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Abstract

We consider questions regarding the containment graphs of paths in a tree (CPT
graphs), a subclass of comparability graphs, and the containment posets of paths in a
tree (CPT orders). In 1984, Corneil and Golumbic observed that a graph G may be
CPT, yet not every transitive orientation of G necessarily has a CPT representation,
illustrating this on the even wheels W2k(k ≥ 3). Motivated by this example, we
characterize the partial wheels that are containment graphs of paths in a tree, and
give a number of examples and obstructions for this class. Our characterization gives
the surprising result that all partial wheels that admit a transitive orientation are CPT
graphs. We then characterize the CPT orders whose comparability graph is a partial
wheel.

1 Introduction

An undirected graph G is a containment graph if each vertex vi ∈ V (G) can be assigned a
subset Si of a given set S such that two vertices vi and vj are adjacent if one of their sets
strictly contains the other, that is, (vi, vj) ∈ E(G) ⇐⇒ Si ⊂ Sj or Sj ⊂ Si, where the
symbol ⊂ denotes proper inclusion. The containment graphs of arbitrary sets are equivalent
to the family of comparability graphs, i.e., those admitting a transitive orientation (TRO),
as observed first by Dushnik and Miller [DuMi41]. For this general case, Golumbic and
Scheinerman [GoSc89] showed that the subsets may be assumed to be substars of a star.

For the case of containment graphs of intervals on a line, Dushnik and Miller proved that
the corresponding subfamily of comparability graphs are those having partial order dimension
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at most 2 [DuMi41], which are known to be equivalent to the family of permutation graphs.
Golumbic and Scheinerman [GoSc89] generalized this further, showing that a partial order
has dimension at most 2d if and only if it is representable as the containment of boxes in
Rd with edges parallel to the axes. The corresponding subfamily of containment graphs are
called (rectilinear) box containment graphs in d-space.

Containment graphs of circular arcs have been studied in [NiMaNa88], where they are
shown to be equivalent to the circular permutation graphs of [RoUr82], see also [Sp03].
Circle orders (containment of circular disks in the plane) have been extensively studied [Fi88,
Fi89, Sc91, Sc92, ScWi88, SiSiUr88] as well as their 3-dimensional analogue sphere orders
[BrWi89, ElFa98, FeFiTr99, Fo93, Sc93]. A survey of these and other known results on
geometric containment orders can be found in Fishburn and Trotter [FiTr98].

In this paper, we investigate the containment graphs of paths in a tree (CPT graphs)
and some properties of the posets defined by their transitive orientations. In 1984, Corneil
and Golumbic [CoGo84]) observed that a graph G may be CPT, i.e., have a containment
representation of paths in a tree, yet not every transitive orientation of G necessarily has such
a representation, (unlike poset dimension, interval orders, box containment orders and others
which are comparability invariants.) For example, looking at the 8-wheel W8 (Figure 1), they
showed that the transitive orientation F where the central vertex is a sink (interpreted as
its path being contained in all the paths of the outer vertices) has a representation as the
containment order of paths in a tree, but the dual transitive orientation F d where the central
vertex is a source (interpreted as its path containing all the paths of the outer vertices) has
no such representation: namely, if the central vertex corresponds to a path that contains the
remaining eight paths, then we would have an interval containment representation for the
chordless 8-cycle C8, which is not possible [DuMi41].

Motivated by this example, in Section 3, we study the partial wheels (wheels with missing
spokes) that are containment graphs of paths in a tree and provide a characterization for
them (Theorem 1). A partial wheel consists of a chordless cycle and a central vertex adjacent
to some but not all of the cycle vertices. Since a containment graph must always be a
comparability graph, one might ask first which partial wheels have a transitive orientation,
and then ask which of those admit a CPT representation. Our characterization gives the
surprising result that all partial wheels that admit a TRO are CPT.

In Section 4, we characterize the CPT orders whose comparability graph is a partial
wheel (Theorem 2). These results provide us with a characterization of the partial wheels
for which every transitive orientation is a CPT order. We conclude with open questions and
further directions for research.

2 Preliminaries

2.1 Definitions and notation

Given an undirected graph G = (V,E), we use the notation (x, y) for an edge, and say that
vertices x and y are adjacent or neighbors. The set of neighbors of a vertex x is denoted by
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Figure 1: The 8-wheel W8. Its central vertex must be a sink in any CPT representation.

N (x).
An undirected graph G = (V,E) is a comparability graph if it admits a transitive orien-

tation (TRO) of its edges, that is, if a → b and b → c, then a → c in the orientation. The
transitive orientation is a (strict) partial order on the vertices, and G is its comparability
relation.

A fundamental notion in the study of comparability graphs is the Γ-forcing relation for
transitive orientations which can be stated as follows:

If (u, v), (v, w) ∈ E, but (u,w) /∈ E, then in any transitive orientation of G,
orienting u → v forces the orientation w → v, and orienting v → u forces the
orientation v → w.

Let S = {Sx | x ∈ X} be a family of subsets of a given set Y . A partially ordered
set P = (X,≺) (also called a poset) is called a containment order with representation S
if xi ≺ xj ⇐⇒ Si ⊂ Sj, where the symbol ⊂ denotes proper inclusion. We call S a
containment representation of the poset.

Let C denote a class of objects, such as intervals on a line, subtrees or paths of a tree, arcs
on a circle, circular disks in the plane, rectilinear boxes in Rm, etc. We call P = (X,≺) a
C-containment order if it admits a containment representation S where all the sets are taken
from the class C. Thus, we may speak of interval containment orders, subtree containment
orders, circular-arc containment orders, etc. We call G a C-containment graph if it admits
a transitive orientation which is a C-containment order, and speak of interval containment
graphs, subtree containment graphs, circular-arc containment graphs, etc.

We will be concerned in this paper with the containment graphs of paths in a tree (CPT
graphs) and some properties of the CPT orders defined by their transitive orientations. For
example, it is a simple exercise left to the reader that all trees are CPT graphs. Bipartite
graphs, however, are not necessarily CPT graphs.

A poset property Π is called a comparability invariant if, for any given comparability
graph G, either every transitive orientation of G satisfies property Π, or no transitive orien-
tation of G satisfies Π. Many familiar classes of poset properties are comparability invariant,

3



including: poset dimension (see [Tr92]), interval dimension [HaKeMo91], unit interval or-
ders [Go77], box containment orders [GoSc89], bounded tolerance, bitolerance orders, unit
tolerance and unit bitolerance orders [BoIsLaTr01]. See also the book [GoTr04].

However, Corneil and Golumbic [CoGo84], observed that the property of being a CPT
order is not a comparability invariant, as demonstrated by the wheel W2k (k ≥ 3). In this
paper, we will explore this further by characterizing the CPT orders whose comparability
graph is a partial wheel (a wheel with missing spokes), and the partial wheels that are CPT
graphs.

2.2 Interval containment representations for chordless paths

We mention here an important property of interval containment representations for the
chordless path Pn that will be used later.

Remark 1. Let F be the (alternating) transitive orientation of an odd chordless path on
vertices [a1, a2, . . . , a2j+1] with a1 and a2j+1 both sinks. We note that F has an “almost
unique” containment representation as a group of intervals on the line:

The odd numbered intervals (which may overlap or be disjoint) appear on the
line with the ordering of their left endpoints being the same as the ordering of
their right endpoints, and this will be either their original order on the path or
their reverse order. We will call these the “small” intervals, and the first and the
last will be called the “extreme” intervals. (When the set is of size 1, it is the
only “extreme” interval.) The even numbered interval corresponding to a2i must
contain, in sequence, the two small intervals corresponding to its neighbors a2i−1
and a2i+1 on the path.

Remark 2 (Compressed intervals-on-line). Among all the possible representations in Re-
mark 1, there is one canonical endpoint sequence that we will call the compressed represen-
tation of intervals. It has the property that all intervals have a common point p on the line,
by starting all intervals before closing any of them. Namely:

l1 = l2 < l3 = l4 < l5 · · · l2j−1 = l2j < l2j+1 < p and
p < r1 < r2 = r3 < r4 = r5 · · · r2j−1 < r2j = r2j+1

where we denote the interval Ii = [li, ri].

It is easy to see that this will represent the chordless path.

3 Partial wheels as containment graphs of paths in a

tree

In this section, we raise and answer the question of characterizing the partial wheels that
are containment graphs of paths in a tree (CPT). Since the property of being CPT is not a
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comparability invariant, one might ask first, which partial wheels have a TRO, and then ask
which of those admit a CPT representation. We show, in fact, that they are equivalent!

Theorem 1. Let W be a partial wheel. The following conditions are equivalent:

(1) W has a transitive orientation,

(2) W is a containment graphs of paths in a tree,

(3) the outer-cycle of W is of even length, and either

(a) the central vertex is adjacent to exactly two consecutive outer vertices, or

(b) all maximal sets of consecutive neighbors and of consecutive non-neighbors of the
central vertex are of odd length.

Proof. Let {a1, a2, . . . , an} be the outer-cycle of the partial wheel W , and denote by x the
central vertex, adjacent to some but not all of the outer vertices ai.

(1) ⇒ (3). If W has a transitive orientation, then in such an orientation, consecutive
edges of the outer-cycle alternate direction. Hence, the cycle has even length.

(a) Suppose the central vertex x is adjacent to exactly two consecutive outer vertices, say
a1 and a2. We may assume, without loss of generality, that a1 → a2. Then, by the standard
“Γ-forcing” relation for comparability graphs, a1 → an, a3 → a2 and so a1 → x, x → a2.
This transitive orientation shows that case (a) is possible.

(b) Suppose that x is adjacent to a maximal set of size two, say a1, a2 with edge orien-
tations as in case (a). If x were to be adjacent to another outer vertex aj (4 ≤ j ≤ n − 2)
then the orientation of the edge (x, aj) would contradict transitivity with either a1 → x or
x→ a2. Thus we would have exactly case (a).

Suppose that x is adjacent to a maximal consecutive set of neighbors of even length
greater than or equal to 4, say a1, a2, . . . , a2i−1, a2i (i ≥ 2). Again, we may assume, without
loss of generality, that a1 → a2. Because of the parity on the outer-cycle, this forces a1 → x,
x→ a2i which contradicts transitivity. Thus, we may now assume that aside from case (a),
all consecutive sets of neighbors of x are of odd length.

Suppose that x is non-adjacent to an even length consecutive gap of non-neighbors,
aj+1, . . . , aj+2i (i ≥ 1) where x is adjacent to aj and to aj+2i+1. Again, by a parity argument
on the alternating orientation of the outer vertices, since the length 2i of the gap is even
length, there will be a violation of transitivity. Thus, all consecutive sets of non-neighbors
of x are of odd length.

(3)⇒ (2). We construct an appropriate CPT representation in each case. We begin with
the representation of the outer-cycle and its paths.

Let T be a star with center c and edges {(c, b1), (c, b2), . . . , (c, bk)} where n = 2k. Let the
path P1 consist of the two star-edges {(c, bk), (c, b1)} representing outer-cycle vertex a1, and
let the path Q1 consist of the single star-edge {(c, b1)} representing outer-cycle vertex a2.
Similarly, for i = 2, . . . , k, let Pi = {(c, bi−1), (c, bi)} representing a2i−1, and let Qi = {(c, bi)}
representing a2i. Clearly, T = {Pi | i = 1, . . . , k}∪{Qi | i = 1, . . . , k} is a CPT representation
of the outer-cycle.
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Case A: Assume that x is adjacent only to a1 and a2. We extend the representation T
to obtain T ′ by (i) adding a new pendant vertex d adjacent to b1 in T , (ii) adding the edge
(b1, d) to P1 and P2, and (iii) adding the path Rx consisting of the two edges {(c, b1), (b1, d)}
representing x, center of the wheel. This is a CPT representation for Case A.

Case B: The construction for this case is a bit more complicated, but has a similar flavor.
Start with the same representation T of the outer-cycle. This time, let Rx be c, the center
of the star. We now have a representation of the full wheel. Let’s modify the representation
to “erase” the unwanted edges and get a representation T ′′ of our partial wheel.

We may assume that the first sequence of consecutive neighbors of x in W is a1, . . . , a2j−1
for some j ≥ 1. Consider the first gap of non-neighbors a2j, . . . , a2j+2i (i ≥ 0).

(i) If i = 0, shorten Qj by pulling it back away from the center c. Thus, a2j is no longer
adjacent to x, but it maintains its outer-cycle neighbors.

(ii) If i ≥ 1, we make the following transformation:
Consider the rooted subtree consisting of tree-edges {(c, bj), . . . , (c, bj+i)}.

• Pull back (away from the center c) this subtree, and together with the “fan” of paths
Qj, Pj+1, . . . , Qj+i.

• Join the root c′ of the subtree to c by a new tree-edge (c, c′).

• Reconnect the pieces of Pj−1 and Pj+i+1 by adding (c, c′) to each of them.

Continue doing this for each gap of non-neighbors of x. See Figure 2 for an example. It
is easy to verify that this will give a CPT representation of W .

(2) ⇒ (1). Trivial.
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Figure 2: The transformation in (3) ⇒ (2), Case B(ii). The Pi paths are indicated in solid
blue, and the Qi paths are indicated in dotted red.

Remark 3. It is easy to see that, in Case A, the central vertex x must have in-degree 1 and
out-degree 1. The only other case where x can have both an incoming and an outgoing edge
is when x is adjacent to exactly 3 consecutive outer vertices a1, a2, a3: x is a true twin of a2,
and the edge (x, a2) can be oriented in either direction.
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In Case B, without loss of generality, x may be assumed to be a sink (interpreted as its
path being contained in all the paths of its neighbors). However, there are many possible
partial wheels that have a CPT representation where x is a source, as we will show in the
next section.

4 When can the central vertex of a partial wheel be a

source?

We will now characterize the CPT representations of partial wheels in the case where the
central vertex x is a source, that is, where the path Px contains all the paths PN (x) =
{Pai | ai ∈ N (x)} of its neighbors. This will allow us to characterize all CPT orders of
partial wheels.

Corneil and Golumbic [CoGo84] observed that since the subgraph WN (x) induced by the
neighbors N (x) of a source x is necessarily an interval containment graph, many impossible
configurations may arise. For example, in the case of the full wheel W2k, k ≥ 3, the neigh-
borhood of x induces the chordless cycle C2k which is not an interval containment graph.
Therefore, in any CPT representation of a graph G, the central vertex of every full wheel of
size at least 6, must be a sink with respect to its outer neighbors. For partial wheels, the
situation is more interesting.

Theorem 2. For wheels and partial wheels, the following characterizes their containment
orders of paths in a tree.

(1) For the full wheel W2k(k ≥ 3), the only transitive orientation which is CPT is that with
the central vertex as a sink.

(2) For an even length partial wheel with the central vertex adjacent to exactly 2 consecutive
vertices, there are two transitive orientations and both are CPT.

(3) For an even length partial wheel with the central vertex adjacent to exactly 3 consecutive
vertices, there are four transitive orientations and all are CPT.

For any other partial wheel W of even length at least 6 satisfying condition (3)(b) of Theo-
rem 1, we have the following:

(4) If the gaps of W are all of length 1, then the only transitive orientation which is CPT
is that with the central vertex as a sink.

(5) Otherwise, there are two transitive orientations: with the central vertex as either a sink
or as a source, and both are CPT.

Before proving this result, we present several examples of its consequences.

Example 1. Referring to Figure 3:
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The bipartite wheel BW2k(k ≥ 3) is CPT: The bipartite wheel consists of the outer-cycle
{a1, a2, . . . , a2k}(k ≥ 3), and all the odd numbered edges (x, a2i−1) for (1 ≤ i ≤ k) from
the center to the outer vertices. It has a CPT representation whose center must be a
sink by (4).

The 4-crown is not CPT: Each vertex is the center of a bipartite 6-wheel BW6. Thus,
each vertex must be a sink, which is impossible.

The 3×4 grid is not CPT: The two inside vertices are both centers of an induced BW8,
thus forcing both to be sinks, which is impossible.

A dumbbell graph is not CPT: Trying to join two full wheels (or two bipartite wheels)
by an additional single edge connecting their centers, would be a “dumbbell” idea for
someone trying to build a CPT graph automobile axle. That edge would have two sinks.

Figure 3: (a) The bipartite 8-wheel BW8. (b) The 4-crown (X79rostock). (c) The 3×4 grid.

Proof of Theorem 2. For statement (1), the result is due to Corneil and Golumbic [CoGo84],
as mentioned earlier.

Let W be a partial wheel with center vertex x and outer-cycle {a1, a2, . . . , a2k}(k ≥ 3) in
a clockwise direction. We have already seen in Remark 3, that statements (2) and (3) hold,
and that in all other cases, W has a CPT representation with the central vertex as a sink.

Consider the transitive orientation F of W with x as a source. We will prove statement
(4) by giving a contradiction, and give a constructive proof of statement (5), after presenting
some terminology and observations.

By renumbering, we may assume that a2k is non-adjacent to x and a1 is adjacent to x.
Thus, by the properties of transitive orientations and by condition (3b) of Theorem 1, we
know that

(i) the odd numbered vertices are sinks, forming an independent set, and

(ii) every consecutive set of neighbors of x begins with a sink and ends with a sink.

Moreover, by the observation of Cornell and Golumbic [CoGo84],
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(iii) in any CPT representation of F , the paths of the neighbors of x must be intervals
on the path Px, which we will call “the line”.

Summarizing, as in Remark 1, this entire group of intervals will appear on the line either
in the same order as their clockwise ordering in W , or the opposite flipped ordering. Then
the extreme intervals between groups will have to be joined by the “gap” intervals according
to their adjacencies on the cycle, as we will see shortly.

Note: In principle, these groups of neighbors could be placed randomly on the line, but
their placement will be restricted by the sizes and distribution of the paths of the gap vertices
that need to connect them.

For example, the following is clear:

Claim 1. Let two groups of consecutive sets of neighbors appear one after the other on
the outercycle. If the gap between them consists of only one non-neighbor a2j, then its path
Pa2j must contain the small extreme intervals Pa2j−1

and Pa2j+1
and then must branch off the

line since it is a non-neighbor of x.

We are now ready to prove statement (4) of the theorem: Suppose all the gaps of non-
neighbors of W are of length 1. If W has only one such gap a2k, then it is impossible for
Pa2k to contain both extreme intervals without containing all the small intervals. If there are
several such gaps, then by our Claim 1, the groups of consecutive sets of neighbors would
have to be laid out on the line in exactly the same order they appear on the outercycle. But
this will be impossible since the last gap path will not be able to contain the remaining pair
of extreme intervals without containing all the small intervals. This proves statement (3).
Moreover, in particular, it shows that for BW2k(k ≥ 3) the center must be a sink.

For statement (5) of the theorem, we will now provide a construction for all even partial
wheels with at least one gap that is longer than 1:

Let us assume that the last gap has length 3 or larger. Our construction will gather
together the groups of consecutive neighbors separated by gaps of size exactly 1, which we
will call stretches. We will lay out the stretches on the line in an alternating manner.

Formally, we define a stretch to be a maximal length sequence of outer vertices whose
non-neighbor gaps are all of length 1. By (ii) above, we also have that

(iv) every stretch begins with a sink and ends with a sink, and they will be the extreme
vertices of the stretch, and

(v) the number of stretches equals the number of gaps of length 3 or more.

Step 1 (representing a stretch): Since a stretch {a2i+1, . . . , a2j+1} induces a chordless
path, we will first take a compressed interval representation of this chordless path as in
Remark 2, and then for each gap vertex, extend its interval downward out of the line, since
it is a non-neighbor of x, as illustrated in Figure 4. It is easy to see that this will represent
the stretch.

Step 2 (laying out the stretches): Let the stretches be numbered clockwise {S1, . . . , Sm}
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Si

Figure 4: A stretch with a gap of size 1. The gap is represented by the bent path (in green).
The bold intervals (in blue) represent the two neighbors of the gap in the stretch. The top
interval (in red) is the path representing the central vertex of the wheel.

and let pt be the “common point” of the intervals of stretch St.
We lay out the stretches in the following order, where S−1t means in reversed (flipped)

order, as illustrated in Figure 5:

If m is odd, S1, S
−1
m , S2, S

−1
m−1, S3, · · · , S(m+1)/2+1, S(m+1)/2.

If m is even, S1, S
−1
m , S2, S

−1
m−1, S3, · · · , Sm/2, S

−1
m/2+1.

Step 3 (connecting the stretches): We connect ascending stretches, like S1 and S2, which
have the stretch S−1m separating them on the line, with a sequence of “gap” paths P2i, . . . , P2j

as follows:
(I) Add a “fan” of t additional pendant edges e1, . . . , et at the common point pm of S−1m ,

where 2t+ 1 = 2j − 2i+ 1 is the length of the gap between S1 and S2.
(II) P2i starts with the left endpoint of the right extreme interval of S1, continues to the

common point pm and branches off-the-line onto the new leg of the tree e1.
(III) P2j starts with the new leg et and continues on the line to the right endpoint of the

left extreme interval of S2.
(IV) Fill in the fan with wedges and small intervals to realize the chordless path of the gap

sequence, as in the “star and pizza” construction in the proof of Theorem 1. (An illustration
of this process is presented in Figure 6).

We connect descending stretches in a similar matter. The transition from ascending to
descending, at the end of the line, is also handled in a similar manner.

If there are at least two gaps of length greater than 3, it is a simple matter to verify that
this construction gives a CPT representation for the partial wheel W with x as a source.
If there is only one gap of length greater than 3, and therefore only one stretch, we simply
modify the representation of that stretch by making the two extreme intervals meet in the
common point (instead of overlap), that is, l2j+1 = p = r2i+1 in Remark 2, and insert the
same kind of “fan” to connect the two extreme intervals.

This concludes the proof of the theorem.
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S1 S−
m S2 S−

m−1 Sm/2 S−
m/2+1

. . .

Figure 5: The layout of an even number of stretches when the central vertex of the wheel is
a source. Each vertex represents a stretch or its reversal.

. . .
. . .

Si Sk

Sj

Gap of size 3

Figure 6: Realization of the partial wheel when the central vertex of the wheel is a source
and when the gap is of size 3. The bold intervals (in blue) represent the extremities of the
two stretches that are connected to the gap. The paths below them (in green) correspond to
the vertices of the gap. The top interval (in red) is the path representing the central vertex
of the wheel.

11



5 Open Problems

In this paper, our focus has been to characterize the partial wheels having containment
representations of paths on a tree. These were used to obtain a number of minimal for-
bidden subgraphs and orders in the general case, including infinite families of such minimal
obstructions. Many open questions remain.

5.1 What are the CPT graphs and orders?

The problems of characterizing the CPT graphs and the CPT orders remain as open ques-
tions. The same is true for bipartite CPT graphs. We may also ask for which CPT graphs
will all transitive orientations admit CPT containment representations, and like in the case
of full wheels, for which other comparability graphs will only one TRO be CPT and not its
reversal.

A CPT order P is called dually-CPT if both P and its dual P d are CPT orders. For
example, in our Theorem 2 statements (2) and (4) together characterize the dually-CPT
orders of partial wheels. Alcon, et al. [AlGuGu18] have asked whether the poset dimension
of dually-CPT orders is bounded above by a constant. If so, this would be a generalization
of the known result for interval containment orders which have poset dimension 2.

Alcón, et al. [AlGuGu18] also gave a characterization of CPT split orders by a family of
forbidden subposets. Similarly, questions of characterization and complexity can be asked
about other subfamilies of CPT graphs and orders.

Spinrad [Sp03] asked whether the poset dimension of CPT orders have a constant upper
bound. Alcón, et al. [AlGuGu18] showed that this is not the case: the poset dimension
of CPT orders is unbounded, however, it is at most the number of leaves of the host tree
used in the containment model. Majumder, Mathew and Rajendraprasad [MaMaRa18] give
an asymptotically tight bound on the dimension of a CPT poset, in terms of the maximum
degree and radius of the host tree, which is tight up to a multiplicative factor of (2 + ε),
where 0 < ε < 1. It was also pointed out by an anonymous referee that since the order
induced by levels 1 and 2 of a Boolean lattice is a CPT order, the dimension of the class is
unbounded.

5.2 A comment on: containment versus proper containment

We have defined containment graphs and containment orders using “proper subset”, “strict
partial order” and “proper containment” following [Go84, GoSc89, FiTr98] and others. This
allows duplicating vertices as false twins (non-adjacent vertices with equal neighborhoods)
by simply assigning the same set to each twin, but it does not always permit duplicating
vertices as true twins (adjacent vertices with equal neighborhoods).

This dichotomy is best illustrated when “cloning” the central vertex x of the wheel
W2k, that is, suppose you add a new vertex x′, adjacent to x, and to all the outer vertices
a1, . . . , a2k. By our Theorem 2, both x and x′ must be sinks within their respective wheels
in any CPT representation. This poses no problem for the transitive orientation since the
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new edge (x, x′) could be oriented in either direction. Moreover, when 2k itself is divisible
by 4, it is possible to have a CPT representation assigning different intervals x and x′, one
containing the other. However, if 2k is not divisible by 4, then one can show that the only
way to obtain a CPT representation of W2k is to assign a single node (a point-path) of the
tree to the center of the wheel. Thus, it would be impossible to do this for both x and x′ if
they are adjacent.
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