

Authentication Attacks on Projection Based Cancelable Biometric Schemes DURBET Axel, GROLLEMUND Paul-Marie, LAFOURCADE Pascal, MIGDAL Denis and THIRY-ATIGHEHCHI

Université Clermont-Auvergne, CNRS, Mines de Saint-Étienne, LIMOS, LMBP France

Objectives

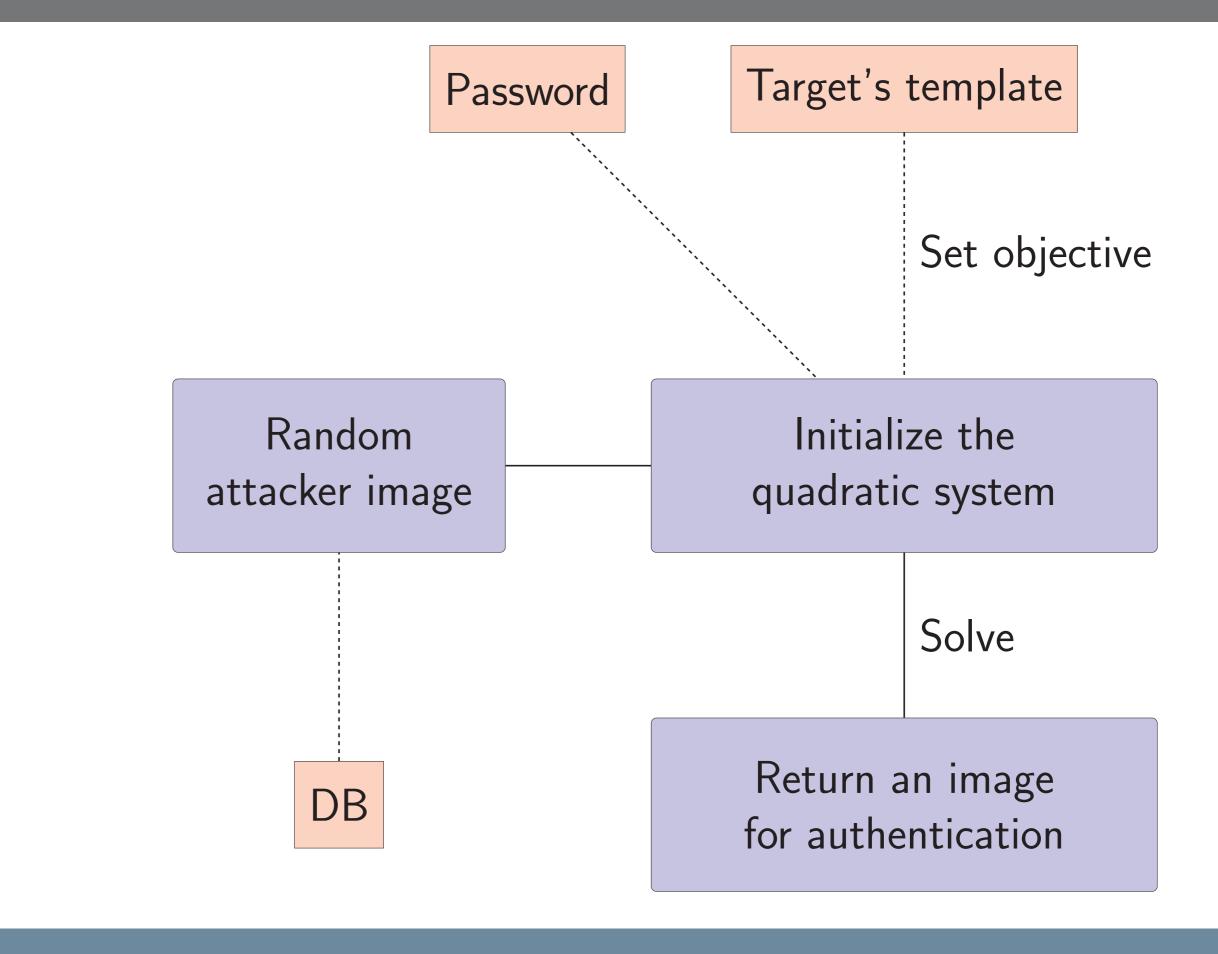
- 1. Contruct an impersonation attack on CB scheme.
- 2. Formalize how to consider the filter in such attack.
- 3. Show attacks on some projection-based cancelable biometric schemes.

Introduction

- Biometric authentication is widely used.
- ► It is more convenient and quicker.
- Biometric characteristics cannot be lost.

Sobel Filter Example

- Biometric characteristics cannot be forgotten.
- ► This solution are not exempt from vulnerabilities.
- ► The projection-based cancelable biometric schemes are very common.
- Some theoretical attacks are provided.


Materials

- ► Python 3.9.
- ► Gurobi 9.1.2.
- ► Debian 11.
- ► EPYC 7F72 dual processor (48 cores).
- ► 256GB RAM.

Attacked Scheme

The attacked CB instantiation, described in our Algorithm, is based on a uniform random projection (URP). Such a projection serves as an embedding of a high-dimensional space into a space of much lower dimension while preserving approximately the distances between all pairs of points.

Attack Overview

Beginning of Result

Image Cite Maan Dictored Maan Time (c)

► Here is the attacked algorithm based on Sobel filter:

Algorithm 1 [URP-SOBEL]

Inputs : biometric data I; token parameter P**Output :** BCV vector $T = (t_1, \ldots, t_m)$

- 1: Apply Sobel filter on I to produce an n-sized feature vector: $F = (f_1, \ldots, f_n).$
- 2: Generate with the token P a family V of m pseudorandom vectors V_1, \ldots, V_m of size n according to a uniform law $\mathcal{U}([-0.5, 0.5])$.
- 3: Arrange the family V as a matrix M of size $n \times m$.
- 4: Compute T as the matrix-vector product $F \times M$.
- 5: for t_i in T do
- 6: **if** $t_i < 0$ then $t_i = 0$ else $t_i = 1$
- 7: **end for**
- 8: **return** *T*

Mathematical Section

Assume that
$$I_A = (o_{i,i})_{n \times m}$$
 is the attacker's original image, $I' = (x'_{i,i})_{n \times m}$

Image Size	Iviean Distance	iviean Time (s)
2×2	99	0.14
2×3	117	32.76
3×3	133	150.0
4×3	144	146.67
4×4	177	150.0

Table 1:Summary of the experiments for a 50-bit template.

Conclusion

- Several authentication attacks on a popular CB scheme has been presented.
- Attacks are conducted on a complete chain of treatments.
- Two ways for the attacker to impersonate several legitimate persons has been presented.
- ► The modification of the attacker's image is minimal.

Future Work and How to Ensure the Scaling of the Attack

Code optimization.

the modified original image and X = (x_{i,j})_{n×m} its augmented form. Let K₁ be all indices where the template is equal to 0 and K₂ all other indices. Let M = (a_{i,j})_{(n*m)×ℓ} be the projection matrix. Let Y_{flat} be the flattened form of the matrix Y where rows are concatenated in a single vector.
The attack consists of solving following problem for Sobel filter:

▷ Minimize: $\|X - I_A\|^2$

Subject to the following constraints:

$$\left\{egin{array}{l} \mathbf{Y}^2 = \left[(\mathbf{G}_1 * \mathbf{X})^2 + (\mathbf{G}_2 * \mathbf{X})^2
ight] \ \mathbf{Y}_{flat} \mathbf{M}_i < 0, orall i \in \mathcal{K}_1 \ \mathbf{Y}_{flat} \mathbf{M}_j \geq 0, orall j \in \mathcal{K}_2 \ \mathbf{x}_{i,j} \in \{0,\ldots,255\}, orall (i,j) \end{array}
ight.$$

Acknowledgments

The authors acknowledges the support of the French Agence Nationale de la Recherche (ANR), under grant ANR-20-CE39-0005 (project PRIVABIO).

Contact Information

Web: PRIVABIO Project on: https://privabio.limos.fr/
 Email: axel.durbet@uca.fr

Full paper in the QR code.