Recherche opérationnelle

DUT Info 2e année, parcours A

Programmation linéaire en nombres entiers

Florent Foucaud

Solution pas entière?

• Solution d'un PL : pas forcément des valeurs entières.

Solution pas entière?

- Solution d'un PL : pas forcément des valeurs entières.
- Dans de nombreux contextes, nos variables doivent prendre une solution entière (exemple : nombre de machines, groupes pour l'emploi du temps, etc).

Solution pas entière?

- Solution d'un PL : pas forcément des valeurs entières.
- Dans de nombreux contextes, nos variables doivent prendre une solution entière (exemple : nombre de machines, groupes pour l'emploi du temps, etc).
- Pour cela on va modéliser des programmes linéaires en nombres entiers (ou mixtes)

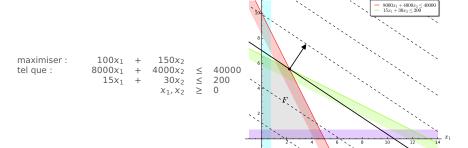
Exemple: presser ou tourner

Exemple 1

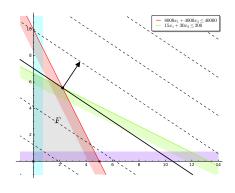
Un start-upper dispose d'un budget de 40k€ pour équiper son atelier de 200m² avec des presses et des tours.

- Une presse coûte 8k€, un tour 4k€.
- Une presse prend 15 m², un tour prend 30 m².
- Profit journalier d'une presse : 100 €, celui d'un tour : 150 €.

Presser ou Tourner



Simplexe



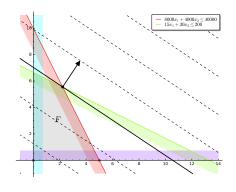
<i>x</i> ₃	=	40000	_	8000x ₁	_	4000x ₂
x ₄	=	200	_	$15x_1$	_	$30x_{2}$
Z	=	0	+	100x ₁	+	150x ₂

Entre : x_1 . Sort : x_3 .

Entre : x_2 . Sort : x_4 .

<i>x</i> ₁	=	20 9	_	$\frac{1}{6000}X_3$	+	$\frac{1}{45}X_4$
x ₂	=	<u>50</u> 9	+	$\frac{1}{12000}X_3$	_	$\frac{2}{45}X_4$
Z	=	9500 9	_	$\frac{1}{240}X_3$	_	$\frac{40}{9}X_4$

Simplexe

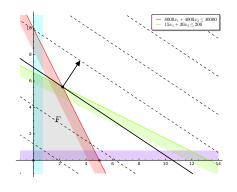


Entre: x_1 . Sort: x_3 .

Entre: x_2 . Sort: x_4 .

Solution optimale : $z = \frac{9500}{9} \approx 1055.55$, avec $(x_1, x_2) = \left(\frac{20}{9}, \frac{50}{9}\right) \simeq (2.22, 5.56)$

Simplexe



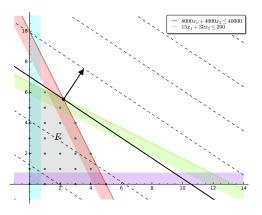
Entre : x_1 . Sort : x_3 .

Entre: x_2 . Sort: x_4 .

Solution optimale :
$$z = \frac{9500}{9} \approx 1055.55$$
, avec $(x_1, x_2) = \left(\frac{20}{9}, \frac{50}{9}\right) \simeq (2.22, 5.56)$

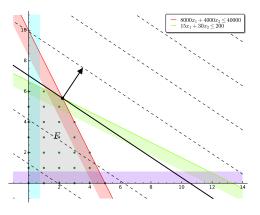
Mince : solution non entière ! \rightarrow On ne peut pas acheter 2.22 presses et 5.56 tours.

Solution non entière : que faire?



Solution optimale : $z = \frac{9500}{9} \approx 1055.55$, avec $(x_1, x_2) = (\frac{20}{9}, \frac{50}{9}) \approx (2.22, 5.56)$

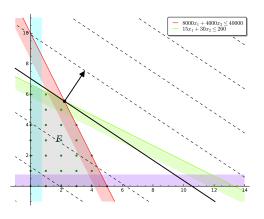
Solution non entière : que faire?



Solution optimale :
$$z = \frac{9500}{9} \approx 1055.55$$
, avec $(x_1, x_2) = (\frac{20}{9}, \frac{50}{9}) \approx (2.22, 5.56)$

Si on arrondit vers le bas la solution : on obtient (2, 5) et z = 950.

Solution non entière : que faire?



Solution optimale :
$$z = \frac{9500}{9} \approx 1055.55$$
, avec $(x_1, x_2) = (\frac{20}{9}, \frac{50}{9}) \approx (2.22, 5.56)$

Si on arrondit vers le bas la solution : on obtient (2,5) et z=950.

Autres solutions entières :

$$(3, 4)$$
 avec $z = 900$

$$(0, 6)$$
 avec $z = 900$

$$(1, 6)$$
 avec $z = 1000$

Comment faire en général?

- Dans notre petit exemple, il y a un petit nombre de combinaisons possibles, on pourrait juste les énumérer et calculer celle qui est la plus intéressante.
- Impossible en pratique : même si les variables sont à valeur dans {0,1} pour x, on aurait 2^x cas à regarder.
 (Estimation du nombre de protons dans l'univers : 10⁸⁰ < 2²⁶⁶ nombre d'Eddington)

Comment faire en général?

- Dans notre petit exemple, il y a un petit nombre de combinaisons possibles, on pourrait juste les énumérer et calculer celle qui est la plus intéressante.
- Impossible en pratique : même si les variables sont à valeur dans $\{0,1\}$ pour x, on aurait 2^x cas à regarder. (Estimation du nombre de protons dans l'univers : $10^{80} < 2^{266}$ — nombre d'Eddington)

Idée : On va couper l'espace de recherche en petit bouts

On choisit une variable x non-entière dans la solution. On regarde les 2 problèmes produits en forçant x à prendre soit une valeur inférieure, soit une valeur supérieure (brancher), et on réitère.

Brancher

problème initial

maximiser: $100x_1 + 150x_2$

 $8000x_1 + 4000x_2 \le 40000$ $15x_1 + 30x_2 \le 200$

 $x_1, x_2 \ge 0$

solution optimale pas entière $\bar{x} = (\frac{20}{9}, \frac{50}{9}) \simeq (2.22, 5.56)$

branche gauche

maximiser: $100x_1 + 150x_2$ tel aue : $8000x_1 + 4000x_2 \le 40000$

 $15x_1 + 30x_2 \le 200$ $x_2 \leq 5$

 $x_1, x_2 \ge 0$

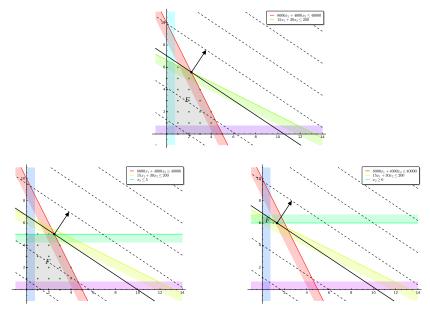
branche droite

maximiser: $100x_1 + 150x_2$

 $8000x_1 + 4000x_2 < 40000$

 $15x_1 + 30x_2 \le 200$ $x_2 \geq 6$ $x_1, x_2 \ge 0$

Brancher (graphiquement)



Borner

problème initial

maximiser: $100x_1 + 150x_2$

 $8000x_1 + 4000x_2 \le 40000$ $15x_1 + 30x_2 \le 200$

 $x_1, x_2 \ge 0$

branche gauche

maximiser: $100x_1 + 150x_2$

 $8000x_1 + 4000x_2 \le 40000$ $15x_1 + 30x_2 \le 200$

 $x_2 \leq 5$ $x_1, x_2 \ge 0$

 $z^* = 1000$

branche droite

maximiser: $100x_1 + 150x_2$ $8000x_1 + 4000x_2 \le 40000$

 $15x_1 + 30x_2 \le 200$ $x_2 \geq 6$

 $x_1, x_2 > 0$

 $z^* = \frac{3100}{2} \approx 1033$

Brancher et Borner (Branch and Bound)

Exploration d'un arbre

- On découvre des branches en ajoutant de nouvelles contraintes pour une variable (au dessus/ en dessous d'une valeur non entière dans la solution précédente).
- Borne inf au cours du temps : meilleur z d'une solution entière rencontrée.
- Borne sup (à un noeud) : z* pour le problème de ce noeud (problème relâché puisque pas forcément une solution entière).
- On ignore définitivement une branche si elle n'a pas de solution, ou bien si la borne sup associée est plus basse que la borne inf.
- On peut s'arrêter si on trouve une solution entière optimale à un noeud qui a un z* plus grand ou égal que toutes les bornes sups des autres noeuds.

11/12

Note historique

La méthode "branch and bound" est développée en 1960 par deux chercheuses à Londres, Alison Harcourt (née Doig) et Ailsa Land (née Dicken).

Alison G. Harcourt

Ailsa H. Land