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Abstract

In a biometric authentication or identification system, the matcher compares a stored and a fresh template
to determine whether there is a match. This assessment is based on both a similarity score and a predefined
threshold. For better compliance with privacy legislation, the matcher can be built upon a privacy-preserving
distance. Beyond the binary output (‘yes’ or ‘no’), most schemes may perform more precise computations, e.g.,
the value of the distance. Such precise information is prone to leakage even when not returned by the system. This
can occur due to a malware infection or the use of a weakly privacy-preserving distance, exemplified by side channel
attacks or partially obfuscated designs. This paper provides an analysis of information leakage during distance
evaluation. We provide a catalog of information leakage scenarios with their impacts on data privacy. Each
scenario gives rise to unique attacks with impacts quantified in terms of computational costs, thereby providing
a better understanding of the security level.
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1 Introduction

Biometric authentication protocols involve the comparison of a fresh biometric template with the reference template.
This comparison computes the distance between the newly acquired data and the stored template. If this distance
is below a given threshold, access is granted; otherwise, it is denied. While many protocols use standard metrics
such as the Hamming distance [1], this process can inadvertently leak information that adversaries might exploit
to reconstruct the stored template. Vulnerabilities arise from implementation errors, inherent flaws, and server-
level attacks such as malware [2], which can compromise system-wide security. Furthermore, Aydin and Aysu [3]
and Hashemi et al. [4] have highlighted an increasing prevalence of side-channel attacks. Side-channel techniques,
including timing, differential power analysis, cache-based, electromagnetic, acoustic, and thermal attacks, exploit
various operational artifacts to extract sensitive information [2]. One of the concerns is the partial or total leakage of
distance computation information. Such information leakage poses significant security and privacy risks, especially
in sensitive applications like privacy-preserving applications (e.g., biometric recognition systems). In this paper, we
focus on the following attacks:

• Offline exhaustive search attacks refer to scenarios for which a leaked yet obfuscated database is available for an
attacker. The attacker employs the public transformation to verify a candidate vector. This verification may
give additional information beyond the minimal information leakage (‘yes’ or ‘no’ ), for example via side-channel
attacks.

• Online exhaustive search attacks correspond to attacks for which an attacker must interact with the biometric
system to infer information about the targeted vector. Then, the attacker needs to force the system to leak
additional information beyond the minimal information leakage (‘yes’ or ‘no’ ), for example via a malware
infection.

Related Works To the best of our knowledge, two papers investigate information leakage of biometric systems
using privacy-preserving distance. Pagnin et al. [5] shows that the output of a privacy-preserving distance can be
exploited to infer the hidden input. This type of attack is considered the most devastating for such systems, as
evidenced by Simoens et al. [6]. The work of Pagnin et al. takes place in the minimal leakage scenario, wherein only
the binary output of the biometric system is given to the attacker. The authors present the Center Search Attack,
designed to recover the hidden enrolled input for any ‘valid’ biometric template in Zn

q , where ‘valid’ refers to inputs
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Distance-to-Threshold comparison Leakage Complexity type Complexity in Big-Oh Theorem

Below

Distance Exponential qn−ε + qε 1
Positions Exponential qn−ε + q 2

Positions and values Exponential qn−ε 3
Positions and values (accumulation) Linearithmic/Polynomial nα log n 8

Both

Minimal1 Exponential 2n−ε + n+ 2ε 4
Distance Linear nq 5
Positions Constant q 6

Positions and values Constant 1 7

Table 1 –Summary of all leakage exploits and their complexities with α such that the occurrence of the rarest error is n−α

with α ∈ R≥1. The Distance-to-Threshold comparison determines if the leak occurs when d(x, y) ≤ ε (below) or when there is
no distance requirement between x and y (both). For all the complexities, x and y are in Zn

q with q ≥ 2 except for the minimal
leakage where x and y are in Zn

2 . The provided complexities represent worst-case scenarios, except for the accumulation attack
where the result is the expectation.
1Note that the Big-Oh complexity of the optimal exhaustive search strategy, in the worst-case, is the same as the naive strategy
as the minimum of h(·) is 0.

within a ball centered at the enrolled template and with a radius equal to the decision threshold t. To efficiently
locate a valid input, the authors also examine the exhaustive search attack, particularly its application on binary
templates (q = 2). They suggest implementing a sampling without replacement strategy using their Tree algorithm
to streamline the identification of a suitable input for the Center Search Attack. This efficient identification of a
proper input requires a number of authentication attempts that is exponential in the space dimension n minus the
threshold t. While their work focuses on the minimal leakage scenario, our analysis includes the consideration of
multiple additional information leaks that may arise during the matching operation.

Contributions We analyze the impact of potential information leakage in distance evaluations. Our contributions
detail various leakage scenarios, their corresponding generic attacks, and the computational costs involved:

• We revisit the exhaustive search attack in the scenario of a minimal (one-bit) information leakage, correcting
a previously cited result (see [5]) about the costs of optimal and near-optimal strategies.

• We introduce new attack strategies by malicious clients that exploit various levels of non-minimal information
leaks from the system. Our complexity results, which detail the cost of these attacks, apply to both offline
exhaustive search attacks that leverage a leaked (yet obfuscated) database and online exhaustive search attacks
involving direct interactions with the server.

• We investigate a novel attack, named accumulation attack, where an honest-but-curious server accumulates
knowledge during client authentication. This type of attack occurs when there is a minor, yet non-negligible,
amount of information leakage.

The complexities of the attacks, relying on different scenarios, are summarized in Figure 1.

Outline Section 2 introduces notations and terminologies and classifies the different types of information leakages.
Section 3 begins by revisiting the exhaustive search attack in the minimal (one-bit) information leakage scenario,
including a correction of a previously cited result concerning the costs of optimal and near-optimal strategies. It
then introduces new strategies for attacks by malicious clients capturing various other types of information leakages,
covering both offline and online exhaustive search attacks, with an emphasis on their computational costs. The
section concludes by examining accumulation attacks performed by an ”honest-but-curious” server during client
authentication, detailing the computational cost involved. Section 4 provides a discussion of the presented results.

2 Preliminaries

This section introduces the notations as well as the attacker model and, a list of the considered information leakage
scenarios.

2.1 Notations and Attacker Models

Let Zn
q = {0, . . . , q − 1}n be a metric space equipped with the Hamming distance d and ε ∈ N a threshold. The

Hamming distance is defined by
d(x, y) = |{i ∈ {1, . . . n, }|xi ̸= yi}|
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for two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in Zn
q . Let Matchx,ε denote the oracle modeling the interaction

between the biometric system using a privacy-preserving distance and the attacker. Matchx,ε receives the template
selected by the attacker and compares it with the previously enrolled and stored template. If the distance is below
the threshold ε, the oracle returns 1 and 0 otherwise. In a more formal way, Matchx,ε is a function defined as:

Matchx,ε : Zn
q −→ {0, 1}

y 7−→

{
1 if d(x, y) ≤ ε.

0 otherwise.

A privacy-preserving distance may leak additional information beyond its binary output. Under the specifications
of each scenario, the oracle may display this additional information. The objective of the attacker is to find the hidden
template x exploiting the oracle outputs. In the context of a biometric system, the objective of the attacker may be
relaxed to simply find y that is close to x with respect to d and ε.

2.2 Typology of Information Leakage

In the context of a biometric system, a critical vulnerability arises when information is intercepted between the
matcher and the decision module, as illustrated in Figure 1 (point 8). This figure, inspired by Ratha et al. [7], provides
an overview of the attack points in biometric systems while introducing both the decision module and two additional
attack points. Except for the accumulation attack, the attacker exploits points 4 and 8 in all discussed scenarios.
Point 4 allows the submission of a chosen template, while point 8 grants access to additional information beyond
the binary output. The accumulation attack only necessitates control over the point 8. For detailed insights into
the remaining attack points, readers are referred to Ratha et al. [7]. There are three main categories of information
leakage:

• Below the threshold.

• Above the threshold.

• Both below and above the threshold.

In each of these categories, several sub-settings can be identified. The first one corresponds to the absence of
any leakage, resulting in Matchx,ε yielding only the binary output. Then, the following information leakages are
examined:

• The distance.

• The positions of the errors.

• Both the error positions and values.

• Both the distance and the positions of the errors.

• Both the distance and the positions and their corresponding erroneous values.

It is not relevant to consider that additional information is leaked only above the threshold, as no scheme has such
behavior. As a consequence, solely scenarios ‘below the threshold’ and ‘below and above the threshold’ are examined.
The Hamming distance is a measure of the number of differing coordinates between two templates. Therefore,
knowledge of the erroneous coordinates implies knowledge of the distance itself. Hence, we do not consider all
possible scenarios.

3 Exploiting the Leakage

3.1 Active Attacks

3.1.1 Attack Complexity for the Minimal (One-bit) Leakage

The exhaustive search may be enhanced for both computationally bounded and unbounded adversaries. The objective
is to identify the minimal number of balls of radius ε to partition the space and then, to query the center of each ball
in order to remove an entire ball if the query fails. This is an instance of the set covering problem. Pagnin et al. [5]
proposed to use such a method and claimed that the number of points that the adversary needs to query is only a
factor of O(ε ln(n + 1)) more than the optimal cover. However, the result is imprecise, as detailed below, mainly
because the optimal cover is not given.
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Figure 1 –Attack points in a generic biometric recognition system.

Unbounded Case The adversary solves the NP-hard set covering problem [8] to find the optimal covering of Zn
q

using balls of radius ε. The adversary exhaustively searches x using at most qn(1−hq(ε/n))+o(n) queries to Matchx,ε.

The number of vectors involved in a given optimal cover is qn

|Bq,ε(x)| , which can be asymptotically approximated as

detailed in what follows. First, recall that the cardinal of Bq,ε(x) is

|Bq,ε(x)| =
ε∑

i=0

(
n

i

)
(q − 1)i,

and that the q-ary entropy is hq(x) = x logq(q−1)−x logq x−(1−x) logq(1−x). Then, using bounds on the binomial

coefficient (see [9]), the result follows if ε
n ≤ 1− 1

q holds and if n is large enough.

Bounded Case The adversary may use a greedy algorithm to find a non-optimal covering containing qnH(n)
|Bq,ε|

vectors [10] withH(n) =
∑n

i=1 i
−1 the n-th harmonic number. The adversary then finds a solution with an exhaustive

search in at most qnH(n)
|Bq,ε| queries. In order to provide a more intuitive value, notice that qnH(n)

|Bq,ε| can be bounded up

by qn(ln(n)+1)
|Bq,ε| . As in the unbounded case, using the q-ary entropy and Stirling’s approximation, this non-optimal

covering leads the attacker to make at most qn(1−hq(ε/n))+o(n) queries, as logq(ln(n) + 1) = o(n).

3.1.2 Attack Complexities for Leakage Below the Threshold

Leakage below the threshold is considered in this section. Given the hidden target x, querying y such that d(x, y) ≤ ε
to the oracle Matchx,ε provides information beyond the binary output.

Leakage of the Distance The first case occurs when the distance is given to the attacker as extra information.

Theorem 1 Given ε a threshold, x ∈ Zn
q a vector, and Matchx,ε leaks the distance below the threshold, an attacker

can retrieve x in the worst case in O(qn−ε + qε) queries to Matchx,ε.

Proof 1 The system, using the Hamming distance, requires a minimum of n − ε accurate coordinates to output
0. Since the attacker specifically targets n − ε coordinates (the attacker arbitrarily chooses ε coordinates that do
not change), an exhaustive search attack is performed in at most qn−ε steps to get accepted by the system. Then,
a hill-climbing attack runs on the remaining ε coordinates to minimize the distance at each step. Coordinate by
coordinate, the attacker obtains the right value if the distance decreases. Since there are q different values to test on
ε coordinates, determining the correct ones requires a maximum of (q − 1)ε steps. Then, the overall complexity is
O(qn−ε + qε). ■

Leakage of the Positions The positions of the errors are the extra information given to the attacker, while their
values remain secret.

Theorem 2 Given ε a threshold, x ∈ Zn
q a vector, and Matchx,ε leaks the positions of the errors below the threshold,

an attacker can retrieve x in the worst case in O(qn−ε + q) queries to Matchx,ε.
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Proof 2 As the leakage occurs solely below the threshold, the first step is to find a vector y ∈ Zn
q such that d(x, y) ≤ ε.

To identify such a vector, the attacker performs an exhaustive search attack in qn−ε steps, as previously shown. Since
ε coordinates remain unknown, and each coordinate ranges from 0 to q − 1, every possibility must be examined. By
testing all possibilities simultaneously – for instance, testing all coordinates at 0, then all coordinates at 1, and so
forth up to q−2 while retaining the correct values – the original vector can be identified in no more than q−1 queries
(refer to the example illustrated in Figure 2). Therefore, the complexity of the attack for recovering x is O(qn−ε+ q).
■

Figure 2 gives a representation of the attack described above in the case Z5
4 and the hidden vector or the missing

coordinates is (0, 1, 3, 2, 2). Note that the actual complexity is q − 1 since the final exchange is unnecessary, as the
coordinates at q − 1 become known after q − 1 queries by inference.

Leakage of the Positions and the Values When a vector below the threshold is given to the oracle Matchx,ε,
the attacker gets information about both error positions and their values. This is similar to an error-correction
mechanism designed to correct errors below a given threshold. Note that in the binary case, this scenario is the same
as the previous one, hence the only considered case is q > 2.

Theorem 3 Given ε a threshold, x ∈ Zn
q a vector, and Matchx,ε leaks the positions and the values of the errors

below the threshold, an attacker can retrieve x in O(qn−ε) queries to Matchx,ε.

Proof 3 First, an exhaustive search is performed to find a vector y for which the distance is below the threshold,
for a cost of O(qn−ε). Then, given the error positions and the corresponding error values, y yields immediately the
recovery of x. In the end, the complexity of the attack is O(qn−ε). ■

3.1.3 Leakage Below and Above the Threshold

The second scenario is considered in this section, which involves a leakage independent of the threshold. In other
words, when a hidden vector x is targeted, the queried vector y to the oracle Matchx,ε results in the leak of additional
information.

Minimal Leakage (single bit of information leakage) The basic usage of the system is characterized by the
minimal leakage scenario, where the binary output itself is considered a necessary leakage. This minimal leakage is
indispensable for the system’s work and is consistent across these scenarios as the system always responds. Remark
that if the server does not answer above the threshold, the non-answer gives the attacker the wanted information.

Theorem 4 Given ε a threshold, x ∈ Zn
2 a vector, and Matchx,ε that does not leak any extra information, an attacker

can retrieve x in O(2n−ε + n+ 2ε) queries to Matchx,ε.

Proof 4 As in the previous cases, the attacker seeks a vector y below the threshold. Such a vector is found by
exhaustive search in 2n−ε steps. Then, the attacker performs the center search attack [5] to retrieve the original data
in at most n+ 2ε queries. The complexity of the attack to find x is O(2n−ε + n+ 2ε). ■

Leakage of the Distance In this case, d(x, y) the distance between y ∈ Zn
q the fresh template and x ∈ Zn

q the
old template is leaked to the attacker regardless of the threshold.

Theorem 5 Given ε a threshold, x ∈ Zn
q a vector, and Matchx,ε leaks the distance, an attacker can retrieve x in

O(nq) queries to Matchx,ε.

Proof 5 As the attacker has access to the distance, it is possible to perform a hill-climbing attack, trying to minimize
the distance at each step. The strategy is to find the vector y, coordinate by coordinate. As each coordinate has q
possible values and there are n coordinates, this is done in O(nq) steps. ■

Leakage of the Positions The extra information given to the attacker is the positions of the errors.

Theorem 6 Given ε a threshold, x ∈ Zn
q a vector, and Matchx,ε leaks the positions of the errors, an attacker can

retrieve x in O(q) queries to Matchx,ε.

Proof 6 She tries the vector (0, . . . , 0), (1, . . . , 1) up to, (q−1, . . . , q−1) and keep for each coordinate the right value
(see Figure 2). Hence, the complexity of the attack to recover x is O(q). ■
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Solution: (0, 1, 3, 2, 2)

Figure 2 –Exploiting the error position leaked in the case Z5
4 and the hidden vector or missing coordinates is (0, 1, 3, 2, 2).

Leakage of the Positions and the Values In this last case, the positions of the errors and corresponding
values are leaked. Unlike the scenario of leakage below the threshold, such a leak provides an error-correcting code
mechanism that operates irrespective of any distance and threshold.

Theorem 7 Given ε a threshold, x ∈ Zn
q a vector, and Matchx,ε leaks the positions of the errors and their values,

an attacker can retrieve x in O(1) queries to Matchx,ε.

Proof 7 The submission of any vector gives the position of each error, and how to correct them, yielding a complexity
in O(1). ■

3.2 Accumulation Attack: A Passive Attack

During the client authentications, the attacker passively gathers information by observing errors leaked by the server.
More specifically, the server leaks a list of positions and errors computed over the integers (i.e., xi − yi) made by a
genuine client during each authentication. Such information gathered during one successful authentication attempt
is called an observation. The attacker aims to partially or fully reconstruct x by exploiting these observations.

In the binary case (i.e., q = 2), the errors precisely yield the bits. If xi − yi = 1 then xi = 1, and if xi − yi = −1
then xi = 0. This attack is related to the Coupon Collector’s problem [11], which involves determining the expected
number of rounds required to collect a complete set of distinct coupons, with one coupon obtained at each round,
and each coupon acquired with equal probability.

Example 3.2.1 Suppose a setting with a metric space Zn
2 equipped with the Hamming distance. A client seeks

to authenticate to an honest-but-curious server that uses a scheme leaking d(x, y) and the corresponding errors if
d(x, y) ≤ ε. As the client is legitimate, i.e., d(x, y) ≤ ε with a high probability, the attacker recovers the values of
at most ε erroneous bits. The attacker needs to collect all the bits of the client, turning this problem into a Coupon
Collector problem. For example, let assume x = (0, 0, 1, 1, 0, 1, 0), ε = 3. The attacker sets z = (?, ?, ?, ?, ?, ?, ?).
Session 1: The client authenticates with y = (1, 1, 0, 1, 0, 1, 0). In this case, d(x, y) = 3 ≤ ε. The values of the
erroneous bits of the client are obtained, yielding z = (0, 0, 1, ?, ?, ?, ?). Session 2: the client authenticates with
y = (0, 0, 0, 0, 1, 1, 0). In this case, d(x, y) = 3 ≤ ε, and the attacker obtains the value of the erroneous bits of the
client and updates z = (0, 0, 1, 1, 0, ?, ?). At this point, replacing the unknown values with random bits gives a vector
that lies inside the acceptance ball as the number of unknown coordinates is smaller than the threshold ε.

In biometrics, some errors happen more frequently than others. In this setup, the Weighted Coupon Collector’s
Problem must be considered. Each coupon (i.e., each error) has a probability pi to occur. Suppose that p1 ≤ p2 ≤
· · · ≤ pn and

∑n
i=1 pi ≤ 1 then, according to Berenbrink and Sauerwald [12] (Lemma 3.2), the expected number of

round E is such that:
1

p1
≤ E ≤ H(n)

p1
(1)

with H(n) the n-th harmonic number. The upper bound on H(n) is 1 + log n, which yields the expected number of
rounds required to complete the collection:

1

p1
≤ E ≤ ln(n) + 1

p1
. (2)

However, while in the original problem one coupon is obtained at each round, the number of errors made by a client
during an authentication session is variable, i.e., between 1 and ε. In this case, the expected number of rounds
required before all the errors have been observed is smaller than in the case where only one error occurs at each
round. Consequently, the expected number of rounds required to collect all the errors is still in O(log n/p1).

Theorem 8 Given ε a threshold, x ∈ Zn
2 a vector, Matchx,ε leaks the positions of the errors and their values below

the threshold, and assuming that the rarest coupon is obtained with probability p1 = n−α with α ∈ R≥1 an attacker
can retrieve x in O(nα log n).
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Proof 8 According to the Weighted Coupon Collector’s problem and assuming that the rarest coupon is obtained with
probability p1 = n−α with α ∈ R≥1, the vector x is recovered in O (nα log n) observations. ■

It is worth noting that in this scenario, the attacker does not control the error. If the attacker controls the
error locations, then it is possible to obtain x in ⌈n/ε⌉ queries. This can happen during a fault attack, akin to
side-channel attacks. It should also be noted that some coordinates of a biometric data may be non-variable and, as
a consequence, an attacker cannot recover them. This partial recovery attack is therefore a privacy attack, and leads
to an authentication attack if the number of variable coordinates is sufficiently large (at least n − ε in the binary
case).

Remark 3.2.1 In the non-binary case, the value xi − yi does not provide enough information. The exact value of
xi can be determined in two cases. First, if xi − yi = −q + 1, then xi = 0. Second, if xi − yi = 2(q − 1), then
xi = q−1. For all other cases, there is an ambiguity regarding the value of xi as yi is unknown. However, by knowing
the distribution of xi and yi, repeating observations yields a statistical attack.

Attacks for each type of leakage along with their complexities are summarized in Figure 1.

4 Concluding Remarks

Our investigation into the information leakage of a biometric system using privacy-preserving distance has shed light
on critical security vulnerabilities that arise under various scenarios. By evaluating the impact of different types
of leakage, including distance, error position, and error value, we have examined the potential risks posed to data
privacy and security in practical applications.

Our analysis encompasses ‘below the threshold’ and ‘below and above the threshold’ setups, allowing us to identify
specific conditions under which information leakage can have a substantial effect on the overall security of the system.

It is important to highlight that the leakage ‘below the threshold’ does not significantly hurt the security of the
system, while the leakage of ‘both below and above the threshold’ significantly decreases the security. Indeed, the
attacks exploiting the leakage ‘below the threshold’ are primarily exponential, while those exploiting information
‘below and above the threshold’ are mainly constant.

The accumulation attack we investigated is based on the assumption of errors uniformly distributed throughout
each authentication session. The result of the accumulation attack could be further refined by considering a variable
number of coupons, randomly drawn between 0 and ε in each round, while acknowledging the actual distribution of
the errors. As far as we are aware, no previous studies provide an analysis of the distribution of the errors for any
systems. In practical scenarios, certain errors may occur more frequently than others, while some may never occur.
A skewed distribution of errors substantially increases the expected number of authentications required from the
legitimate user so that the server recovers the hidden template. Further research involves refining the accumulation
attack as suggested above and exploring other distance metrics, such as L1 (Manhattan) and L2.
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