UR
université Clermont
Auvergne

Objectives

1. Contruct an impersonation attack on CB scheme.
2. Formalize how to consider the filter in such attack.
3. Show attacks on some projection-based cancelable biometric schemes.

Introduction

- Biometric authentication is widely used.
- It is more convenient and quicker.
- Biometric characteristics cannot be lost.
- Biometric characteristics cannot be forgotten.
- This solution are not exempt from vulnerabilities.
- The projection-based cancelable biometric schemes are very common.
- Some theoretical attacks are provided.

Materials

- Python 3.9.
- Gurobi 9.1.2.
- Debian 11
- EPYC 7F72 dual processor (48 cores)
- 256GB RAM.

Attacked Scheme

- The attacked CB instantiation, described in our Algorithm, is based on a uniform random projection (URP). Such a projection serves as an embedding of a high-dimensional space into a space of much lower dimension while preserving approximately the distances between all pairs of points.
- Here is the attacked algorithm based on Sobel filter:

```
Algorithm 1 [URP-SOBEL]
    Inputs: biometric data I; token parameter P
    Output: BCV vector T = (t , , ., tm)
    1: Apply Sobel filter on I to produce an n-sized feature vector:
    F=(fl, .., f}\mp@subsup{f}{n}{})
2: Generate with the token P}\mathrm{ a family }V\mathrm{ of }m\mathrm{ pseudorandom
    vectors }\mp@subsup{V}{1}{},\ldots,\mp@subsup{V}{m}{}\mathrm{ of size }n\mathrm{ according to a uniform law
    U}([-0.5,0.5])
    3: Arrange the family V}\mathrm{ as a matrix }M\mathrm{ of size n }\timesm\mathrm{ .
    4: Compute T}\mathrm{ as the matrix-vector product }F\times
    5: for }\mp@subsup{t}{i}{}\mathrm{ in }T\mathrm{ do
    if }\mp@subsup{t}{i}{}<0\mathrm{ then }\mp@subsup{t}{i}{}=0\mathrm{ else }\mp@subsup{t}{i}{}=
    7: end for
    8: return T
```


Mathematical Section

- Assume that $I_{A}=\left(o_{i, j}\right)_{n \times m}$ is the attacker's original image, $I^{\prime}=\left(x_{i, j}^{\prime}\right)_{n \times m}$ the modified original image and $X=\left(x_{i, j}\right)_{n \times m}$ its augmented form. Let \mathcal{K}_{1} be all indices where the template is equal to 0 and \mathcal{K}_{2} all other indices. Let $M=\left(a_{i, j}\right)_{(n * m) \times \ell}$ be the projection matrix. Let $Y_{\text {flat }}$ be the flattened form of the matrix Y where rows are concatenated in a single vector.
- The attack consists of solving following problem for Sobel filter:
\triangleright Minimize: $\left\|X-I_{A}\right\|^{2}$
\triangleright Subject to the following constraints:

$$
\left\{\begin{array}{l}
Y^{2}=\left[\left(G_{1} * X\right)^{2}+\left(G_{2} * X\right)^{2}\right] \\
Y_{\text {flat }} M_{i}<0, \forall i \in \mathcal{K}_{1} \\
Y_{\text {flat }} M_{j} \geq 0, \forall j \in \mathcal{K}_{2} \\
x_{i, j} \in\{0, \ldots, 255\}, \forall(i, j)
\end{array}\right.
$$

Sobel Filter Example

Beginning of Result

Image Size	Mean Distance	Mean Time (s)
2×2	99	0.14
2×3	117	32.76
3×3	133	150.0
4×3	144	146.67
4×4	177	150.0

Table 1:Summary of the experiments for a 50 -bit template.

Conclusion

- Several authentication attacks on a popular CB scheme has been presented
- Attacks are conducted on a complete chain of treatments.
- Two ways for the attacker to impersonate several legitimate persons has been presented.
- The modification of the attacker's image is minimal.

Future Work and How to Ensure the Scaling of the Attack

- Code optimization.
- System relaxation.

Acknowledgments

The authors acknowledges the support of the French Agence Nationale de la Recherche (ANR), under grant ANR-20-CE39-0005 (project PRIVABIO).

Contact Information

- Web: PRIVABIO Project on: https://privabio.limos.fr/
- Email: axel.durbet@uca.fr

