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MINIMAL DOMINATING SETS

- N(v): neighbors of v
- N[v] = N(v) U {v}
- dominating set (DS): D C V(G) st. N[D] = V(G)

- minimal dominating set: inclusion-wise minimal DS
- private neighbor of v € D: vertex dominated only by v

Simple observation
D C V(G) minimal dominating set iff

- D dominates G, and

- every v € D has a private neighbor
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Goal: output-polynomial algorithms
Running time polynomial in (input size + output size)

General case: open (best is quasi-polynomial)

Known: degenerate graphs, graphs of bounded clique-width or
mim-width, split graphs, graphs of girth > 7, etc.

Theorem (Bonamy, Defrain, Heinrich, R., 2018+)

There is an output-polynomial algorithm enumerating
minimal dominating sets in triangle-free graphs.
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MINIMAL DOMINATING SETS IN SPLIT GRAPHS

clique— )(. —stable set (maximal)

D minimal DS in G

)

DN Cis irredundant (every vertex has a private neighbor)
and D NS = {all vertices not dominated by D N C}

Enumeration: complete in S every irredundant X C C
(linear delay, Kanté et al. 2014)
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PEELING GRAPHS

Goal: enumeration of minimal DS in triangle-free graphs

Plan:

u -
'<> : 1. enumerate the minimal DS of V;

with vertices of G

2. use them to enumerate

uj :O those of Vi,

V,~5 ------------------------------ : extend each minimal DS of V; to
minimal DS of Vi,
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GROWING PARTIAL MINIMAL DOMINATING SETS

V----O-0- O 0-0-0-0-0CO-0-0-0------

Important properties:
- no cycle
- no leaf before level p
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FROM V; TO V4

Goal: extend a minimal DS D of V; to a minimal DS of V;

Observation:
- possibly D dominates Vj4

- if not then DU {uj,+} does.
extension is always possible

candidate extension: minimal X st. DU X dominates Vi,

Lemma: |candidate extensions of D| < |minimal DS of G|
(so we can try them all even if only few work)
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WHICH ARE THE CANDIDATE EXTENSIONS OF D?

D: minimal DS of V;
Candidate ext. minimal X st. DUX dominates Vi 4

dominated by D

Ny . (Uisq) (stable set!)

Vi

NES) \ {u,«+1}{

- If Uiy dom. by D: they only have to dominate S
— exactly the minimal DS of Split(C, S)

- or ujyq not dom. by D: they should dom. uj,; as well

te N(uiy)

Q C C minimal DS of Split(C, S)
=

— irredundant {t} UQ st.
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THE ALGORITHM

V----0-0- O 0-0-0-0-0CO-0-0-0------

For each D minimal DS of V;:
- compute all candidate extensions;

- only keep the XU D's that are minimal and children of D.
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Theorem (Bonamy, Defrain, Heinrich, R., 2018+)
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The set D(G) of minimal dominating sets of any triangle-free
graph G can be enumerated in time poly(|G|) - |D(G)|” and
polynomial space.

Theorem (Bonamy, Defrain, Heinrich, R., 2018+)
Deciding if a vertex set X can be extended into a minimal
dominating set is NP-complete in bipartite graphs.

- complexity improvements?

- extensions to other classes?

Thank you!
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