Biometric Terminology 00000

Security Bound

Conclusion 000

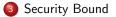
# Near-collisions and their Impact on Biometric Security

# **Axel DURBET**<sup>1</sup>, Paul-Marie GROLLEMUND<sup>2</sup>, Pascal LAFOURCADE<sup>1</sup> and Kevin THIRY-ATIGHEHCHI <sup>1</sup>

<sup>1</sup>Université Clermont-Auvergne, CNRS, Mines de Saint-Étienne, LIMOS, France <sup>2</sup>Université Clermont-Auvergne, CNRS, LMBP, France

> SECRYPT July 12, 2022






| Biometric Terminology | Database Partitionning                  | Security Bound | Conclusion |
|-----------------------|-----------------------------------------|----------------|------------|
| 00000                 | 000000000000000000000000000000000000000 | 000000         | 000        |
| Table of Contents     | 5                                       |                |            |









Biometric Terminology •0000 Database Partitionning

Security Bound

Conclusion 000

# **Biometric Terminology**

| Biometric Terminology | Database Partitionning | Security Bound | Conclusion |
|-----------------------|------------------------|----------------|------------|
| 0000                  | 0000000000000000       | 000000         | 000        |
| Biometric Syste       | m                      |                |            |

#### Biometric data:

- Biological or physical characteristic: fingerprint, DNA, iris, ...
- The collected data are in a metric space.

Enrollment:

- Provide a biometric data, which will be altered and used as a reference.
- Potentially provide a second factor (*e.g.* password, token, ...). Authentication:
  - Provide a fresh biometric data and an optional a second factor.
  - Comparison with the reference data.
  - If the difference is smaller than a threshold  $\epsilon$ , the authentication is a success.

| Biometric Terminology | Database Partitionning | Security Bound | Conclusion |
|-----------------------|------------------------|----------------|------------|
| 0000                  | 000000000000000        | 000000         | 000        |
| Biometric System      |                        |                |            |

Biometric data:

- Biological or physical characteristic: fingerprint, DNA, iris, ...
- The collected data are in a metric space.

Enrollment:

- Provide a biometric data, which will be altered and used as a reference.
- Potentially provide a second factor (*e.g.* password, token, ...). Authentication:
  - Provide a fresh biometric data and an optional a second factor.
  - Comparison with the reference data.
  - If the difference is smaller than a threshold  $\epsilon,$  the authentication is a success.

| Biometric Terminology | Database Partitionning                  | Security Bound | Conclusion |
|-----------------------|-----------------------------------------|----------------|------------|
| 0000                  | 000000000000000000000000000000000000000 | 000000         | 000        |
| Biometric System      |                                         |                |            |

Biometric data:

- Biological or physical characteristic: fingerprint, DNA, iris, ...
- The collected data are in a metric space.

Enrollment:

- Provide a biometric data, which will be altered and used as a reference.
- Potentially provide a second factor (*e.g.* password, token, ...). Authentication:
  - Provide a fresh biometric data and an optional a second factor.
  - Comparison with the reference data.
  - If the difference is smaller than a threshold  $\epsilon$ , the authentication is a success.

| Biometric Terminology | Database Partitionning | Security Bound | Conclusion |
|-----------------------|------------------------|----------------|------------|
| 0000                  | 000000000000000        | 000000         | 000        |
| Feature and Tem       | plate                  |                |            |

#### Feature:

- A feature is a characteristic information of the biometric data.
- Denoted by F = E(I), where E corresponds to the extraction.

Example: fingerprint minutiae, ...

Template:

- Altered (protected) version of the feature.
- Denoted by  $T = \mathcal{T}(P, F) \in \mathbb{F}_2^n$ , where P is a token and F a feature.

| Biometric Terminology | Database Partitionning | Security Bound | Conclusion |
|-----------------------|------------------------|----------------|------------|
| 00000                 | 000000000000000        | 000000         | 000        |
| Feature and T         | emplate                |                |            |

#### -eature and Templat

Feature:

- A feature is a characteristic information of the biometric data.
- Denoted by F = E(I), where E corresponds to the extraction.

Example: fingerprint minutiae, ...

#### Template:

- Altered (protected) version of the feature.
- Denoted by  $T = \mathcal{T}(P, F) \in \mathbb{F}_2^n$ , where P is a token and F a feature.

| Biometric Terminology<br>000●0 | Database Partitionning | Security Bound | Conclusion<br>000 |
|--------------------------------|------------------------|----------------|-------------------|
| Hypothesis                     |                        |                | 000               |

In this framework, we suppose that:

- Templates are uniformly distributed in  $\mathbb{F}_2^n$ .
- There exists a reasonable attack for impersonate one user but unreasonable on a whole database.

| Biometric Terminology<br>0000● | Database Partitionning<br>0000000000000000 | Security Bound<br>000000 | Conclusion<br>000 |
|--------------------------------|--------------------------------------------|--------------------------|-------------------|
| Problematic                    |                                            |                          |                   |
|                                |                                            |                          |                   |
|                                |                                            |                          |                   |
| Notations                      |                                            |                          |                   |
| $D_1$ : Leaked                 | database.                                  |                          |                   |
| $D_2$ : Another                | r database.                                |                          |                   |

Goal:

Find  $D_2$  such that an attacker can impersonate users of  $D_1$ .

If the following inequality is fulfilled:

 $|D_2| \leq |D_1|$ 

Biometric Terminology 00000  Security Bound

Conclusion 000

# **Database Partitionning in Theory**



This algorithm takes as input D a template database and s an integer and returns Cls a partition of D such that  $\forall a, b \in C_i, max(d_H(a, b)) \leq s$ .

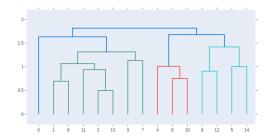
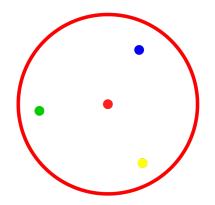


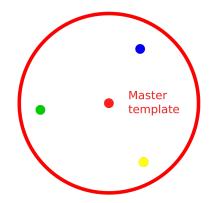

Figure: HAC example.

| Biometric Terminology<br>00000 | Database Partitionning<br>000000000000000 | Security Bound | Conclusion<br>000 |
|--------------------------------|-------------------------------------------|----------------|-------------------|
| Master Template                |                                           |                |                   |
|                                |                                           |                |                   |

#### Definition ( $\epsilon$ -master-template or $\epsilon$ -MT)

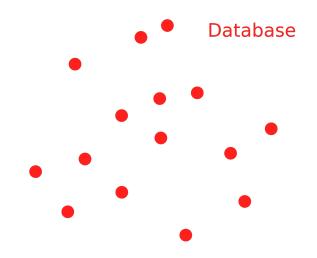

Let  $(\Omega, d)$  be the template space and D a template database. A template  $t \in \Omega$  is an  $\epsilon$ -master-template if  $\forall t' \in D, d(t, t') \leq \epsilon$ .

| Biometric Terminology<br>00000 | Database Partitionning<br>00000000000000 | Security Bound | Conclusion<br>000 |
|--------------------------------|------------------------------------------|----------------|-------------------|
|                                |                                          |                | 000               |
| Master Template                |                                          |                |                   |
|                                |                                          |                |                   |
|                                |                                          |                |                   |
|                                |                                          |                |                   |
|                                |                                          |                |                   |
|                                |                                          |                |                   |
|                                |                                          |                |                   |
|                                |                                          |                |                   |
|                                | •                                        |                |                   |
|                                |                                          |                |                   |
|                                |                                          |                |                   |
|                                |                                          |                |                   |
|                                | •                                        |                |                   |
|                                |                                          |                |                   |
|                                |                                          |                |                   |
|                                | •                                        |                |                   |
|                                |                                          |                |                   |
|                                |                                          |                |                   |
|                                |                                          |                |                   |
|                                |                                          |                |                   |

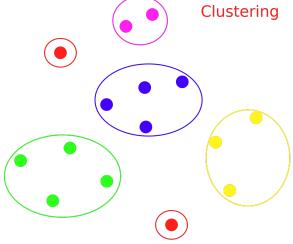

| Biometric Terminology<br>00000 | Database Partitionning<br>000000000000000 | Security Bound<br>000000 | Conclusion<br>000 |
|--------------------------------|-------------------------------------------|--------------------------|-------------------|
| Master Template                |                                           |                          |                   |
|                                | •                                         |                          |                   |

| Biometric Terminology<br>00000 | Database Partitionning<br>0000000000000000000000000000000000 | Security Bound | Conclusion<br>000 |
|--------------------------------|--------------------------------------------------------------|----------------|-------------------|
| Master Template                |                                                              |                |                   |
|                                | •                                                            |                |                   |

| Biometric Terminology | Database Partitionning | Security Bound | Conclusion |
|-----------------------|------------------------|----------------|------------|
| 00000                 | 00000000000000         | 000000         | 000        |
| Master Template       |                        |                |            |




| Biometric Terminology | Database Partitionning | Security Bound | Conclusion |
|-----------------------|------------------------|----------------|------------|
| 00000                 | 00000000000000         | 000000         | 000        |
| Master Template       |                        |                |            |




| Biometric Terminology<br>00000 | Database Partitionning<br>0000€00000000000000000000000000000000 | Security Bound     | Conclusion<br>000 |
|--------------------------------|-----------------------------------------------------------------|--------------------|-------------------|
| Database                       | Partitionning Algorithm                                         |                    |                   |
|                                |                                                                 |                    |                   |
| Ā                              | Igorithm 1: Database partitioning a                             | algorithm          | -                 |
| -<br>C                         | Data: $D, \epsilon$                                             |                    | -                 |
|                                | Sesult: MTS                                                     |                    |                   |
| 1 S                            | et s to $2\epsilon$ .                                           |                    |                   |
|                                | et MTS to [].                                                   |                    |                   |
| 3 W                            | while $D  eq \emptyset$ do                                      |                    |                   |
| 4                              | Compute cluster <i>Cls</i> using <i>D</i> and                   | 5.                 |                   |
| 5                              | foreach cluster c in Cls do                                     |                    |                   |
| 6                              | Search the cover template t for                                 | or c.              |                   |
| 7                              | <b>if</b> a cover template t is found                           | for $c \in C$ then |                   |
| 8                              | Set D to $D \setminus c$ and add t t                            | o MTS.             |                   |
| 9                              | end                                                             |                    |                   |
| 10                             | Set s to $s - 1$ .                                              |                    |                   |
| 11                             | end                                                             |                    |                   |
| 12 <b>e</b>                    | nd                                                              |                    |                   |
| 13 <b>r</b>                    | eturn MTS.                                                      |                    |                   |

| Biometric Terminology | Database Partitionning                  | Security Bound | Conclusion |
|-----------------------|-----------------------------------------|----------------|------------|
| 00000                 | 000000000000000000000000000000000000000 | 000000         | 000        |
| Procedure Illustrat   | tion                                    |                |            |



| Biometric Terminology<br>00000 | Database Partitionning<br>0000000000000000 | Security Bound<br>000000 | Conclusion<br>000 |
|--------------------------------|--------------------------------------------|--------------------------|-------------------|
| Procedure Illu                 | Istration                                  |                          |                   |
|                                |                                            |                          |                   |
|                                |                                            |                          |                   |



| Biometric Terminology<br>00000 | Database Partitionning<br>00000●0000000000 | Security Bound      | Conclusion<br>000 |
|--------------------------------|--------------------------------------------|---------------------|-------------------|
| Procedure III                  |                                            |                     |                   |
|                                |                                            | String<br>Consensus |                   |
|                                |                                            |                     | 13 / 32           |



Biometric Terminology 00000  Security Bound

Conclusion 000

# **Database Partitionning in Practice**

| Closest String Pro    | hlem                   |                |            |
|-----------------------|------------------------|----------------|------------|
| 00000                 | 000000000000000        | 000000         | 000        |
| Biometric Terminology | Database Partitionning | Security Bound | Conclusion |

#### Definition (Closest-String Problem)

Given  $S = \{s_1, s_2, ..., s_m\}$  a set of strings with length n, find a center string t of length m minimizing d such that for every string s in S,  $d_H(s, t) \leq d$ .

#### Definition (Modified Closest-String Problem)

Given  $S = \{s_1, s_2, ..., s_m\}$  a set of strings with length n and d a distance, find a center string t of length m such that for every string s in S,  $d_H(s, t) \le d$ .

#### Theorem (MCSP is NP-hard)

The modified closest-string problem is NP-hard.

Biometric Terminology 00000 Database Partitionning 00000000000000000 Security Bound

Conclusion 000

# How to solve MCSP problem ?

| Biometric Terminology | Database Partitionning | Security Bound | Conclusion |
|-----------------------|------------------------|----------------|------------|
| 00000                 | 000000000000000        | 000000         | 000        |
| Formulating an IF     | D                      |                |            |

Solve the following IP (Integer Program) with k the number of targeted clients and  $v_i$  their templates:

 $\left\{egin{aligned} &d_{H}(p,v_{1})\leq\epsilon\ dots\ &d_{H}(p,v_{k})\leq\epsilon\ &d_{H}(p,v_{k})\leq\epsilon \end{aligned}
ight.$ 

| Biometric Terminology | Database Partitionning | Security Bound | Conclusion |
|-----------------------|------------------------|----------------|------------|
| 00000                 | 0000000000000000       | 000000         | 000        |
|                       |                        |                |            |

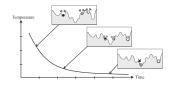
#### System Reduction Theorem

#### Theorem (System Reduction)

For a given template database D and for a given  $v \in D$ , consider  $L = \{p \in \mathbb{F}_2^n | AN \le \epsilon - d(v)\}$  with  $N = n_v^I$ ,  $\epsilon = (\epsilon, \dots, \epsilon)^T$ ,  $n_{v,i}$  denotes  $d_{K_i}(p, v)$ ,  $n_v^I$  denotes the parameters vector  $(n_{v,1}, \dots, n_{v,|I|})$  and  $A = (a_{i,j})$  a matrix of size  $|I| \times |D|$  whose the  $(i, j)^{\text{th}}$  element is

$$a_{i,j} = egin{cases} 1 & ext{if } d_{K_j}(v_1,v_i) = 0 \ -1 & ext{if } d_{K_j}(v_1,v_i) = |K_j| \end{cases}$$

Then, L = C the  $\epsilon$ -cover-template-set for D.


| Biometric Terminology | Database Partitionning | Security Bound | Conclusion |
|-----------------------|------------------------|----------------|------------|
| 00000                 | 00000000000000000      | 000000         | 000        |
| SANN                  |                        |                |            |

• Space:  $\mathcal{N} = \prod_{k=1}^{|I|} \{0, \dots, \min(\epsilon, |\mathcal{K}_k|)\}$ 

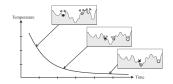
• Energy:  

$$E(N) = \sum_{i=1}^{|I|} f((\epsilon - d(v) - AN)_i)$$
with  $f(x) = \min(0, x)$ .

- *Cooling Schedule:* Linear decreasing temperature.
- *Proposal distribution:* The neighbors set.
- *Termination:* Reaches the maximum iteration number, or if a solution is found.



| Biometric Terminology | Database Partitionning                  | Security Bound | Conclusion |
|-----------------------|-----------------------------------------|----------------|------------|
| 00000                 | 000000000000000000000000000000000000000 | 000000         | 000        |
| SANN                  |                                         |                |            |


• Space:  

$$\mathcal{N} = \prod_{k=1}^{|I|} \{0, \dots, \min(\epsilon, |K_k|)\}$$

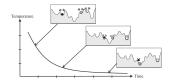
• Energy:  

$$E(N) = \sum_{i=1}^{|I|} f((\epsilon - d(v) - AN)_i)$$
with  $f(x) = \min(0, x)$ .

- *Cooling Schedule:* Linear decreasing temperature.
- *Proposal distribution:* The neighbors set.
- *Termination:* Reaches the maximum iteration number, or if a solution is found.



| Biometric Terminology | Database Partitionning                  | Security Bound | Conclusion |
|-----------------------|-----------------------------------------|----------------|------------|
| 00000                 | 000000000000000000000000000000000000000 | 000000         | 000        |
| SANN                  |                                         |                |            |


• Space:  

$$\mathcal{N} = \prod_{k=1}^{|I|} \{0, \dots, \min(\epsilon, |K_k|)\}$$

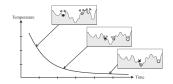
• Energy:  

$$E(N) = \sum_{i=1}^{|I|} f((\epsilon - d(v) - AN)_i)$$
with  $f(x) = \min(0, x)$ .

- *Cooling Schedule:* Linear decreasing temperature.
- *Proposal distribution:* The neighbors set.
- *Termination:* Reaches the maximum iteration number, or if a solution is found.



| Biometric Terminology | Database Partitionning | Security Bound | Conclusion |
|-----------------------|------------------------|----------------|------------|
| 00000                 | 0000000000000000       | 000000         | 000        |
| SANN                  |                        |                |            |


• Space:  

$$\mathcal{N} = \prod_{k=1}^{|I|} \{0, \dots, \min(\epsilon, |K_k|)\}$$

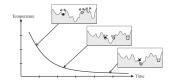
• Energy:  

$$E(N) = \sum_{i=1}^{|I|} f((\epsilon - d(v) - AN)_i)$$
with  $f(x) = \min(0, x)$ .

- *Cooling Schedule:* Linear decreasing temperature.
- *Proposal distribution:* The neighbors set.
- *Termination:* Reaches the maximum iteration number, or if a solution is found.



| Biometric Terminology | Database Partitionning | Security Bound | Conclusion |
|-----------------------|------------------------|----------------|------------|
| 00000                 | 0000000000000000       | 000000         | 000        |
| SANN                  |                        |                |            |


• Space:  

$$\mathcal{N} = \prod_{k=1}^{|I|} \{0, \dots, \min(\epsilon, |K_k|)\}$$

• Energy:  

$$E(N) = \sum_{i=1}^{|I|} f((\epsilon - d(v) - AN)_i)$$
with  $f(x) = \min(0, x)$ .

- *Cooling Schedule:* Linear decreasing temperature.
- *Proposal distribution:* The neighbors set.
- *Termination:* Reaches the maximum iteration number, or if a solution is found.



| Biometric Terminology | Database Partitionning                  | Security Bound | Conclusion |
|-----------------------|-----------------------------------------|----------------|------------|
| 00000                 | 000000000000000000000000000000000000000 | 000000         | 000        |
| Performance           |                                         |                |            |

| n  | $\epsilon$ | #clients | Time (ms) | n  | $\epsilon$ | #clients | Time (ms) | п  | $\epsilon$ | #clients | Time (ms) |
|----|------------|----------|-----------|----|------------|----------|-----------|----|------------|----------|-----------|
| 20 |            |          | 1592      |    | 5          |          | 24949     |    |            | 90       | 11087     |
| 30 | 10         | 50       | 2428      | 70 | 15         | 200      | 20978     | 70 | 10         | 130      | 18330     |
| 40 |            |          | 3887      |    | 25         |          | 29089     |    |            | 170      | 20887     |

Figure: IP approach performance.

| n  | $\epsilon$ | #clients | Error | Time | n  | $\epsilon$ | #clients | Error | Time | п  | $\epsilon$ | #clients | Error | Time |
|----|------------|----------|-------|------|----|------------|----------|-------|------|----|------------|----------|-------|------|
|    |            |          | in %  | (ms) |    |            |          | in %  | (ms) |    |            |          | in %  | (ms) |
| 20 |            |          | 0.64  | 17   |    | 5          |          | 0.00  | 36   |    |            | 90       | 0.14  | 12   |
| 30 | 10         | 50       | 0.00  | 1    | 70 | 15         | 200      | 0.00  | 36   | 70 | 10         | 130      | 0.00  | 22   |
| 40 |            |          | 0.05  | 1    |    | 25         |          | 0.00  | 40   |    |            | 170      | 0.00  | 31   |

Figure: Stochastic approach performance.

Database Partitionning

Security Bound

Conclusion 000

### Approach Comparisons

#### IP approach

Strengths:

- No error possible.
- Easy to set up.

Weaknesses:

Slow.

#### Stochastic approach

Strengths:

Fast.

Weaknesses:

- Could miss a master template.
- Hard to set up.

| Biometric Terminology | Database Partitionning                  | Security Bound | Conclusion |
|-----------------------|-----------------------------------------|----------------|------------|
| 00000                 | 000000000000000000000000000000000000000 | 000000         | 000        |
|                       |                                         |                |            |

| $\sim$ |    |              |            |   |
|--------|----|--------------|------------|---|
|        | ٦ŀ | $\mathbf{n}$ | Performanc | 6 |
|        |    | Jai          |            |   |

| n  | $\epsilon$ | #clients | #clust  | #clust(G) | Efficiency | Time (ms)   | Time G (ms) |
|----|------------|----------|---------|-----------|------------|-------------|-------------|
| 20 |            |          | 2.700   | 35.433    | ×13.12     | 8 415.270   | 10.714      |
| 30 | 10         | 50       | 8.709   | 48.977    | × 5.70     | 8 775.802   | 18.940      |
| 40 |            |          | 18.087  | 49.986    | × 2.77     | 6 417.596   | 23.762      |
|    | 5          |          | 200.000 | 200.000   | × 1.00     | 43.969      | 449.166     |
| 70 | 15         | 200      | 90.000  | 200.000   | × 2.22     | 47 016.050  | 337.082     |
|    | 25         |          | 22.109  | 198.982   | × 9.00     | 222 386.614 | 346.420     |
|    |            | 90       | 89.67   | 90        |            | 136.572     | 137.186     |
| 50 | 10         | 130      | 129.30  | 130       | ×1.00      | 428.885     | 251.221     |
|    |            | 170      | 168.79  | 170       |            | 531.363     | 434.727     |

$$\mathsf{Efficiency} = \frac{\#\mathsf{clust}(\mathsf{G})}{\#\mathsf{clust}}$$

| Biometric Terminology | Database Partitionning | Security Bound | Conclusion |
|-----------------------|------------------------|----------------|------------|
| 00000                 | 00000000000000         | 000000         | 000        |
|                       |                        |                |            |

| $\sim$ |        |    |            |        |
|--------|--------|----|------------|--------|
|        | $\sim$ | 22 | Performanc | $\sim$ |
|        | U      |    | тепоннанс  | .е     |
|        |        |    |            |        |

| n  | $\epsilon$ | #clients | #clust  | #clust(G) | Efficiency | Time (ms)   | Time G (ms) |
|----|------------|----------|---------|-----------|------------|-------------|-------------|
| 20 |            |          | 2.700   | 35.433    | ×13.12     | 8 415.270   | 10.714      |
| 30 | 10         | 50       | 8.709   | 48.977    | × 5.70     | 8 775.802   | 18.940      |
| 40 |            |          | 18.087  | 49.986    | × 2.77     | 6 417.596   | 23.762      |
|    | 5          |          | 200.000 | 200.000   | × 1.00     | 43.969      | 449.166     |
| 70 | 15         | 200      | 90.000  | 200.000   | × 2.22     | 47 016.050  | 337.082     |
|    | 25         |          | 22.109  | 198.982   | × 9.00     | 222 386.614 | 346.420     |
|    |            | 90       | 89.67   | 90        |            | 136.572     | 137.186     |
| 50 | 10         | 130      | 129.30  | 130       | ×1.00      | 428.885     | 251.221     |
|    |            | 170      | 168.79  | 170       |            | 531.363     | 434.727     |

$$\mathsf{Efficiency} = \frac{\#\mathsf{clust}(\mathsf{G})}{\#\mathsf{clust}}$$

Biometric Terminology 00000 Database Partitionning

Security Bound

Conclusion 000

## **Security Bound**

| Biometric Terminology | Database Partitionning | Security Bound | Conclusion |
|-----------------------|------------------------|----------------|------------|
| 00000                 | 0000000000000000       | 00000          | 000        |
| Near Collision        |                        |                |            |

## Definition (Near collision)

Let  $(\Omega, d)$  be the template space and a threshold  $\epsilon$ . There exists a near-collision if  $\exists a, b \in \Omega \mid d(a, b) \leq \epsilon$ .

| Biometric Terminology | Database Partitionning | Security Bound | Conclusion |
|-----------------------|------------------------|----------------|------------|
| 00000                 | 0000000000000000       |                | 000        |
| You said gain?        |                        |                |            |

## Definition (Gain)

## The gain of the attacker is $G = |D_1| - |D_2|$ with $D_1$ the leaked database and $D_2$ the construct database.

| Biometric Terminology | Database Partitionning | Security Bound | Conclusion |
|-----------------------|------------------------|----------------|------------|
| 00000                 | 000000000000000        | 00000          | 000        |
| You said gain?        |                        |                |            |

## Definition (Gain)

The gain of the attacker is  $G = |D_1| - |D_2|$  with  $D_1$  the leaked database and  $D_2$  the construct database.

How can we maximise the gain?

• Templates should be as close as possible to each other.

How can we minimise the gain?

• Templates should be as far apart as possible.

The number of near collisions is a good indicator of the expected gain.

| Biometric Terminology | Database Partitionning | Security Bound | Conclusion |
|-----------------------|------------------------|----------------|------------|
| 00000                 | 0000000000000000       |                | 000        |
| 0 Gain                |                        |                |            |

## How to ensure that the attacker gain is 0?

| Biometric Terminology | Database Partitionning                  | Security Bound | Conclusion |
|-----------------------|-----------------------------------------|----------------|------------|
| 00000                 | 000000000000000000000000000000000000000 | 000000         | 000        |
| Birthday Problem      |                                         |                |            |

To prevent near collisions, with n the size of a template, the number k of templates which give a collision with a probability of 50% is

$$pprox 2^{n/2} \left( \sum_{i=0}^{\epsilon} \binom{n}{i} \right)^{-1/2}$$

| Biometric Terminology | Database Partitionning | Security Bound | Conclusion |
|-----------------------|------------------------|----------------|------------|
| 00000                 | 000000000000000        | 000000         | 000        |
| Security Thres        | hold                   |                |            |

| n    | $\epsilon$ | $log_2k$ with 50% near collision |
|------|------------|----------------------------------|
| 128  | 12         | 38                               |
| 120  | 25         | 20                               |
| 256  | 25         | 72                               |
| 250  | 51         | 38                               |
| 512  | 51         | 139                              |
| 512  | 102        | 74                               |
| 1024 | 102        | 276                              |
| 1024 | 204        | 146                              |

Biometric Terminology 00000 Database Partitionning

Security Bound

Conclusion •00

## Conclusion

| 00000      | 000000000000000000000000000000000000000 | 000000 | 000 |
|------------|-----------------------------------------|--------|-----|
| Conclusion |                                         |        |     |

### Work done:

- Two solutions for the Near String Problem.
- Method to find a second database  $(D_2)$  that the attacker could attack to impersonate all users of a leaked database  $(D_1)$  with the constraint that  $|D_2| \leq |D_1|$ .
- Security bound over the size of a biometric database.

Future work:

- Improving the SANN based method.
- Improving the IP based method.
- Exploring other approaches.

| Biometric Terminology | Database Partitionning | Security Bound | Conclusion<br>OOO |
|-----------------------|------------------------|----------------|-------------------|
| 00000                 | 0000000000000000       | 000000         | 000               |
| Conclusion            |                        |                |                   |

#### Work done:

- Two solutions for the Near String Problem.
- Method to find a second database  $(D_2)$  that the attacker could attack to impersonate all users of a leaked database  $(D_1)$  with the constraint that  $|D_2| \leq |D_1|$ .
- Security bound over the size of a biometric database.

## Future work:

- Improving the SANN based method.
- Improving the IP based method.
- Exploring other approaches.

| Biometric Terminology | Database Partitionning | Security Bound | Conclusion |
|-----------------------|------------------------|----------------|------------|
| 00000                 | 0000000000000000       |                | OO●        |
| Question time         |                        |                |            |

# $E = m \times C^2$ $Energy = milk \times Coffee^{2}$ Any Questions ?