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Abstract. In this paper, we are interested in the enumeration of mini-
mal dominating sets in graphs. A polynomial delay algorithm with poly-
nomial space in split graphs is presented. We then introduce a notion
of maximal extension (a set of edges added to the graph) that keeps in-
variant the set of minimal dominating sets, and show that graphs with
extensions as split graphs are exactly the ones having chordal graphs
as extensions. We finish by relating the enumeration of some variants
of dominating sets to the enumeration of minimal transversals in hyper-
graphs.

1 Introduction

In many areas such as data mining, data bases, biology, social networks, etc.,
people are interested in enumerating a list of objects satisfying some properties
[2,23]. For instance, in social networks, for marketing purposes, it can be useful
to be able to enumerate the maximal communities, which corresponds in graph
theory in enumerating maximal cliques. Classically, an algorithm which scans all
possible solutions and outputs the desired solutions can be used. However, such
a scenario cannot be used since in many cases, the size of outputs can be much
smaller than the number of possible solutions. On the other side, since the size
of the output can be huge compared to the size of the input, to measure the
efficiency of an enumeration algorithm, the size of the input is not relevant for
time complexity, contrary to classical decision problems. A natural parameter
for measuring the time complexity of an enumeration algorithm is the number
of outputs. Therefore, we will say that an enumeration algorithm runs in output-
polynomial time if its running time is bounded by a polynomial depending on
the number of outputs and the size of the input.

Minimum dominating set problem is a classic graph optimization NP-complete
problem. However, contrary to other classic NP-complete graph optimization
problems where there exist output-polynomial time algorithm for enumerating
maximal (or minimal) solutions, e.g. maximal cliques or maximal independent
sets [18,19], there is no known output-polynomial time algorithm that enumer-
ates the set of minimal dominating sets of a graph. This paper is motivated by
the quest for an output-polynomial time algorithm for the enumeration of mini-
mal dominating sets of graphs (Dom for short). The dominating set problem is



related to the well-known transversal problem in hypergraphs. Indeed, the set
of minimal dominating sets of a graph is in bijection with the set of minimal
transversals of its closed neighbourhood hypergraph [5]. It has been shown in [16]
that the enumeration of minimal transversals in hypergraphs (Trans-Hyp for
short) can be polynomially reduced to Dom. Trans-Hyp has been intensively
studied in the last two decades due to its connection to several problems and
particularly problems in data mining where frequently occurring patterns are
of interest [3]. However, the question whether Trans-Hyp admits an output-
polynomial time algorithm is still open. In fact, despite the number of papers
on Trans-Hyp (see for instance these papers [3,13,14] and their bibliography
section), the best known algorithm for Trans-Hyp is the one by Fredman and
Khachiyan [17] which runs in time O(nlog(n)) where n is the size of the hyper-
graph plus the number of minimal transversals.

Despite the link between Dom and Trans-Hyp and the importance of Dom
in other areas such as building protocols in networks [24], to our knowledge,
the only paper dealing with Dom is the one by Fomin et al. [15]. This paper,
based on the Measure and Conquer technique from exact algorithms, gives an
algorithm for Dom. However, its running time is O(1.7159n), where n is the
number of vertices of the input graph. Hence, this algorithm is not an output-
polynomial time one for Dom. It just informs us that the number of minimal
dominating sets in a graph is upper bounded by O(1.7159n). Moreover, the
algorithm does not use the fact that we deal with graphs, and uses instead the
closed neighbourhood hypergraph. In this paper, we tackle Dom by restricting
ourselves to some classes of graphs, as in the case of many output-polynomial
time algorithms for Trans-Hyp.

Our contribution. After some preliminaries in Section 2, we recall some known
output-polynomial time algorithms for Dom in Section 3. These results are of
two types: those that come from meta-theorems in parameterized complexity
theory and those that can be obtained from tractable cases of Trans-Hyp.
In Section 4 we consider Dom in split graphs [5]. Split graphs are interesting
for several reasons. In particular, it is a non trivial sub-class of chordal graphs
where no output-polynomial time algorithm for Dom is known, and two impor-
tant variants of Dom, namely total dominating sets and connected dominating
sets coincide in split graphs. Section 5 is devoted to the extension of the result
in Section 4 to other classes of graphs. For that we introduce a notion of maxi-
mal extension (a set of edges added to the graph) that keeps invariant the set of
minimal dominating sets. We show that graphs that have chordal graphs as max-
imal extensions are exactly the one having split graphs as maximal extensions
and derive a polynomial delay algorithm for chordal P6-free graphs. We discuss
in Section 6 our second goal consisting in studying the relationship between
Trans-Hyp and Dom. We first show that the enumeration of the minimal total
dominating sets is equivalent to Trans-Hyp and the enumeration of connected
dominating sets is Trans-Hyp-Hard. Both are Trans-Hyp-complete when re-
stricted to split graphs. Then, we show that the decision prolem associated to
the enumeration of minimal dominating sets containing a set is co-NP-complete.



2 Preliminaries

If A and B are two sets, A\B denotes the set {x ∈ A | x /∈ B}. The power-set of
a set V is denoted by 2V . The set of natural integers is denoted by N. The size
of a set A is denoted |A|.

We refer to [10] for our graph terminology. A graph G is a pair (V (G), E(G)),
where V (G) is the set of vertices and E(G) ⊆ V (G)× V (G) is the set of edges.
A graph G is said to be undirected if (x, y) ∈ E(G) implies (y, x) ∈ E(G), hence
we can write xy (equivalently yx). In this paper graphs are simple, loop-free and
undirected. We let G[X], called the sub-graph of G induced by X ⊆ VG, the
graph (X,E(G)∩ (X×X)). A graph G is said chordal if it has no induced cycle
of length greater than or equal to 4.

For a graph G, we let NG(x) be the set of neighbours of x, i.e. the set
{y | xy ∈ E(G)}, and we let NG[x] be NG(x) ∪ {x}. For X ⊆ V (G), we write
NG[X] and NG(X) for respectively

⋃
x∈X

NG[x] and NG[X] \X.

A dominating set in a graph G is a set of vertices D such that every vertex
of G is either in D or is adjacent to some vertex of D. It is said minimal if for
any x ∈ D, D \ {x} is not a dominating set. The set of all minimal dominating
sets of G will be denoted by D(G). Let D be a dominating set of G and x ∈ D.
We say that x has a private neighbour y if y ∈ NG[x] \ NG[D \ x]. The set of
private neighbours of x in D is denoted PD(x). The following is straightforward.

Lemma 1. Let D be a minimal dominating set of a graph G. Then for all x ∈ D
we have PD(x) 6= ∅.

A hypergraph H is a pair (V (H), E(H)) where V (H) is a finite set and E(H) ⊆
2V (H). It is worth noticing that graphs are special cases of hypergraphs. By abuse
of notations, we will call the elements of E(H) edges. A transversal (or hitting
set) of H is a set A ⊆ V that meets every edge of E(H). A transversal is minimal
if it does not contain any other transversal as a subset. The set of all minimal
transversals of H is denoted Tr(H). The size of a hypergraph H, denoted ||H||,
is |V (H)|+

∑
e∈E(H)

|e|.

Let f : N → N. For a hypergraph H and C ⊆ 2V (H), we say that an algo-
rithm enumerates C with delay f(||H||) if, after a pre-processing that takes time
p(||H||) for some polynomial p, it outputs the elements of C without repetitions,
the delay between two outputs being bounded by f(||H||). If f is a polynomial,
we call it a polynomial delay algorithm. We denote by Trans-Hyp, the enu-
meration problem of minimal transversals in hypergraphs. Similarly we denote
by Dom, the enumeration problem of minimal dominating sets in graphs.

It is well-known that Dom can be polynomially reduced to Trans-Hyp as
follows. For a graph G, we let N (G), the closed neighbourhood hypergraph, be
(V (G), {NG[x] | x ∈ V (G)}).

Lemma 2. [5] Let G be a graph and D ⊆ V (G). Then D is a dominating set
of G if and only if D is a transversal of N (G).



Let us finish these preliminaries by some constructions of graphs from hyper-
graphs. If H is a hypergraph, we let I(H), the bipartite incidence graph of H, be
the graph with vertex-set V (H) ∪ {ye | e ∈ E(H)} and edge-set {xye | x ∈ V (G)
and x ∈ e}. I ′(H), the split incidence graph of H, is the graph obtained from
I(H) by replacing I(H)[V (H)] by a clique on V (H). Note that the neighbour-
hood of the vertex ye in I(H) is exactly the set e. See Figure 1 for an example
of I(H) and I ′(H).
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Fig. 1. An example of the bipartite incidence graph I(H) and the split incidence
graph I′(H) of the hypergraph H = ({x1, x2, x3, x4}, {e1, e2, e3, e4, e5, e6}) where e1 =
{x1, x2}, e2 = {x1, x2, x3}, e3 = {x1, x3, x4}, e4 = {x2, x4}, e5 = {x3, x4}, e6 =
{x2, x4}.

3 Examples of Tractable Cases

Even if Dom is not a well-studied problem, there are some known tractable cases.
We review some of them.

Let us first start with the well-known graph classes in parameterized com-
plexity theory. Tree-width [20] and clique-width [9] are well-known complexity
measures in graph theory. The first is well-known thanks to its important role in
the proof of the Graph Minor Theorem [21] and the notorious Courcelle’s meta-
theorem [6]. Courcelle’s meta-theorem says that every decision and optimiza-
tion graph problem expressible in monadic second-order logic can be solved in
polynomial-time in graph classes of bounded tree-width. Most of the well-known
NP-complete problems are expressible in monadic second-order logic, e.g. 3-
colorability, computing the minimum dominating set, the minimum vertex-cover,
etc. Deciding if a set is a minimal dominating set is also expressible in monadic
second-order logic. Clique-width is important because it not only generalizes
tree-width, but it also yields a meta-theorem (see [8]) similar to the one for tree-
width. Clique-width generalizes tree-width in the sense that every class of graphs
of bounded tree-width has bounded clique-width, but the converse is false, com-
plete graphs have clique-width 2 and unbounded tree-width. A natural question
is whether these meta-theorems [6,8] can be extended to counting and enumera-
tion problems. In fact, the results in [6,8] are also stated for counting problems.
And, in [7], Courcelle extends them to enumeration problems. He proved that if



P (x1, . . . , xm, X1, . . . , Xq) is a graph property, depending on vertices x1, . . . , xm
and sets of vertices X1, . . . , Xq, expressible in monadic second-order logic and C
is a class of graphs of bounded tree/clique-width then there exists an algorithm
that for every graph G in C enumerates the set {(u1, . . . , um, Z1, . . . , Zq) | G
satisfies P (u1, . . . , um, Z1, . . . , Zq)} with linear delay and uses linear space. The
proof is rather involved and uses, as the other meta-theorems, machinery from
logical tools. However, even if this "enumeration" meta-theorem is interesting
and general, there are many natural graph classes that do not have bounded
tree/clique-width, e.g. interval graphs, split graphs, planar graphs, etc. For some
of them, one can prove that Dom is tractable by using a translation to tractable
cases of Trans-Hyp. The following is an exemple.

Proposition 1. Dom admits a polynomial delay algorithm when restricted to

1. Strongly chordal graphs.
2. Graph classes of bounded degeneracy.

Proof. (1) If a graph G is strongly chordal, then N (G) is β-acyclic (see for
instance [5]). By [11], Trans-Hyp admits a polynomial delay algorithm in β-
acyclic hypergraphs.

(2) In [13], it is defined a notion of degeneracy for hypergraphs that extends
the one on graphs. One easily verifies that if G is k-degenerate, then so is N (G).
Since Trans-Hyp admits a polynomial delay algorithm in degenerate hyper-
graphs [13], we are done. ut

Examples of strongly chordal graphs are directed path graphs (which in-
clude interval graphs), comparability chordal graphs, etc. Examples of degener-
ate graph classes are planar graphs, bounded-degree graphs, graphs of bounded
genus, graphs of bounded tree-width, etc. Hence, the tractability of Dom in
graph classes of tree-width k can be derived from Proposition 1(2). However,
the use of Courcelle’s result yields better bounds. By using [7], we have that
Dom admits an algorithm with delay f(k) ·n for some function f : N→ N, while
[13] proves that Dom admits an algorithm with delay ng(k) for some function
g : N→ N.

The notion of tree-width was extended to hypergraphs. However, there exist
several notions (see for instance [1]). If we define the tree-width of a hypergraph
H as the tree-width of its incidence graph I(H), then Trans-Hyp admits a
polynomial delay algorithm in hypergraphs of bounded tree-width [13]. But, for
the other notions, Trans-Hyp is hard even for classes of simple hypergraphs
with hypertree-width 2 [12]. A natural question is whether there exists a class C
of graphs with unbounded tree-width but such that N (C) := {N (G) | G ∈ C}
has bounded tree-width. The following proposition proves that it is not possible
(twd(G) denotes the tree-width of a graph G). Its proof (as most of the proofs
in this extended abstract) is omitted because of space constraints.

Proposition 2. For every graph G,

twd(I(N (G)))− 1

2
≤ twd(G) ≤ twd(I(N (G))).



4 Dom in Split Graphs

We recall that a graph G is a split graph if its vertex-set can be partitioned into
an independent set S and a clique C. (Here we consider S maximal.) Hence, we
will denote a split graph G by the pair (C(G) ∪ S(G), E(G)). We prove in this
section that Dom in split graphs admits a linear delay algorithm that uses poly-
nomial space. We first notice that a minimal dominating set D in a split graph
G can be partitioned into a clique and an independent set, denoted respectively
by DC = D ∩ C(G) and DS = D ∩ S(G). Lemma 3 shows that a minimal dom-
inating set D is characterized by DC . Note that DS cannot characterize DC ,
since several minimal dominating sets can have the same set DS .

Lemma 3. Let G be a split graph and D a minimal dominating set of G. Then
DS = S \NG(DC).

Lemma 4. Let G be a split graph and D be a minimal dominating set of G.
Then for all A ⊆ DC , the set A ∪ (S(G) \NG(A)) is a minimal dominating set
of G.

Proof. Let D be a minimal dominating set of G and A ⊆ DC . We show that
D′ = A∪(S(G)\NG(A)) is a minimal dominating set. If A = ∅, then D′ = S(G)
and since S(G) is a maximal independent set, it is a minimal dominating set.
Now suppose that A 6= ∅ and x ∈ A. Clearly PD(x) 6= ∅ since D is minimal.
This implies that PD′(x) is also not empty. Moreover, for any element y ∈ D′

S ,
we have PD′(y) = {y}. We conclude that D′ is a minimal dominating set. ut

A consequence of Lemmas 3 and 4 is the following.

Corollary 1. Let G be a split graph. Then, there is a bijection between D(G)
and the set DI(G) = {DC | D ∈ D(G)}. The set DI(G) is moreover closed
under inclusion ( i.e., is an independent system).

So the generation of minimal dominating sets of a split graph is equivalent
to the generation of elements in DI(G). In the following we give a linear delay
algorithm to generate DI(G). Let D,D′ ∈ DI(G). We say that D′ covers D if
D ⊆ D′ and D′ \D is a singleton. We denote by COV (D) the set {x ∈ C \D |
D ∪ {x} covers D}. If D ∈ DI(G) then y in C \D belongs to COV (D) if each
vertex in D∪{y} has a private neighbour. In order to enumerate DI(G), we call
Dominant(∅, C(G)).

Theorem 1. Algorithm 1 generates the set DI(G) with O(m + n) delay and
uses space bounded by O(n2).

5 Completion

In this section we introduce the notion of the maximal extension of a graph
by keeping the set of minimal dominating sets invariant. The idea behind this
operation is to maintain invariant the minimal edges, w.r.t. inclusion, in N (G).



Algorithm 1: Dominant(D,COV)
Data : a split graph G

Result : DI(G)

begin
Output(D)
foreach x ∈ COV do

COV=COV\{x}
NewCOV= ∅
foreach y ∈ COV do

if each vertex in D ∪ {x, y} has a private neighbour then
NewCOV=NewCOV∪{y}

Dominant(D ∪ {x},NewCOV)

end

Let G be a graph. A vertex x ∈ V (G) is said to be irredundant if for all
y 6= x, NG[y] 6⊆ NG[x], otherwise it is called redundant. In case of twins, we
choose arbitrarily one to being irredundant, the others are so redundant. The set
of irredundant (resp. redundant) vertices is denoted by M(G) (resp. RN(G)).
The completion graph of a graph G is the graph Gco with vertex set V (G)
and edge set E(G) ∪ {xy | x, y ∈ RN(G), x 6= y}, i.e. Gco is obtained from
G by replacing G[RN(G)] by a clique on RN(G). Note that the completion
graph of a split graph G is G itself. However, the completion operation does not
preserve the chordality of a graph. For instance, trees are chordal graphs but
their completion graphs are not always chordal. Figure 2 gives some examples
of completion graphs.

(c)

(a) (b)

G Gco G Gco

G Gco

Fig. 2. (a) a non-chordal graph, its completion is a split graph (b) a chordal graph
with an induced P6, its completion is a split graph (c) a path Pn, its completion is not
chordal.

Lemma 5. For any graph G, we have D(G) = D(Gco).

In the following we are interested in graphs such that Dom in their completion
graphs has an efficient generation algorithm. For two graphs G and H, we say



that G is H-free if it does not contain H as an induced subgraph. For k ≥ 1, we
let Pk be the path on k vertices. A vertex is simplicial if the graph induced by
its neighbourhood is a clique.

Lemma 6. If G is a P6-free chordal graph, then for all x ∈ M(G), x is a
simplicial vertex in Gco. Furthermore, the set M(G) is an independent set in
Gco.

Proposition 3. Let G be a P6-free chordal graph. Then Gco is a split graph.

Proof. From Lemma 6, it follows that M(G) forms an independent set in Gco,
and since RN(G) forms a clique, we are done. ut

The next theorem characterizes completion graphs that are split.

Theorem 2. Let G be a graph. Then Gco is a chordal graph if and only if Gco

is a split graph.

6 Related Problems

In this section we discuss some variants of dominating sets and related problems.
The enumeration of total dominating sets polynomially reduces to Trans-Hyp
with respect to the classical Karp reduction. However, another natural variant,
the enumeration of connected dominating sets is not known to have a reduction
to Trans-Hyp, we show here that it is harder than Trans-Hyp. The problem
in Section 6.3 is motivated by the investigation of an enumeration algorithm for
dominating sets, which is inspired from an approach in [4].

6.1 Total Dominating Set

A total dominating set can be viewed as a dominating set in which the vertices
do not cover themselves. A total dominating set of a graph G is a subset of
vertices D ⊆ V (G) such that for all x ∈ V (G), NG(x) ∩D 6= ∅; D is minimal if
for all x ∈ D, D \ {x} is not a total dominating set. We note Dt(G) the set of
all minimal total dominating sets of G. For a graph G, we let No(G), the open
neighbourhood hypergraph be (V (G), {NG(x) | x ∈ V (G)}). We let Tds be the
problem of listing Dt(G) for a graph G.

Proposition 4. Tds is equivalent to Trans-Hyp.

Proof. We first show that one can reduce Tds to Trans-Hyp on open neigh-
bourhood hypergraph (the reduction was first noted in [22]). Let G be a graph.
It is enough to show that D ⊆ V (G) is a total dominating set in G if and only
if it is a transversal of No(G). If D is a total dominating set of G, then for each
x ∈ V (G), NG(x) ∩D 6= ∅. Therefore, D is a transversal of No(G). Conversely,
if T is a transversal of No(G), then for each x ∈ V (G), T ∩NG(x) 6= ∅, i.e. T is
a total dominating set of G.



We show now that Trans-Hyp can be reduced to Tds. Let H be a hy-
pergraph. Assume furthermore that H has no dominating vertex, i.e., a vertex
belonging to all edges. Note that this case is not restrictive since if x ∈ V (H) is
a dominating vertex, then Tr(H) = {{x}} ∪ Tr(H \ {x}) and consider so this
reduced hypergraph. We then show that Dt(I ′(H)) = Tr(H).

(i) Let D be a minimal total dominating set of I ′(H) and let e ∈ E(H).
Then, there exists x ∈ V (H) ∩D such that xye ∈ E(I ′(H)), i.e. x ∈ e. We now
claim that ye /∈ D for all e ∈ E(H). Otherwise, there exists x ∈ e ∩D and since
I ′(H)[V (H)] is a clique, D \ ye is also a total dominating set (D ∩ V (H) ≥ 2),
contradicting the minimality of D. Thus D is a transversal of H.

(ii) Let T be a transversal of H. Then, for all e ∈ E(H), T ∩ e 6= ∅, i.e. for
all z ∈ V (I ′(H)) \ V (H) there exists x ∈ T such that xz ∈ E(I ′(H)). Since
there is no dominating vertex, |T | ≥ 2, and because I ′(H)[V (H)] is a clique, for
all x ∈ V (H), there exists y ∈ T such that xy ∈ E(I ′(H)). Hence, T is a total
dominating set of I ′(H).

From (i) and (ii) we can conclude that Dt(I ′(H)) = Tr(H). ut

Remark 1. The proof of Proposition 4 reveals that Trans-Hyp is reduced to
Tds in split graphs. Hence, Tds in graphs is equivalent to Tds in split graphs.

6.2 Connected Dominating Set

A connected dominating set in a graph G is a subset D of V (G) such that D is a
dominating set of G and such that G[D] is connected. A connected dominating
set D is minimal, if for all x ∈ D, D \ {x} is not a connected dominating set, in
other words either D\{x} is not a dominating set or G[D\{x}] is not connected.
We denote by Dc(G) the set of all minimal connected dominating sets of G. We
let Cds the problem of generating Dc(G) for a graph G.

Proposition 5. Cds in split graphs is equivalent to Trans-Hyp.

Proof. Let H be a hypergraph. Then we show that Dc(I ′(H)) = Tr(H).
(i) Let D ∈ Dc(I ′(H)). Note firstly that D ⊆ V (H). Indeed, suppose that

there is ye ∈ D for some e ∈ E(H). Since, D must be connected, there is a
neighbour z of ye in D. Since {ye | e ∈ E(H)} is an independent set, z must
belong to V (H). But since I ′(H)[V (H)] forms a clique, PD(ye) ⊆ PD(z) and thus
D \ {ye} is yet a connected dominating set, which contradicts the minimality of
D. Now, for each e ∈ E(H), there exists x ∈ D such that xye ∈ E(I ′(H)), hence
D ∩ e 6= ∅. And so D is a transversal of H.

(ii) Let T be a transversal of H. Since I ′(H)[V (H)] is a clique, T is connected
and, for each x ∈ V (H), there exists y ∈ T such that xy ∈ E(I ′(H)). Further-
more, for each e ∈ E(H), T ∩ e 6= ∅, i.e. for each ye ∈ V (I ′(H)) \ V (H), there
is z ∈ T such that zye ∈ E(I ′(H)). Hence, T is a connected dominating set of
I ′(H).

From (i) and (ii) we can conclude that Dc(I ′(H)) = Tr(H).
It remains to reduce Cds to Trans-Hyp. For a split graph G, we let H be

the hypergraph (C(G), {NG(x) | x ∈ S(G)}). It is easy to see that G = I ′(H)
and so from above, Dc(I ′(H)) = Tr(H). ut



Remark 2. We do not currently know if Cds is equivalent to Trans-Hyp in all
graphs. However, Cds in bipartite graphs is Trans-Hyp-Hard. Indeed consider,
for a hypergraph H, the graph B defined as follows: V (B) = V (I(H)) ∪ {x, y}
and E(B) = E(I(H)) ∪ {xy} ∪ {xz | z ∈ V (H)}, then one can easily show that
Tr(H) = Dc(B).

We can remark that Dc(G) and Dt(G) are equal in split graphs, and they
also coincide with another set Dmc(G) := Dc(G) ∩ D(G) which is the minimal
dominating sets that are connected. Note that Dmc(G) can be empty in general.

6.3 Dominating Sets Containing a Set

For a hypergraph H and a subset A of V (H), we denote by Tr(H, A), the set
of minimal transversals of H containing A. The problem consisting in asking
whether T = Tr(G, A), given T ⊆ 2V (H), is denoted by Tcs.

Proposition 6. [4] Tcs is co-NP-complete.

For a graph G and a subset A of V (G), we denote by D(G,A), the set of
minimal dominating sets containing A. The problem consisting in asking whether
T = D(G,A), given T ⊆ 2V (G), is denoted by Dcs.

Proposition 7. Dcs is co-NP-complete.

Proof. Dcs is in coNP. It suffices to guess a set of vertices and check in poly-
nomial time if this set is a dominating set containing A and not in T . So it is
sufficient to show the reduction from Tcs to Dcs. Let H be a hypergraph and
A ⊆ V (H). We construct the graph B such that V (B) = V (I ′(H))∪{w, x, y, z},
and E(B) = E(I ′(H))∪{wx, xy, yz}∪{{wye} | e ∈ E(H)}. An example is given
in Figure 3. We show that Tr(H, A) is in bijection with D(B,A ∪ {x, y}).

(i) Let T ∈ Tr(H, A) then we claim that T ′ = T ∪ {x, y} ∈ D(B,A∪ {x, y}).
Indeed A∪{x, y} ⊆ T ′ and all vertices in V (H) are covered because I ′(H)[V (H)]
forms a clique and T 6= ∅. Furthermore for all e ∈ EH, e∩T 6= ∅, so NB [ye]∩T ′ 6=
∅ and w and z are covered by T ′ because {x, y} ⊆ T ′. We must also check that
T ′ is minimal. Since T ∈ Tr(H, A), it is clear that we can not remove a vertex
in T , and we can not remove neither x nor y otherwise, w or z would not be
covered. So T ′ ∈ D(B,A ∪ {x, y}).

(ii) Let now D ∈ D(B,A∪{x, y}), we show that D′ = D \{x, y} ∈ Tr(H, A).
We first claim that D′ ⊆ V (H). Actually, since D is a minimal dominating set,
for all z ∈ D, PD(z) 6= ∅. But PD(x) ⊆ {w} and so, if ye, for some e ∈ E(H),
belong to T , then PD(x) would be empty, which contradicts the minimality of D.
Also, w and z cannot belong to D, otherwise PD(x) or PD(y) would be empty.
Furthermore, since for all e ∈ E(H), ye must be covered by some vertex in D
and since D ⊆ V (H), D′ is a transversal of H. Finally, by definition, A ⊆ D′,
and then D′ is a transversal of H containing A.

From (i) and (ii) we can conclude that Tr(H, A) = {D\{x, y} | D ∈ D(B,A∪
{x, y})} and hence Tcs is reduced to Dcs. ut
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Fig. 3. An example of B(H) where H = ({x1, x2, x3, x4}, {e1, e2, e3, e4, e5, e6}) with
e1 = {x1, x2}, e2 = {x1, x2}, e3 = {x1, x3, x4}, e4 = {x2, x4}, e5 = {x3, x4}, e6 =
{x2, x4}.
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