constant), i.e. an algorithm that is polynomial
if we bound a certain parameter of the input, here the width of the decomposition.

The idea is to use the tree structure given by the tree decomposition of G to obtain such an algorithm.
Let us root the tree of the decomposition of G in some node r. Consider a node v of the tree decomposition
T and let us denote by G, the subgraph of G induced by bags associated with the subtree of 7 rooted in v.
We will apply a dynamic procedure depending on the current bag X, and a .S C X, a subset of the current
bag: we will compute the best independent set of GG, containing the vertices of S.

Let us define i(v, S) = largest size of an independent set of G,, so that the intersection of this independent
set with X, is exactly S. By convention, if S is not an independent set, then i(v, S) = —co. Then, the goal
of the algorithm is to compute maxgcx, {i(r,S)}. To do so, we use the following rules:

o if v is a leaf node of T, then i(v,S) = |S] if S is a independent set and —oo otherwise by convention.

e if v is an internal node with children vy, ..., v :

k
Z(U’S):|S|+Z S}“CH}?({Z(Ujas/)_‘SﬁS/‘}

j=1 .
S'NX,=5NX,,

Running time: computing i(v, S) for any subset S of X, takes Q2+ - |[V(T)|) = O(2* - n) so total
running time is O(2% - n?).

Proof of correctness. We will use the same type of proof that was used for the algorithm on trees.

— For leaves, the correctness is direct
— By induction on the height of the considered tree decomposition, suppose the root v currently
considered has children vy,...,v;. As for the algorithm on trees, we will show that i(v,S) >
|S] + E?zl max gcx, 1i(v;,S8") —|SNS'|} first, and then prove the other inequality to
- J
S’mxl,:snxl,j
obtain the equality.
* The “at most” part is as before a constructive part. Let ST be an optimal independent set of
G, so that S¥ N X, = SN X,,. By induction, || = i(v;, S; N X,,;). Take S* = U?=1 S5
it is an independent set (because X, is a separator in 7" and all S7’s agree on X,) of size

k
1S =181+ > (1S5 = 157 N SI)

j=1

k
=S|+ (i(v;, 8; N X,,) — 85 N S))

j=1

=S|+ max i(v;, S"Y = |SNS
5] ; Jax {i(v,8") = | |}
S'mX,U:SnX,Uj

2 TREES AND TREEWIDTH)

Because S* is an independent set of G, with S* N X, = S, we have that i(v,S) > |S*| =
S|+ Yo max gcx, {iv,8) — 1SN S}
S'NXy=5NXo,
* The “at least” part is proven by taking an optimal independent set Sg, of G, so that Sg N
X, = 5. Consider then the intersections of this independent set with the graphs G, and
bound those as it was made in the proof for the algorithm on trees. O

	Dominating Set for Intervals
	Trees and Treewidth
	Independent Set on trees
	Tree decompositions and Tree Width
	Dynamic programming on a tree decomposition

