Obstructions to bounded cutwidth

Jean-Florent Raymond
LIRMM and University of Warsaw

Thursday 13th April, 2017

Joint work with:
- Archontia Giannopoulou (TU Berlin);
- Michał Pilipczuk (University of Warsaw);
- Dimitrios M. Thilikos (LIRMM–CNRS); and
- Marcin Wrochna (University of Warsaw).
Cutwidth

- *layout* of G: ordering of $V(G)$.
Cutwidth

- **layout** of G: ordering of $V(G)$.
- the **width** of a layout σ:

$$\max_{i=1,2,\ldots,n-1} \#(\text{edges with one endpoint} \leq i \text{ and second} > i).$$
Cutwidth

- *layout* of G: ordering of $V(G)$.
- The *width* of a layout σ:
 $$\max_{i=1,2,\ldots,n-1} \#(\text{edges with one endpoint} \leq i \text{ and second} > i).$$
- The *cutwidth* of G:
 $$\text{ctw}(G) = \min \{\text{width}(\sigma) : \sigma \text{ is a layout of } G\}.$$
Cutwidth

- **layout** of G: ordering of $V(G)$.
- The **width** of a layout σ:
 \[
 \max_{i=1,2,...,n-1} \#(\text{edges with one endpoint } \leq i \text{ and second } > i).
 \]
- The **cutwidth** of G:
 \[
 \text{ctw}(G) = \min \{\text{width}(\sigma) : \sigma \text{ is a layout of } G\}.
 \]

Class considered of this talk: graphs of cutwidth $\leq k$.

Immersions

\leq_{imm}

\[
\begin{align*}
\{ & \text{vertices} \mapsto \text{distinct vertices} \\
& \text{edges} \mapsto \text{edge-disjoint paths} \}
\end{align*}
\]
Immersions

\[
\begin{align*}
\text{vertices} & \mapsto \text{distinct vertices} \\
\text{edges} & \mapsto \text{edge-disjoint paths}
\end{align*}
\]

“Monotonicity” of cutwidth:

\[H \leq_{\text{imm}} G \Rightarrow \text{ctw}(H) \leq \text{ctw}(G).\]
Immersion

\[\leq_{\text{imm}} \]

- vertices \mapsto distinct vertices
- edges \mapsto edge-disjoint paths

"Monotonicity" of cutwidth:

\[H \leq_{\text{imm}} G \Rightarrow \text{ctw}(H) \leq \text{ctw}(G). \]

\{G, ctw(G) \leq k\} is immersion-closed.
K_5 and $K_{3,3}$ are the *minor-obstructions* of planar graphs.
K_5 and $K_{3,3}$ are the \textit{minor-obstructions} of planar graphs.

A \textit{obstruction} for a class is the minimal element of its complementary set.
K_5 and $K_{3,3}$ are the \textit{minor-obstructions} of planar graphs.

\textit{Obstruction for a class} = \textit{minimal} element of its complementary (depends on the \textit{class} and on the \textit{order}).
K_5 and $K_{3,3}$ are the \textit{minor-obstructions} of planar graphs.

\textit{Obstruction} for a class = \textit{minimal} element of its complementary (depends on the class and on the order)

The set of obstructions may be infinite!
Obstructions for bounded cutwidth

What about obstructions of \(\{ G, \text{ctw}(G) \leq k \} \)?

Theorem (Robertson and Seymour, consequence of GM.XXII)

For every \(k \in \mathbb{N} \), \(\{ G, \text{ctw}(G) \leq k \} \), has finitely many obstructions.
Obstructions for bounded cutwidth

What about obstructions of \(\{G, \text{ctw}(G) \leq k\} \)?

Theorem (Robertson and Seymour, consequence of GM.XXII)

For every \(k \in \mathbb{N} \), \(\{G, \text{ctw}(G) \leq k\} \), has finitely many obstructions.
What about obstructions of \(\{ G, \text{ctw}(G) \leq k \} \)?

Theorem (Robertson and Seymour, consequence of GM.XXII)

For every \(k \in \mathbb{N} \), \(\{ G, \text{ctw}(G) \leq k \} \), has finitely many obstructions.
What about obstructions of \(\{ G, \text{ctw}(G) \leq k \} \)?

Theorem (Robertson and Seymour, consequence of GM.XXII)

For every \(k \in \mathbb{N} \), \(\{ G, \text{ctw}(G) \leq k \} \), has finitely many obstructions.
Obstructions for bounded cutwidth

What about obstructions of \(\{ G, \text{ctw}(G) \leq k \} \)?

Theorem (Robertson and Seymour, consequence of GM.XXII)

For every \(k \in \mathbb{N} \), \(\{ G, \text{ctw}(G) \leq k \} \), has finitely many obstructions.

\[\text{ctw} > k \]

\[\text{ctw} \leq k \]

How many?
Bounding the size of the obstructions

$s_k := \text{max size of an obstruction for cutwidth } \leq k$

(immersion-min. graph with \text{ctw} > k)

Results of Lagergren (1998):

$G_{\text{minor-obstruction}}$ for pathwidth \(\leq k \Rightarrow |G| = 2 \cdot O(k^4) \);

$G_{\text{minor-obstruction}}$ for treewidth \(\leq k \Rightarrow |G| = 2^2 \cdot O(k^5) \).
Bounding the size of the obstructions

\(s_k := \text{max size of an obstruction for cutwidth} \leq k \)

(immersion-min. graph with \(\text{ctw} > k \))

Govindan and Ramachandramurthi, 2001

\[
\frac{1}{2} (3^{k-5} - 1) \leq s_k
\]
Bounding the size of the obstructions

\[s_k := \text{max size of an obstruction for cutwidth } \leq k \]
\[\text{(immersion-min. graph with } \text{ctw } > k) \]

Govindan and Ramachandramurthi, 2001

\[\frac{1}{2} (3^{k-5} - 1) \leq s_k = 2^{O(k^3 \log k)} \]

Giannopoulou, Pilipczuk, R., Thilikos, Wrochna, 2016
Bounding the size of the obstructions

$s_k := \max \text{ size of an obstruction for cutwidth} \leq k$

(immersion-min. graph with $\text{ctw} > k$)

Govindan and Ramachandramurthi, 2001

$$\frac{1}{2} (3^{k-5} - 1) \leq s_k = 2^{O(k^3 \log k)}$$

Giannopoulou, Pilipczuk, R., Thilikos, Wrochna, 2016

Results of Lagergren (1998):

- G minor-obstruction for pathwidth $\leq k$ $\Rightarrow |G| = 2^{O(k^4)}$;

- G minor-obstruction for treewidth $\leq k$ $\Rightarrow |G| = 2^{2^{O(k^5)}}$.
How to show that obstructions are small?

General idea

If an obstruction is too large, some part of it is redundant.
How to show that obstructions are small?

General idea

If an obstruction is too large, some part of it is redundant.

We define an equivalence relation on bounded subgraphs:

\[
\begin{array}{ccc}
\sim & \iff & \forall G, \text{ctw}(G) = \text{ctw}(\overline{G})
\end{array}
\]
How to show that obstructions are small?

General idea

If an obstruction is too large, some part of it is redundant.

We define an equivalence relation on boundaried subgraphs:

\[A \sim B \iff \forall C, \text{ctw}(C) = \text{ctw}(C') \]

Let \(G \) be an obstruction of \(\{ G, \text{ctw}(G) \leq k \} \):
How to show that obstructions are small?

General idea

If an obstruction is too large, some part of it is redundant.

We define an equivalence relation on boundaried subgraphs:

\[\sim \iff \forall G, \text{ctw}(G) = \text{ctw}(\text{equivalent graph}) \]

Let \(G \) be an obstruction of \(\{G, \text{ctw}(G) \leq k\} \):

- replace a subgraph with an equivalent one that is smaller;

 (this does not change the cutwidth)
How to show that obstructions are small?

General idea
If an obstruction is too large, some part of it is redundant.

We define an equivalence relation on bounded subgraphs:

\[\sim \iff \forall \begin{array}{c} \vline \\ \vline \end{array}, \text{ctw} \begin{array}{c} \begin{array}{c} \vline \\ \vline \end{array} \end{array} = \text{ctw} \begin{array}{c} \begin{array}{c} \vline \\ \vline \end{array} \end{array} \]

Let \(G \) be an obstruction of \(\{ G, \text{ctw}(G) \leq k \} \):

- replace a subgraph with an equivalent one that is smaller;
 (this does not change the cutwidth)
- we prove that the obtained graph is an immersion of \(G \);
How to show that obstructions are small?

General idea

If an obstruction is too large, some part of it is redundant.

We define an equivalence relation on boundaried subgraphs:

\[\sim \iff \forall G, \ ctw(G) = ctw \left(\begin{array}{c} G \\ \end{array} \right) \]

Let \(G \) be an obstruction of \(\{G, \ ctw(G) \leq k\} \):

- replace a subgraph with an equivalent one that is smaller;
 (this does not change the cutwidth)
- we prove that the obtained graph is an immersion of \(G \);
- contradicts the minimality of \(G \)!
Bounding the number of equivalence classes

Key Lemma
If $ctw(G) \leq k$ and $|E(A, B)| \leq \ell$, then there exists an optimum-width layout of G with $O(k\ell)$ blocks.

Relevant information about B:
$O(k\ell)$ numbers up to k.

→ finite number of equivalence classes for fixed k, ℓ.
Bounding the number of equivalence classes

Key Lemma

If $\text{ctw}(G) \leq k$ and $|E(A, B)| \leq \ell$, then there exists an optimum-width layout of G with $O(k\ell)$ blocks.
Bounding the number of equivalence classes

Key Lemma

If $ctw(G) \leq k$ and $|E(A, B)| \leq \ell$, then there exists an optimum-width layout of G with $O(k\ell)$ blocks.

Relevant information about B: $O(k\ell)$ numbers up to k.

→ finite number of equivalence classes for fixed k, ℓ.
Bounding the number of equivalence classes

Key Lemma

If $\text{ctw}(G) \leq k$ and $|E(A, B)| \leq \ell$, then there exists an optimum-width layout of G with $O(k\ell)$ blocks.

Relevant information about B: $O(k\ell)$ numbers up to k.
Key Lemma

If $\text{ctw}(G) \leq k$ and $|E(A, B)| \leq \ell$, then there exists an optimum-width layout of G with $O(k\ell)$ blocks.

Relevant information about B: $O(k\ell)$ numbers up to k. → finite number of equivalence classes for fixed k, ℓ.
An ordering \(v_1 \ldots, v_n \) of is \textit{linked} if, for every \(i < j \) and every \(t \),

\[\text{either there are } t \text{ edge-disj. paths from } v_1, \ldots, v_i \text{ to } v_j, \ldots, v_n; \]

or

\[\exists k, i \leq k < j \text{ s.t. } |E(\{v_1, \ldots, v_k\}, \{v_k+1, \ldots, v_n\})| < t.\]
An ordering v_1, \ldots, v_n is said to be **linked** if, for every $i < j$ and every t,

- either there are t edge-disjoint paths from v_1, \ldots, v_i to v_j, \ldots, v_n;
An ordering \(v_1 \ldots, v_n \) of is \textit{linked} if, for every \(i < j \) and every \(t \),

- either there are \(t \) edge-disj. paths from \(v_1, \ldots, v_i \) to \(v_j, \ldots, v_n \);
- or \(\exists k, i \leq k < j \) s.t. \(|E(\{v_1, \ldots, v_k\}, \{v_{k+1}, \ldots, v_n\})| < t \).
Linked orderings

An ordering \(v_1 \ldots, v_n \) of is \textit{linked} if, for every \(i < j \) and every \(t \),

- either there are \(t \) edge-disj. paths from \(v_1, \ldots, v_i \) to \(v_j, \ldots, v_n \);
- or \(\exists k, i \leq k < j \) s.t. \(|E(\{v_1, \ldots, v_k\}, \{v_{k+1}, \ldots, v_n\})| < t \).

\[v_i \quad \circ \quad \circ \quad \circ \quad \circ \quad \circ \quad \circ \quad v_{k+1} \quad \cdots \quad v_n \]

\[v_i \quad v_k \quad \circ \quad v_j \]

\[t \]

\textbf{Lemma}

Every graph has a \textit{linked} ordering of optimal width.
Linked orderings

An ordering v_1, \ldots, v_n of is **linked** if, for every $i < j$ and every t,
- either there are t edge-disj. paths from v_1, \ldots, v_i to v_j, \ldots, v_n;
- or $\exists k, i \leq k < j$ s.t. $|E(\{v_1, \ldots, v_k\}, \{v_{k+1}, \ldots, v_n\})| < t$.

Lemma

Every graph has a linked ordering of optimal width.

Proof: non-linked orderings can be *improved* without increasing the width.
Linked orderings

An ordering $v_1 \ldots, v_n$ of is \textit{linked} if, for every $i < j$ and every t,

- either there are t edge-disj. paths from v_1, \ldots, v_i to v_j, \ldots, v_n;
- or $\exists k, i \leq k < j$ s.t. $|E(\{v_1, \ldots, v_k\}, \{v_{k+1}, \ldots, v_n\})| < t$.

\[v_i \quad v_k \quad v_j \]

\[t \]

Lemma

\textit{Every graph has a linked ordering of optimal width.}

Proof: non-linked orderings can be \textit{improved} without increasing the width. Similar notions: linked path decompositions, linked tree decompositions.
Lemma

If w is a word of length N over $[r]$, there is a $p \in [r]$ s.t.:

- **some subword u contains numbers $\geq p$**;
- **u contains p at least N times**.
Lemma

If w is a word of length N over $[r]$, there is a $p \in [r]$ s.t.:

- some subword u contains numbers $\geq p$;
- u contains p at least N times.
Lemma

If w is a word of length N^r over $[r]$, there is a $p \in [r]$ s.t.:

- some subword u contains numbers $\geq p$;
- u contains p at least N times.

If $|G| > N^r$, some contiguous subsequence of v_1, \ldots, v_n has cuts $\geq p$ and $\geq N$ cuts of size p.
Bounding the size of obstructions

Goal: show that obstructions for $\text{ctw} \leq k$ are small.

- G obstruction for $\text{ctw} \leq k$
Bounding the size of obstructions

Goal: show that obstructions for $\text{ctw} \leq k$ are small.

- G obstruction for $\text{ctw} \leq k \Rightarrow \text{ctw}(G) = k + 1$
Goal: show that obstructions for $\text{ctw} \leq k$ are small.

- G obstruction for $\text{ctw} \leq k \Rightarrow \text{ctw}(G) = k + 1$
- consider a linked optimal ordering of G:

0 1 2 3 4 5 6 7 8 9
Bounding the size of obstructions

Goal: show that obstructions for $\text{ctw} \leq k$ are small.

- G obstruction for $\text{ctw} \leq k \Rightarrow \text{ctw}(G) = k + 1$
- consider a linked optimal ordering of G:

0 1 2 3 4 5 6 7 8 9

- assign a type to every prefix ("equivalence class for ctw")
Bounding the size of obstructions

Goal: show that obstructions for $\text{ctw} \leq k$ are small.

- G obstruction for $\text{ctw} \leq k \Rightarrow \text{ctw}(G) = k + 1$
- consider a linked optimal ordering of G:

![Graph diagram]

- assign a type to every prefix ("equivalence class for ctw")
Bounding the size of obstructions

Goal: show that obstructions for $\text{ctw} \leq k$ are small.

- G obstruction for $\text{ctw} \leq k \Rightarrow \text{ctw}(G) = k + 1$
- consider a linked optimal ordering of G:

![Diagram of linked ordering]

- assign a type to every prefix ("equivalence class for ctw")
Bounding the size of obstructions

Goal: show that obstructions for $\text{ctw} \leq k$ are small.

- G obstruction for $\text{ctw} \leq k \Rightarrow \text{ctw}(G) = k + 1$
- consider a linked optimal ordering of G:

![Diagram showing a linked optimal ordering]

- assign a type to every prefix ("equivalence class for ctw")
- recall: there are finitely many different types
Bounding the size of obstructions

Goal: show that obstructions for $\text{ctw} \leq k$ are small.

- G obstruction for $\text{ctw} \leq k \Rightarrow \text{ctw}(G) = k + 1$
- consider a linked optimal ordering of G:

```
0 1 2 3
```

- assign a type to every prefix (“equivalence class for ctw”)
- recall: there are finitely many different types
Bounding the size of obstructions

Goal: show that obstructions for $\text{ctw} \leq k$ are small.

- G obstruction for $\text{ctw} \leq k \Rightarrow \text{ctw}(G) = k + 1$
- consider a linked optimal ordering of G:

![Diagram of linked optimal ordering]

- assign a type to every prefix ("equivalence class for ctw")
- recall: there are finitely many different types
Goal: show that obstructions for $\text{ctw} \leq k$ are small.

- G obstruction for $\text{ctw} \leq k \Rightarrow \text{ctw}(G) = k + 1$
- consider a linked optimal ordering of G:

 ![Graph Diagram]

- assign a type to every prefix ("equivalence class for ctw")
- recall: there are finitely many different types
- if $|G|$ is large enough, types will repeat
Goal: show that obstructions for $\text{ctw} \leq k$ are small.

- G obstruction for $\text{ctw} \leq k \Rightarrow \text{ctw}(G) = k + 1$
- consider a linked optimal ordering of G:

 \begin{align*}
 &0 & 1 & 2 & 3 & 4 & 5 & 6 \\
 &\text{blue} & \text{orange} & \text{brown} & \text{red} & \text{green} \\
 \end{align*}

- assign a type to every prefix ("equivalence class for ctw")
- recall: there are finitely many different types
- if $|G|$ is large enough, types will repeat
Bounding the size of obstructions

Goal: show that obstructions for $\text{ctw} \leq k$ are small.

- G obstruction for $\text{ctw} \leq k \Rightarrow \text{ctw}(G) = k + 1$
- consider a linked optimal ordering of G:

\[0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \]

- assign a type to every prefix ("equivalence class for ctw")
- recall: there are finitely many different types
- if $|G|$ is large enough, types will repeat
- shrink using edge-disjoint paths:

\[0 \quad 1 \quad 7 \quad 8 \quad 9 \]
Bounding the size of obstructions

Goal: show that obstructions for $ctw \leq k$ are small.

- G obstruction for $ctw \leq k \Rightarrow ctw(G) = k + 1$
- consider a linked optimal ordering of G:

 0 1 2 3 4 5 6 7 8 9

 - assign a type to every prefix ("equivalence class for ctw")
 - recall: there are finitely many different types
 - if $|G|$ is large enough, types will repeat
 - shrink using edge-disjoint paths:

 0 1 7 8 9

 - this immersion of G has cutwidth $k + 1$: contradiction.
Computing cutwidth

Problem: deciding given \((G, k)\) if \(\text{ctw}(G) \leq k\).

- non-uniform, non-constructive FPT (by the finiteness of obstructions);
Computing cutwidth

Problem: deciding given \((G, k)\) if \(\text{ctw}(G) \leq k\).
- non-uniform, non-constructive FPT (by the finiteness of obstructions);
- constructive FPT algorithm with running time \(2^{O(k^2)} \cdot n\).
 (Thilikos, Bodlaender, and Serna)
Computing cutwidth

Problem: deciding given \((G, k)\) if \(\text{ctw}(G) \leq k\).

- non-uniform, non-constructive FPT (by the finiteness of obstructions);
- constructive FPT algorithm with running time \(2^{O(k^2)} \cdot n\).
 (Thilikos, Bodlaender, and Serna)

Theorem (Giannopoulou, Pilipczuk, R., Thilikos, Wrochna, 2016)

The cutwidth of a graph can be computed in time \(2^{O(k^2 \log k)} \cdot n\).*
Computing cutwidth

Problem: deciding given \((G, k)\) if \(ctw(G) \leq k\).

- non-uniform, non-constructive FPT (by the finiteness of obstructions);
- constructive FPT algorithm with running time \(2^{O(k^2)} \cdot n\).
 (Thilikos, Bodlaender, and Serna)

Theorem (Giannopoulou, Pilipczuk, R., Thilikos, Wrochna, 2016)

The cutwidth of a graph can be computed in time \(2^{O(k^2 \log k)} \cdot n\).

Ingredients:
- equivalence classes of subgraphs w.r.t. cutwidth;
- DP on graphs of bounded cutwidth;
- “edge-removal” lemma.
Computing cutwidth

Problem: deciding given \((G, k)\) if \(\text{ctw}(G) \leq k\).
- non-uniform, non-constructive FPT (by the finiteness of obstructions);
- constructive FPT algorithm with running time \(2^{O(k^2)} \cdot n\).
 (Thilikos, Bodlaender, and Serna)

Theorem (Giannopoulou, Pilipczuk, R., Thilikos, Wrochna, 2016)

The cutwidth of a graph can be computed in time \(2^{O(k^2 \log k)} \cdot n\).

Ingredients:
- equivalence classes of subgraphs w.r.t. cutwidth;
- DP on graphs of bounded cutwidth;
- “edge-removal” lemma.

Slightly slower… but much easier!
Extension to tree-like parameters

Tree-cut decomposition:

Associated parameter: tcw
(tree-cut width)

Small tcw implies:

- *small* bags;
- *thin* edges;
- small number of *thick* neighbors.
Extension to tree-like parameters

Tree-cut decomposition:

Associated parameter: \textbf{tcw} (tree-cut width)

Small \textbf{tcw} implies:
- \textit{small} bags;
- \textit{thin} edges;
- small number of \textit{thick} neighbors.

\text{treewidth and minors} \sim \text{tree-cut width and immersions}
Extension to tree-like parameters

Tree-cut decomposition:

Associated parameter: \textbf{tcw}
(tree-cut width)

Small \textbf{tcw} implies:
- small bags;
- thin edges;
- small number of thick neighbors.

treewidth and minors \sim tree-cut width and immersions

Hope for similar results in this context (work in progress).
Our contribution:

- a single exponential upper-bound on the size of the obstructions for $\text{ctw} \leq k$;
- a simpler FPT algorithm for cutwidth.
Our contribution:

- a single exponential upper-bound on the size of the obstructions for $\text{ctw} \leq k$;
- a simpler FPT algorithm for cutwidth.

Thank you!