Tight Erdős-Pósa bounds for minors

Jean-Florent Raymond
(TU Berlin)

Joint work with Wouter Cames van Batenburg, Tony Huynh, and Gwenaël Joret (Université Libre de Bruxelles).
Packing and covering in bipartite graphs

Max. number of disjoint edges?

pack $K_2 = 3$

Min. number of vertices to cover all edges?

cover $K_2 = 3$

cover = pack (Kőnig’s Theorem, 1931)
Packing and covering in bipartite graphs

Max. number of disjoint edges?

K_2 = 3

Min. number of vertices to cover all edges?

cover = pack (Kőnig’s Theorem, 1931)
Max. number of disjoint edges?

\[K_2 \]

Min. number of vertices to cover all edges?

\[\text{cover} = \text{pack} \] (Kőnig’s Theorem, 1931)
Max. number of disjoint edges?

\[K_2 \]

Min. number of vertices to cover all edges?

\[K_2 \]

\[\text{pack} \]

\[K_2 \]

\[\text{cover} \]

\[K_2 \]

\[\text{cover} = \text{pack} \]

(Kőnig’s Theorem, 1931)
Max. number of disjoint edges?

pack$_{K2}$ = 3
Packing and covering in bipartite graphs

Max. number of disjoint edges?

Min. number of vertices to cover all edges?

\[\text{pack}_{K_2} = 3 \]
Max. number of disjoint edges?

Min. number of vertices to cover all edges?

\[\text{pack}_{K_2} = 3 \]

(Kőnig's Theorem, 1931)
Packing and covering in bipartite graphs

Max. number of disjoint edges?

Min. number of vertices to cover all edges?

\[\text{pack}_{K_2} = 3 \]
Packing and covering in bipartite graphs

Max. number of disjoint edges?

Min. number of vertices to cover all edges?

pack_{K_2} = 3

cover_{K_2} = 3
Packing and covering in bipartite graphs

Max. number of disjoint edges?

\[\text{pack}_{K_2} = 3 \]

Min. number of vertices to cover all edges?

\[\text{cover}_{K_2} = 3 \]

\[\text{cover} = \text{pack} \]

(König’s Theorem, 1931)
Packing and covering cycles

Max. number of disjoint cycles: pack cycles = 4

Min. number of vertices to cover all cycles: cover cycles = 8

pack ⩽ cover ⩽ c

(Erdős-Pósa Theorem, 1965)
Max. number of disjoint cycles?
Max. number of disjoint cycles?

pack cycles = 4

Min. number of vertices to cover all cycles?

cover cycles = 8

pack \leq cover \leq c

(Erdős-Pósa Theorem, 1965)
Max. number of disjoint cycles?

\[\text{pack}_{\text{cycles}} = 4 \]
Max. number of disjoint cycles?

\[\text{pack}_{\text{cycles}} = 4 \]
Packing and covering cycles

Max. number of disjoint cycles?

Min. number of vertices to cover all cycles?

\[\text{pack}_{cycles} = 4 \]

Erdős-Pósa Theorem, 1965

Jean-Florent Raymond
Packing and covering cycles

Max. number of disjoint cycles?

\[\text{pack}_{\text{cycles}} = 4 \]

Min. number of vertices to cover all cycles?

\[\text{cover}_{\text{cycles}} = 8 \]
Packing and covering cycles

Max. number of disjoint cycles?

Min. number of vertices to cover all cycles?

\[
\text{pack}_{\text{cycles}} = 4
\]

\[
\text{cover}_{\text{cycles}} = 8
\]

\[
\text{pack} \leq \text{cover} \leq c \cdot \text{pack} \log \text{pack}
\]

(Erdős-Pósa Theorem, 1965)
The Erdős-Pósa Theorem

Theorem (Erdős and Pósa, Can. J. Math. 1965)

Every graph has one of the following:

- k vertex-disjoint cycles;
- a feedback vertex set of size $O(k \log k)$.
The Erdős-Pósa Theorem

Theorem (Erdős and Pósa, Can. J. Math. 1965)

Every graph has one of the following:

- k vertex-disjoint cycles;
- a feedback vertex set of size $O(k \log k)$.

large packing vs. small cover
Theorem (Erdős and Pósa, Can. J. Math. 1965)

Every graph has one of the following:

- k vertex-disjoint cycles;
- a feedback vertex set of size $O(k \log k)$.

large packing vs. small cover

Min-max theorem (like König’s and Menger’s theorems, etc.).
Theorem (Erdős and Pósa, Can. J. Math. 1965)

Every graph has one of the following:

• k vertex-disjoint cycles;
• a feedback vertex set of size $O(k \log k)$.

large packing vs. small cover

Min-max theorem (like König’s and Menger’s theorems, etc.).

Our goal: generalize from cycles to minor-models.
Definition

An *H*-model in G is a set $\{S_u\}_{u \in V(H)}$ of disjoint subsets of $V(G)$ s.t.

- the $G[S_u]$’s are connected;
- edge uv in $H \Rightarrow$ edge between S_u and S_v in G.

Diagram:

The figure on the left shows a graph G with a highlighted subset that represents an H-model. The figure on the right shows the graph H that is a minor of G. The symbol \cong indicates that H is a minor of G.

Jean-Florent Raymond

Tight Erdős-Pósa bounds for minors
Definition

An **H-model** in G is a set $\{S_u\}_{u \in V(H)}$ of disjoint subsets of $V(G)$ s.t.

- the $G[S_u]$’s are connected;
- edge uv in $H \Rightarrow$ edge between S_u and S_v in G.

![Diagram of G and H with an H-model highlighted]
Minor models

Definition

An *H-model* in G is a set $\{S_u\}_{u \in V(H)}$ of disjoint subsets of $V(G)$ s.t.

- the $G[S_u]$’s are connected;
- edge uv in H \Rightarrow edge between S_u and S_v in G.

G has a *H-model* $\iff H$ is a minor of G
Definition

H has the **Erdős-Pósa property** if there is a function f s.t., for every graph G and $k \in \mathbb{N}$,

- G has k vertex-disjoint H-models; or
- there is $X \subseteq V(G)$ s.t. $G - X$ is H-minor free and $|X| \leq f(k)$.

Theorem (Robertson and Seymour, JCTB 1986)

H has the Erdős-Pósa property iff H is planar.
Definition

H has the **Erdős-Pósa property** if there is a function f s.t., for every graph G and $k \in \mathbb{N}$,

- G has k vertex-disjoint H-models; or
- there is $X \subseteq V(G)$ s.t. $G - X$ is H-minor free and $|X| \leq f(k)$.

f is a **gap** of H.

Theorem (Robertson and Seymour, JCTB 1986)

H has the Erdős-Pósa property iff H is planar.
Definition

H has the **Erdős-Pósa property** if there is a function *f* s.t., for every graph *G* and *k* ∈ ℤ⁺,

- *G* has *k* vertex-disjoint *H*-models; or
- there is *X* ⊆ *V(G)* s.t. *G* − *X* is *H*-minor free and |*X*| ≤ *f*(*k*).

f is a **gap** of *H*.

Theorem (Robertson and Seymour, JCTB 1986)

H has the Erdős-Pósa property iff *H* is planar.
The Erdős-Pósa property of minor models

Definition

H has the Erdős-Pósa property if there is a function f s.t., for every graph G and \(k \in \mathbb{N} \),

- G has \(k \) vertex-disjoint H-models; or
- there is \(X \subseteq V(G) \) s.t. \(G - X \) is H-minor free and \(|X| \leq f(k) \).

f is a gap of H.

Theorem (Robertson and Seymour, JCTB 1986)

H has the Erdős-Pósa property iff H is planar.

With which gap?
A non-exhaustive history of Erdős-Pósa gaps

Graph H	EP gap $O(k \log k)$	Reference	
-----------	----------------------	------------	
K_3		Erdős and Pósa	(Can. J. Math.’65)

Best possible:
- H not planar: no Erdős-Pósa property;
- H has a cycle: no $o(k \log k)$ gap.
A non-exhaustive history of Erdős-Pósa gaps

<table>
<thead>
<tr>
<th>Graph H</th>
<th>EP gap</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_3</td>
<td>$O(k \log k)$</td>
<td>Erdős and Pósa (Can. J. Math.’65)</td>
</tr>
<tr>
<td>planar</td>
<td>large</td>
<td>Robertson and Seymour (JCTB’86)</td>
</tr>
</tbody>
</table>

Best possible:
- H not planar, no Erdős-Pósa property;
- H has a cycle, no $o(k \log k)$ gap.
A non-exhaustive history of Erdős-Pósa gaps

<table>
<thead>
<tr>
<th>Graph H</th>
<th>EP gap</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_3 planar</td>
<td>$O(k \log k)$</td>
<td>Erdős and Pósa (Can. J. Math.’65)</td>
</tr>
<tr>
<td>forest</td>
<td>large</td>
<td>Robertson and Seymour (JCTB’86)</td>
</tr>
<tr>
<td></td>
<td>$O(k)$</td>
<td>Fiorini, Joret, and Wood (CPC’13)</td>
</tr>
</tbody>
</table>

Best possible:
- H not planar
- H has a cycle

$O(k \log k)$ gap.
<table>
<thead>
<tr>
<th>Graph H</th>
<th>EP gap</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_3</td>
<td>$O(k \log k)$</td>
<td>Erdős and Pósa (Can. J. Math.’65)</td>
</tr>
<tr>
<td>planar</td>
<td>large</td>
<td>Robertson and Seymour (JCTB’86)</td>
</tr>
<tr>
<td>forest</td>
<td>$O(k)$</td>
<td>Fiorini, Joret, and Wood (CPC’13)</td>
</tr>
<tr>
<td>planar</td>
<td>$O(k \text{polylog } k)$</td>
<td>Chekuri and Chuzhoy (STOC’13)</td>
</tr>
</tbody>
</table>
A non-exhaustive history of Erdős-Pósa gaps

<table>
<thead>
<tr>
<th>Graph H</th>
<th>EP gap</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_3</td>
<td>$O(k \log k)$</td>
<td>Erdős and Pósa (Can. J. Math.’65)</td>
</tr>
<tr>
<td>planar</td>
<td>large</td>
<td>Robertson and Seymour (JCTB’86)</td>
</tr>
<tr>
<td>forest</td>
<td>$O(k)$</td>
<td>Fiorini, Joret, and Wood (CPC’13)</td>
</tr>
<tr>
<td>planar</td>
<td>$O(k \text{polylog } k)$</td>
<td>Chekuri and Chuzhoy (STOC’13)</td>
</tr>
<tr>
<td>cycle</td>
<td>$O(k \log k)$</td>
<td>Fiorini and Herinckx (JGT’14)</td>
</tr>
<tr>
<td>wheel</td>
<td>$O(k \log k)$</td>
<td>Chatzidimitriou et al. (Algorithmica’17)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aboulker et al. (SIDMA’18)</td>
</tr>
<tr>
<td>Graph H</td>
<td>EP gap</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>K_3</td>
<td>$O(k \log k)$</td>
<td>Erdős and Pósa (Can. J. Math.’65)</td>
</tr>
<tr>
<td>planar</td>
<td>large</td>
<td>Robertson and Seymour (JCTB’86)</td>
</tr>
<tr>
<td>forest</td>
<td>$O(k)$</td>
<td>Fiorini, Joret, and Wood (CPC’13)</td>
</tr>
<tr>
<td>planar</td>
<td>$O(k \text{polylog } k)$</td>
<td>Chekuri and Chuzhoy (STOC’13)</td>
</tr>
<tr>
<td>cycle</td>
<td>$O(k \log k)$</td>
<td>Fiorini and Herinckx (JGT’14)</td>
</tr>
<tr>
<td>wheel</td>
<td>$O(k \log k)$</td>
<td>Chatzidimitriou et al. (Algorithmica’17)</td>
</tr>
<tr>
<td>planar</td>
<td>$O(k \log k)$</td>
<td>Aboulker et al. (SIDMA’18)</td>
</tr>
<tr>
<td>planar</td>
<td>$O(k \log k)$</td>
<td>Cames van Batenburg, Huynh, Joret, R. (SODA’19)</td>
</tr>
</tbody>
</table>
A non-exhaustive history of Erdős-Pósa gaps

<table>
<thead>
<tr>
<th>Graph H</th>
<th>EP gap</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_3</td>
<td>$O(k \log k)$</td>
<td>Erdős and Pósa (Can. J. Math.’65)</td>
</tr>
<tr>
<td>planar</td>
<td>large</td>
<td>Robertson and Seymour (JCTB’86)</td>
</tr>
<tr>
<td>forest</td>
<td>$O(k)$</td>
<td>Fiorini, Joret, and Wood (CPC’13)</td>
</tr>
<tr>
<td>planar</td>
<td>$O(k \text{ polylog } k)$</td>
<td>Chekuri and Chuzhoy (STOC’13)</td>
</tr>
<tr>
<td>cycle</td>
<td>$O(k \log k)$</td>
<td>Fiorini and Herinckx (JGT’14)</td>
</tr>
<tr>
<td>wheel</td>
<td>$O(k \log k)$</td>
<td>Chatzidimitriou et al. (Algorithmica’17)</td>
</tr>
<tr>
<td>planar</td>
<td>$O(k \log k)$</td>
<td>Aboulker et al. (SIDMA’18)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cames van Batenburg, Huynh, Joret, R. (SODA’19)</td>
</tr>
</tbody>
</table>

Best possible:

- H not planar \Rightarrow no Erdős-Pósa property;
A non-exhaustive history of Erdős-Pósa gaps

<table>
<thead>
<tr>
<th>Graph H</th>
<th>EP gap</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_3</td>
<td>$O(k \log k)$</td>
<td>Erdős and Pósa (Can. J. Math.’65)</td>
</tr>
<tr>
<td>planar</td>
<td>large</td>
<td>Robertson and Seymour (JCTB’86)</td>
</tr>
<tr>
<td>forest</td>
<td>$O(k)$</td>
<td>Fiorini, Joret, and Wood (CPC’13)</td>
</tr>
<tr>
<td>planar</td>
<td>$O(k \text{polylog } k)$</td>
<td>Chekuri and Chuzhoy (STOC’13)</td>
</tr>
<tr>
<td>cycle</td>
<td>$O(k \log k)$</td>
<td>Fiorini and Herinckx (JGT’14)</td>
</tr>
<tr>
<td>wheel</td>
<td>$O(k \log k)$</td>
<td>Chatzidimitriou et al. (Algorithmica’17)</td>
</tr>
<tr>
<td>planar</td>
<td>$O(k \log k)$</td>
<td>Aboulker et al. (SIDMA’18)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cames van Batenburg, Huynh, Joret, R. (SODA’19)</td>
</tr>
</tbody>
</table>

Best possible:

- H not planar \Rightarrow no Erdős-Pósa property;
- H has a cycle \Rightarrow no $o(k \log k)$ gap.
The key lemma

Our main theorem follows from the statement:

“every graph has a small H-model or a large useless part”
Our main theorem follows from the statement:

“every graph has a small H-model or a large useless part”

Lemma (Cames van Batenburg, Huynh, Joret, R., 2018+)

For every graph G and every planar graph H,

- G has an H-model of size $O(\log |G|)$;

 or

- $G = A \cap B$
 $|B| \geq \text{large}(|A \cap B|)$
Our main theorem follows from the statement:

“every graph has a small H-model or a large useless part”

Lemma (Cames van Batenburg, Huynh, Joret, R., 2018+)

For every graph G and every planar graph H,

- G has an H-model of size $O(\log |G|)$;

 or

- $G = \begin{array}{c}
 A \\
 \cap \\
 B
\end{array}$ \quad $G[B]$ is H-minor free \\
 $|B| \geq \text{large}(|A \cap B|)$

The constant hidden in the “O” notation depends on:

- the graph H;

- the definition of “large”.

Jean-Florent Raymond

Tight Erdős-Pósa bounds for minors
Proof sketch for $H = K_3$

Goal: “G has a small H-model or a large useless part”
Proof Sketch for $H = K_3$

Goal: “G has a *small* H-model or a large *useless* part”

Maximum collection of disjoint paths of length ℓ: (covering G, for simplicity)

```
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
```
PROOF SKETCH FOR $H = K_3$

Goal: “G has a small H-model or a large useless part”

Maximum collection of disjoint paths of length ℓ:
(covering G, for simplicity)

- either every path sees ≥ 3 other paths
Proof sketch for $H = K_3$

Goal: “G has a small H-model or a large useless part”

Maximum collection of disjoint paths of length ℓ:
(covering G, for simplicity)

- either every path sees ≥ 3 other paths:
 cycle of length $O(\ell \cdot \log |G|)$
Proof sketch for \(H = K_3 \)

Goal: “\(G \) has a small \(H \)-model or a large useless part”

Maximum collection of disjoint paths of length \(\ell \):
(covering \(G \), for simplicity)

- either every path sees \(\geq 3 \) other paths:
 cycle of length \(O(\ell \cdot \log |G|) \)
- or one path sees \(\leq 2 \) other paths
Goal: “G has a small H-model or a large useless part”

Maximum collection of disjoint paths of length ℓ: (covering G, for simplicity)

- either every path sees ≥ 3 other paths:
 cycle of length $O(\ell \cdot \log |G|)$
- or one path sees ≤ 2 other paths
Proof sketch for $H = K_3$

Goal: “G has a small H-model or a large useless part”

Maximum collection of disjoint paths of length ℓ:
(covering G, for simplicity)

- either every path sees ≥ 3 other paths: cycle of length $O(\ell \cdot \log |G|)$
- or one path sees ≤ 2 other paths
Proof sketch for $H = K_3$

Goal: “G has a small H-model or a large useless part”

Maximum collection of disjoint paths of length ℓ:
(covering G, for simplicity)

- B is K_3-minor free
- $|B| \geq \text{large}(|A \cap B|)$

- either every path sees ≥ 3 other paths:
 cycle of length $O(\ell \cdot \log |G|)$
- or one path sees ≤ 2 other paths
PROOF SKETCH FOR $H = K_3$

Goal: “G has a small H-model or a large useless part”

Maximum collection of disjoint paths of length ℓ:
(covering G, for simplicity)

- B is K_3-minor free
- $|B| \geq$ large($|A \cap B|$)

- either every path sees ≥ 3 other paths:
 cycle of length $O(\ell \cdot \log |G|)$
- or one path sees ≤ 2 other paths:
 cycle of length $\leq 2\ell$ or large useless part.
How to generalize?

Crucial property: we can conclude when two paths are connected with many edges.
How to generalize?

Crucial property: we can conclude when two paths are connected with many edges.

Possible extension to $H = K_4$:

Pack cycles of bounded size first, then paths.
How to generalize?

Crucial property: we can conclude when two paths are connected with many edges.

Possible extension to $H = K_4$:

Pack cycles of bounded size first, then paths.

\leadsto gap $O(k \log k)$ when H is a wheel

(Aboulker, Fiorini, Huynh, Joret, R. and Sau, 2018)
Orchards

An a-orchard in G consists in collections

• $P_1; \ldots; P_a$ of vertex-disjoint (horizontal) paths; and

• $T_1; \ldots; T_b$ of vertex-disjoint (vertical) trees,

s.t. for every $i \in \{1, \ldots, a\}$, $j \in \{1, \ldots, b\}$:

• $P_i \nsubseteq T_j = \emptyset$ and connected;

and

• each leaf of T_j lies on some horizontal path.
Orchards

An $a \times b$-orchard in G consists in collections

- P_1, \ldots, P_a of vertex-disjoint (horizontal) paths; and
- T_1, \ldots, T_b of vertex-disjoint (vertical) trees,

s.t. for every $i \in [a], j \in [b]$:

- $P_i \cap T_j \neq \emptyset$ and connected; and
- each leaf of T_j lies on some horizontal path.
Decomposition into orchards

\[G \]
Decomposition into orchards

G max. collection of disjoint $m \times \omega(m)$-orchards in G
Decomposition into orchards

- Max. collection of disjoint $m \times \omega(m)$-orchards in G
- Max. collection of disjoint $(m - 1) \times \omega(m - 1)$-orchards in what remains
Decomposition into orchards

\[G \]

- max. collection of disjoint \(m \times \omega(m) \)-orchards in \(G \)
- max. collection of disjoint \((m - 1) \times \omega(m - 1)\)-orchards in what remains
- \(\vdots \)
- max. collection of disjoint \(1 \times \omega(1) \)-orchards in what remains
Decomposition into orchards

G → max. collection of disjoint $m \times \omega(m)$-orchards in G

\vdots

max. collection of disjoint $(m - 1) \times \omega(m - 1)$-orchards in what remains

\vdots

max. collection of disjoint $1 \times \omega(1)$-orchards in what remains

leftovers
Decomposition into orchards

\[\text{max. collection of disjoint } m \times \omega(m)\text{-orchards in } G \]

\[\text{max. collection of disjoint } (m - 1) \times \omega(m - 1)\text{-orchards in what remains} \]

\[\vdots \]

\[\text{max. collection of disjoint } 1 \times \omega(1)\text{-orchards in what remains} \]

\[\text{leftovers} \]

- many edges between two orchards \(\Rightarrow \) small model or \textit{better} decomposition
Decomposition into orchards

\begin{itemize}
 \item many edges between two orchards \implies small model or \textit{better} decomposition
 \item only few edges between two orchards \implies small separation
\end{itemize}
Consequences
Consequence 1/4: Algorithms

\[\text{pack}_H(G) \] max. number of disjoint \(H \)-models in \(G \)

\[\text{cover}_H(G) \] min. size of a cover of \(H \)-models in \(G \)
Consequence 1/4: Algorithms

$\text{pack}_H(G)$ max. number of disjoint H-models in G

$\text{cover}_H(G)$ min. size of a cover of H-models in G

<table>
<thead>
<tr>
<th>Param.</th>
<th>Problem</th>
<th>Exact</th>
<th>Approximate</th>
</tr>
</thead>
</table>
| pack_{K_3} | CYCLE PACKING | NPC | • polytime $O(\log \text{OPT})$-approx.
• $O(\log(n)^{1/2-\epsilon})$-approx. is quasi-NP-hard |
| cover_{K_3} | FVS | NPC | • polytime 2-approx. |
Consequence 1/4: Algorithms

\[
\text{pack}_H(G) \quad \text{max. number of disjoint } H\text{-models in } G
\]

\[
\text{cover}_H(G) \quad \text{min. size of a cover of } H\text{-models in } G
\]

<table>
<thead>
<tr>
<th>Param.</th>
<th>Problem</th>
<th>Exact</th>
<th>Approximate</th>
</tr>
</thead>
</table>
| pack_{K_3} | CYCLE PACKING | NPC | • polytime \(O(\log \text{OPT})\)-approx.
• \(O(\log(n)^{1/2-\epsilon})\)-approx. is quasi-NP-hard |
| cover_{K_3} | FVS | NPC | • polytime 2-approx. |

Theorem (from our results)

For every planar graph \(H\), there is a polytime \(O(\log(\text{OPT}))\)-approximation algorithm for \(\text{pack}_H\).
Consequence 1/4: Algorithms

The function $\text{pack}_H(G)$ represents the maximum number of disjoint H-models in G, while $\text{cover}_H(G)$ represents the minimum size of a cover of H-models in G.

<table>
<thead>
<tr>
<th>Param.</th>
<th>Problem</th>
<th>Exact</th>
<th>Approximate</th>
</tr>
</thead>
</table>
| pack_{K_3} | CYCLE PACKING | NPC | • polytime $O(\log \text{OPT})$-approx.
• $O(\log(n)^{1/2-\epsilon})$-approx. is quasi-NP-hard |
| cover_{K_3} | FVS | NPC | • polytime 2-approx. |

Theorem (from our results)

For every planar graph H, there is a polytime $O(\log(\text{OPT}))$-approximation algorithm for pack_H.

(idem for cover_H, but $O(1)$-approximations are already known)
Theorem (Stiebitz, JGT 1996)

Every graph of large minimum degree has a partition into many subgraphs of large minimum degree.
Consequence 2/4: Large treewidth graph decomposition

Theorem (Stiebitz, JGT 1996)

Every graph of large minimum degree has a partition into many subgraphs of large minimum degree.

Same for treewidth?
Consequence 2/4: Large treewidth graph decomposition

Theorem (Stiebitz, JGT 1996)

Every graph of large minimum degree has a partition into many subgraphs of large minimum degree.

Same for treewidth?

Theorem

If G has treewidth at least

- $\text{poly}(r) \cdot k \text{polylog}(k + 1)$ (Chekury and Chuzhoy, 2013)

then it has k disjoint subgraphs of treewidth at least r.
Consequence 2/4: Large treewidth graph decomposition

Theorem (Stiebitz, JGT 1996)
Every graph of large minimum degree has a partition into many subgraphs of large minimum degree.

Same for treewidth?

Theorem
If G has treewidth at least

- $\text{poly}(r) \cdot k \text{polylog}(k + 1)$ (Chekury and Chuzhoy, 2013)
- $s(r) \cdot k \log(k + 1)$ (from our results)

then it has k disjoint subgraphs of treewidth at least r.
Theorem (Thomassen, JGT 1988)

For every \(m \in \mathbb{N}_{\geq 1} \) there is a function \(f \) s.t., for every \(k \in \mathbb{N} \) and every graph \(G \),

- \(G \) contains \(k \) vertex-disjoint cycles of length \(0 \mod m \),
- or there is a subset \(X \) of at most \(f(k) \) vertices s.t. \(G - X \) has no such cycle.

From Thomassen's proof:
\[
f(k) = 2^{2O(k)}
\]

Chekuri and Chuzhoy (2013):
\[
f(k) = k \text{polylog} k
\]

From our result:
\[
f(k) = O(k \log k) \text{ (tight)}
\]
Theorem (Thomassen, JGT 1988)

For every $m \in \mathbb{N}_{\geq 1}$ there is a function f s.t., for every $k \in \mathbb{N}$ and every graph G,

- G contains k vertex-disjoint cycles of length $0 \mod m$,
- or there is a subset X of at most $f(k)$ vertices s.t. $G - X$ has no such cycle.

- from Thomassen’s proof: $f(k) = 2^{O(k)}$
Theorem (Thomassen, JGT 1988)

For every \(m \in \mathbb{N}_{\geq 1} \) there is a function \(f \) s.t., for every \(k \in \mathbb{N} \) and every graph \(G \),

- \(G \) contains \(k \) vertex-disjoint cycles of length \(0 \mod m \),
- or there is a subset \(X \) of at most \(f(k) \) vertices s.t. \(G - X \) has no such cycle.

- from Thomassen’s proof: \(f(k) = 2^{2^{O(k)}} \)
- Chekury and Chuzhoy (2013): \(f(k) = k \text{ polylog } k \)
Consequence 3/4: Packing cycles with modularity constraints

Theorem (Thomassen, JGT 1988)
For every $m \in \mathbb{N}_{\geq 1}$ there is a function f s.t., for every $k \in \mathbb{N}$ and every graph G,

- G contains k vertex-disjoint cycles of length $0 \mod m$,
- or there is a subset X of at most $f(k)$ vertices s.t. $G - X$ has no such cycle.

- from Thomassen’s proof: $f(k) = 2^{2^{O(k)}}$
- Chekury and Chuzhoy (2013): $f(k) = k \, \text{polylog } k$
- from our result: $f(k) = O(k \log k)$ (tight)
EP65: every gap for K_3 is an $\Omega(k \log k)$.
Consequence 4/4: Erdős-Pósa in minor-closed classes

EP65: every gap for K_3 is an $\Omega(k \log k)$.

Theorem (Bienstock and Dean, JCTB 1992)

$k \mapsto 54k$ is a gap for K_3 in planar graphs.
Consequence 4/4: Erdős-Pósa in minor-closed classes

EP65: every gap for K_3 is an $\Omega(k \log k)$.

<table>
<thead>
<tr>
<th>Theorem (Bienstock and Dean, JCTB 1992)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k \mapsto 54k$ is a gap for K_3 in planar graphs.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Fomin, Saurabh, and Thilikos, JGT 2011)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For every planar graph H and every proper minor-closed class \mathcal{G}, there is a $O(k)$ gap for H in \mathcal{G}.</td>
</tr>
</tbody>
</table>
Consequence 4/4: Erdős-Pósa in minor-closed classes

EP65: every gap for K_3 is an $\Omega(k \log k)$.

Theorem (Bienstock and Dean, JCTB 1992)

$k \mapsto 54k$ is a gap for K_3 *in planar graphs*.

Theorem (Fomin, Saurabh, and Thilikos, JGT 2011)

For every planar graph H and every proper minor-closed class \mathcal{G}, there is a $O(k)$ gap for H *in \mathcal{G}.*

The previous theorem also follows from our results.
Open problems
The right gap

<table>
<thead>
<tr>
<th>Theorem (our main theorem)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \text{ planar} \Rightarrow \text{there is a } O(k \log k) \text{ gap for } H.$</td>
</tr>
</tbody>
</table>
The right gap

Theorem (our main theorem)

\(H \text{ planar} \Rightarrow \text{there is a } O(k \log k) \text{ gap for } H. \)

In our proof, the hidden constant (which depends on \(H \)) is:

- not known to be computable;
The right gap

Theorem (our main theorem)

\[H \text{ planar } \Rightarrow \text{there is a } O(k \log k) \text{ gap for } H. \]

In our proof, the hidden constant (which depends on \(H \)) is:

- not known to be computable;
- large.
The right gap

Theorem (our main theorem)

\[H \text{ planar} \Rightarrow \text{there is a } O(k \log k) \text{ gap for } H. \]

In our proof, the hidden constant (which depends on \(H \)) is:
- not known to be computable;
- large.

What is the “right” contribution of \(H \) in the gap?
The right gap

Theorem (our main theorem)

H planar \Rightarrow there is a $O(k \log k)$ gap for H.

In our proof, the hidden constant (which depends on H) is:
 - not known to be computable;
 - large.

What is the “right” contribution of H in the gap?

Theorem (Mousset et al., JCTB 2017)

There is a function $f(k, \ell) = O(k \log k + k\ell)$ such that C_ℓ has gap $f(\cdot, \ell)$, for every $\ell \geq 3$.
The right gap

Theorem (our main theorem)

H planar ⇒ there is a $O(k \log k)$ gap for H.

In our proof, the hidden constant (which depends on H) is:

• not known to be computable;
• large.

What is the “right” contribution of H in the gap?

Theorem (Mousset et al., JCTB 2017)

There is a function $f(k, \ell) = O(k \log k + k\ell)$ such that C_ℓ has gap $f(\cdot, \ell)$, for every $\ell \geq 3$.

Same behavior?
Variants

<table>
<thead>
<tr>
<th></th>
<th>dichotomy</th>
<th>tight bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>minors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vertex</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>edge</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>topo. minors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vertex</td>
<td>✓?</td>
<td>?</td>
</tr>
<tr>
<td>edge</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>immersions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vertex</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>edge</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Variants

<table>
<thead>
<tr>
<th></th>
<th>dichotomy</th>
<th>tight bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>minors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vertex</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>edge</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>topo. minors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vertex</td>
<td>✓?</td>
<td>?</td>
</tr>
<tr>
<td>edge</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>immersions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vertex</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>edge</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Other variants: directed, induced, weighted, labelled, etc.
<table>
<thead>
<tr>
<th></th>
<th>dichotomy</th>
<th>tight bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>minors</td>
<td>vertex</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>edge</td>
<td>?</td>
</tr>
<tr>
<td>topo. minors</td>
<td>vertex</td>
<td>✓?</td>
</tr>
<tr>
<td></td>
<td>edge</td>
<td>?</td>
</tr>
<tr>
<td>immersions</td>
<td>vertex</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>edge</td>
<td>?</td>
</tr>
</tbody>
</table>

Other variants: directed, induced, weighted, labelled, etc.

Thank you for your attention!