Enumerating minimal dominating sets in triangle-free graphs

Jean-Florent Raymond (TU Berlin)

19/10/2018 Dagstuhl Seminar on Algorithmic Enumeration

Joint work with **Marthe Bonamy** (LaBRI, Bordeaux), **Oscar Defrain** (LIMOS, Clermont-Ferrand), and **Marc Heinrich** (LIRIS, Lyon).

• N(v): neighbors of v

- N(v): neighbors of v
- $N[v] = N(v) \cup \{v\}$

- N(v): neighbors of v
- $N[v] = N(v) \cup \{v\}$
- dominating set (DS): $D \subseteq V(G)$ s.t. N[D] = V(G)

"D can see everybody"

- N(v): neighbors of v
- $\cdot \ N[v] = N(v) \cup \{v\}$
- dominating set (DS): $D \subseteq V(G)$ s.t. N[D] = V(G)"D can see everybody"
- minimal dominating set: inclusion-wise minimal DS

- N(v): neighbors of v
- $N[v] = N(v) \cup \{v\}$
- dominating set (DS): D ⊆ V(G) s.t. N[D] = V(G)
 "D can see everybody"
- minimal dominating set: inclusion-wise minimal DS
- private neighbor of v ∈ D: vertex dominated only by v (possibly v itself)

- N(v): neighbors of v
- $\cdot \ N[v] = N(v) \cup \{v\}$
- dominating set (DS): D ⊆ V(G) s.t. N[D] = V(G)
 "D can see everybody"
- minimal dominating set: inclusion-wise minimal DS
- private neighbor of v ∈ D: vertex dominated only by v (possibly v itself)

Simple observation

 $D \subseteq V(G)$ minimal dominating set iff

- D dominates G, and
- every $v \in D$ has a private neighbor (v is irredundant).

Goal: output-polynomial algorithms

Running time polynomial in (input size + output size)

Goal: output-polynomial algorithms Running time polynomial in (input size + output size)

General case: open (best is quasi-polynomial)

Goal: output-polynomial algorithms Running time polynomial in (input size + output size)

General case: open (best is quasi-polynomial)

Known: degenerate graphs, graphs of bounded clique-width or mim-width, split graphs, graphs of girth \ge 7, etc.

Goal: output-polynomial algorithms Running time polynomial in (input size + output size)

General case: open (best is quasi-polynomial)

Known: degenerate graphs, graphs of bounded clique-width or mim-width, split graphs, graphs of girth \ge 7, etc.

Theorem (Bonamy, Defrain, Heinrich, R., 2018+) There is an output-polynomial algorithm enumerating minimal dominating sets in triangle-free graphs.

D minimal DS in G

$\label{eq:construction} \begin{array}{c} \updownarrow \\ D \cap C \text{ is irredundant (every vertex has a private neighbor)} \\ \text{ and } \dots \end{array}$

D minimal DS in G

\updownarrow

 $D \cap C$ is irredundant (every vertex has a private neighbor) and $D \cap S = \{ all vertices not dominated by <math>D \cap C \}$

D minimal DS in G

\updownarrow

 $D \cap C$ is irredundant (every vertex has a private neighbor) and $D \cap S = \{ all vertices not dominated by <math>D \cap C \}$

D minimal DS in G

\updownarrow

 $D \cap C$ is irredundant (every vertex has a private neighbor) and $D \cap S = \{ all vertices not dominated by <math>D \cap C \}$

 $D \cap C$ is irredundant (every vertex has a private neighbor) and $D \cap S = \{$ all vertices not dominated by $D \cap C \}$

Enumeration: complete in *S* every irredundant $X \subseteq C$ (linear delay, Kanté et al. 2014)

Goal: enumeration of minimal DS in triangle-free graphs

- 1. enumerate the minimal DS of V_i
- 2. use them to enumerate those of V_{i+1}

Goal: enumeration of minimal DS in triangle-free graphs

- 1. enumerate the minimal DS of V_i
- 2. use them to enumerate those of V_{i+1}

Goal: enumeration of minimal DS in triangle-free graphs

- enumerate the minimal DS of V_i with vertices of G
- 2. use them to enumerate those of V_{i+1}

Goal: enumeration of minimal DS in triangle-free graphs

i ● ● ● ●

- enumerate the minimal DS of V_i with vertices of G
- use them to enumerate those of V_{i+1} extend each minimal DS of V_i to minimal DS of V_{i+1}

GROWING PARTIAL MINIMAL DOMINATING SETS

GROWING PARTIAL MINIMAL DOMINATING SETS

Important properties:

• no cycle

GROWING PARTIAL MINIMAL DOMINATING SETS

Important properties:

- no cycle
- \cdot no leaf before level p

Observation:

- possibly *D* dominates V_{i+1}
- if not then $D \cup \{u_{i+1}\}$ does.

Observation:

- possibly *D* dominates V_{i+1}
- if not then $D \cup \{u_{i+1}\}$ does.

extension is always possible

Observation:

- possibly *D* dominates V_{i+1}
- if not then $D \cup \{u_{i+1}\}$ does.

extension is always possible

Observation:

- possibly *D* dominates V_{i+1}
- if not then $D \cup \{u_{i+1}\}$ does.

extension is always possible

candidate extension: minimal X s.t. $D \cup X$ dominates V_{i+1}

Lemma: |candidate extensions of $D| \leq |\text{minimal DS of } G|$ (so we can try them all even if only few *work*)

D: minimal DS of V_i

D: minimal DS of V_i

Candidate ext.: minimal X s.t. $D \cup X$ dominates V_{i+1}

• if u_{i+1} dom. by D: they only have to dominate S

Candidate ext.: minimal X s.t. $D \cup X$ dominates V_{i+1}

• if u_{i+1} dom. by D: they only have to dominate S \rightarrow exactly the minimal DS of Split(C, S)

- if u_{i+1} dom. by D: they only have to dominate S \rightarrow exactly the minimal DS of Split(C, S)
- or u_{i+1} not dom. by D: they should dom. u_{i+1} as well

Candidate ext.: minimal X s.t. $D \cup X$ dominates V_{i+1}

- if u_{i+1} dom. by D: they only have to dominate S \rightarrow exactly the minimal DS of Split(C, S)
- or u_{i+1} not dom. by D: they should dom. u_{i+1} as well

 \rightarrow irredundant {*t*} \cup *Q* s.t.

t.
$$\begin{cases} t \in N(u_{i+1}) \\ Q \subseteq C \text{ minimal DS of Split}(C, S) \end{cases}$$

THE ALGORITHM

THE ALGORITHM

For each D minimal DS of V_i :

THE ALGORITHM

For each *D* minimal DS of V_i :

· compute all candidate extensions;

The algorithm

For each *D* minimal DS of V_i :

- · compute all candidate extensions;
- only keep the $X \cup D$'s that are minimal and children of D.

The set $\mathcal{D}(G)$ of minimal dominating sets of any triangle-free graph G can be enumerated in time $\operatorname{poly}(|G|) \cdot |\mathcal{D}(G)|^2$ and polynomial space.

The set $\mathcal{D}(G)$ of minimal dominating sets of any triangle-free graph G can be enumerated in time $\operatorname{poly}(|G|) \cdot |\mathcal{D}(G)|^2$ and polynomial space.

Theorem (Bonamy, Defrain, Heinrich, R., 2018+)

Deciding if a vertex set X can be extended into a minimal dominating set is NP-complete in bipartite graphs.

The set $\mathcal{D}(G)$ of minimal dominating sets of any triangle-free graph G can be enumerated in time $\operatorname{poly}(|G|) \cdot |\mathcal{D}(G)|^2$ and polynomial space.

Theorem (Bonamy, Defrain, Heinrich, R., 2018+)

Deciding if a vertex set X can be extended into a minimal dominating set is NP-complete in bipartite graphs.

complexity improvements?

The set $\mathcal{D}(G)$ of minimal dominating sets of any triangle-free graph G can be enumerated in time $\operatorname{poly}(|G|) \cdot |\mathcal{D}(G)|^2$ and polynomial space.

Theorem (Bonamy, Defrain, Heinrich, R., 2018+)

Deciding if a vertex set X can be extended into a minimal dominating set is NP-complete in bipartite graphs.

- complexity improvements?
- extensions to other classes?

The set $\mathcal{D}(G)$ of minimal dominating sets of any triangle-free graph G can be enumerated in time $\operatorname{poly}(|G|) \cdot |\mathcal{D}(G)|^2$ and polynomial space.

Theorem (Bonamy, Defrain, Heinrich, R., 2018+)

Deciding if a vertex set X can be extended into a minimal dominating set is NP-complete in bipartite graphs.

- complexity improvements?
- extensions to other classes?

Thank you!