
Hardness and algorithms for variants of line

graphs of directed graphs

Mourad Baïou1, Laurent Beaudou ?1, Zhentao Li2, and Vincent Limouzy ??1

1
Limos - Cnrs and Univ. Clermont II

2
Lip - Cnrs and ENS Lyon

Abstract. Given a directed graph D = (V,A) we de�ne its intersection
graph I(D) = (A,E) to be the graph having A as a node-set and two
nodes of I(D) are adjacent if their corresponding arcs share a common
node that is the tail of at least one of these arcs. We call them facility
location graphs since they arise from the classical uncapacitated facility
location problem. In this paper we show that facility location graphs are
hard to recognize but they are easy to recognize when the underlying
graph is triangle-free. We also determine the complexity of the vertex
coloring, the stable set and the facility location problem for triangle-free
facility location graphs.

1 Introduction

In this paper we study the following class of intersection graphs. Given a directed
graph D = (V,A), we denote by I(D) = (A,E) the intersection graph of D
de�ned as follows:

� the node-set of I(D) is the arc-set of D,
� two nodes a = (u, v) and b = (w, t) of I(D) are adjacent if one of the

following holds: (1) u = w, (2) v = w, (3) t = u, (4) (u, v) = (t, w) (see
Figure 1(a)).

We focus on two aspects: the recognition of these intersection graphs and
some combinatorial optimization problem in this class. De Simone and Mannino
[1] considered the recognition problem and provided a characterization of these
graphs based on the structure of the (directed) neighbourhood of a vertex. Un-
fortunately this characterization does not yield a polynomial time recognition
algorithm.

Intersection graphs we consider arise from the uncapacitated facility location
problem (UFLP) de�ned as follows. We are given a directed graph D = (V,A),
costs f(v) of opening a facility at node v and cost c(u, v) of assigning v to u
(for each (u, v) ∈ A). We wish to select a subset of facilities to open and an
assignment of each remaining node to a selected facility so as to minimize the
cost of opening the selected facilities plus the cost of arcs used for assignments.

? Supported by Région Auvergne project M2F
?? Supported by the ANR junior project DORSO

This problem can be formulated as a linear integer program equivalent to
maximal clique formulation of the maximum stable set problem associated with
I(D), where the weight of each node (u, v) of I(D) is f(u)− c(u, v). This corre-
spondence is well known in the literature (see [2,3,1]). We may consider several
combinatorial optimization problems on directed graphs that may be reduced to
the maximum stable set problem on an undirected graph. For example, Chvátal
and Ebenegger [4] reduce the max cut problem in a directed graph D = (V,A)
to the maximum stable set problem in the following intersection graph called
the line graph of a directed graph: we assign a node to each arc a ∈ A and two
nodes are adjacent if the head of one (corresponding) arc is the tail of the other.
They prove that recognizing such graphs is np-complete. Balas [5] considered
the asymmetric assignment problem. He de�ned an intersection graph of a di-
rected graph D where nodes are arcs of D and two nodes are adjacent if the two
corresponding arcs have the same tail, the same head or the same extremities
without being parallel. Balas uses this correspondence to develop new facets for
the asymmetric assignment polytope.

a
b b

a
a b ab

(a) (b)

Fig. 1. (a)The adjacency of two nodes a and b in I(D) (b) A graph which is not a FL
graph

We may generalize the notion of line graphs to directed graphs in many ways.
The simplest involves deciding

1. if arcs that share a head are adjacent,
2. if arcs that share a tail are adjacent, and
3. if two arcs are adjacent when the head of one arc is the tail of the other.

It is not too di�cult to show the recognition problem is easy if we choose
non-adjacency for (3).

So suppose arcs of type (3) are adjacent. Choosing adjacency for (1) and
(2) gives the line graphs of the underlying undirected graph, and these are easy
to recognize [6]. Choosing non-adjacency for both (1) and (2) leads to the line
graphs de�ned by Chvátal and Ebenegger and it is np-complete to recognize
them [4]. And picking exactly one of (1) and (2) to be adjacent and non-adjacency
for the other leads to the same class of graphs (as we can simply reverse all arcs of
a digraph before taking its line graph) and we wish to determine the complexity
of recognizing this very last class.

Finally, note that since the stable set problem in our class is equivalent to
the facility location problem, one may use tools developed for facility location

problem to solve the stable set problem on these graphs. It is well known that
in practice the facility location problem may be solved e�ciently via several
approaches: polyhedra, approximation algorithms and heuristics.

This paper is organized as follows. Section 2 contains some basic de�nitions
and notations. Other de�nitions and notations will be given when needed. In
Section 3 we show that the subclass of triangle-free facility location graphs are
recognizable in linear time and, in contrast, in Section 4, we show that facility
location graphs are hard to recognize. Section 5 is devoted to some combinatorial
optimization problem in facility location graphs. In particular we show that
the maximum stable set problem remains np-complete in triangle-free facility
location graphs but the vertex coloring problem is solvable in polynomial time
in this class. We also discuss the facility location problem and show it is np-
complete in some restricted class of graphs. We omit some of the more routine but
tedious proofs in this extended abstract but make available a complete preprint
[7].

2 De�nitions and notations

Let G be an undirected graph, we say that G is a facility location (FL) graph if
there exists a directed graph D such that G = I(D). D is the preimage of G.

Let D = (V,A) be a directed graph. For an arc a = (u, v) ∈ A, we say
t(a) = u is the tail of a and h(a) = v is the head of a. A sink is a node which is
a tail of no arc in A. A branch is an arc a where h(a) is not the head or tail of
any other arc.

An undirected graph G is triangle-free if it does not contain a clique of size
3. A wheel Wn is a graph obtained from a cycle Cn by adding a vertex adjacent
to all vertices of the cycle.

3 Recognizing triangle-free facility location graphs

In Section 4, we will show recognizing FL graphs is np-complete. Our reduction
constructs a graph with many cliques of size 3 but none of size 4. Hence it is
natural to ask if the recognition problem remains di�cult for triangle-free FL
graphs. In this section, we show triangle-free FL graphs can be recognized in
polynomial time.

In subsection 3.1 we examine the structure of general FL graphs. In subsec-
tion 3.2, we prove the main result of this section.

3.1 Structural properties of facility location graphs

Here, we state some basic properties of FL graphs.

Remark 1 The preimage of any cycle either contains two arcs with the same
tail or is a directed cycle.

We will use the next three propositions as reduction rules in a recognition
algorithm. Each rule allows us to �nd some structure in the graph and recurse on
a simpler graph until no rules apply. If such a simpler graph is also triangle-free
then it has a very speci�c form that is easy to recognize.

Remark 2 If u is a degree one vertex adjacent to a degree two vertex in an
undirected graph G then G is a FL graph if and only if G− u is a FL graph.

Lemma 1. If G is a FL graph, then there exists a digraph D such that G = I(D)
and every sink node in D has exactly one entering arc.

Lemma 2. If u and v are adjacent degree two vertices in G with no common
neighbours in an undirected graph G then G is a FL graph if and only if G− uv
is a FL graph.

3.2 Application to triangle-free facility location graphs

We now characterizes FL graphs on which no rules from the previous section
apply. The outdegree of a vertex is the number of arcs leaving that vertex.

Lemma 3. Let G be a connected triangle-free graph with no degree two vertex
adjacent to degree ≤ 2 vertices. If G = I(D) then vertices of D have outdegree
at most two. Furthermore, vertices with outdegree exactly 2 have a sink as one
of their outneighbours.

Theorem 3 Let G be a triangle-free graph. Let G′ be the graph obtained from
G by removing all edges between degree two vertices. Then G is a FL graph if
and only if G′ has at most one cycle per connected component.

Proof. By Lemma 2 (and since G is triangle-free so no adjacent vertices share a
common neighbour), we only need to show that G′ is a FL graph if and only if
G′ has at most one cycle per component. Note that G′ is also triangle-free.

Necessity. Let G′ be a triangle-free facility location graph. By Lemma 1, there
is a D where every sink has indegree one with G′ = I(D). By Remark 1 and
Lemma 3, the preimage of every cycle in G′ is a directed cycle.

Suppose that a connected component of G′ contains two cycles C1 and C2.
Since both their preimages are directed cycles, the preimages of any vertex in
both C1 and C2 is a common arc in both directed cycles and this leads to a
triangle in G′ (by taking a common arc and two di�ering arcs following it, one
in each cycle). Thus, C1 and C2 are vertex disjoint. Since C1 and C2 belong to
the same connected component, there is a path P in G′ from some u ∈ C1 to
v ∈ C2. Then the image of the second vertex of P points towards the image of
C1 and the image of the second to last vertex of P points towards the image of
C2. So the image of P is not a directed path. But then some two consecutive
vertices in P have an image that share a common tail, a contradiction to Lemma
3.

Su�ciency. Consider a connected component of G. Suppose that it consists
of a tree. Let us construct a directed graph D with G = I(D). Pick any node
r as a root. Let r = (u0, v0). Let r1, . . . , rk be the children of r in G, we set
ri = (vi, u0) for i = 1, . . . , k. Now each node ri play the role of r and we repeat
this step. This procedure ends with a directed graph D such that G = I(D).

Suppose that there is a cycle C. This cycle must be chordless. Let C ′ be a
directed cycle where each arc in C ′ correspond to a node in C. The rest of this
component consist of disjoint trees each intersect C in one node. If this node is
chosen to be the root of the tree, then the procedure above may be applied to
get a directed graph D such that G = I(D). ut

We are now ready to describe our recognition algorithm, which is the main
result of this section.

Theorem 4 Given an undirected triangle-free graph G = (V,E), we may decide
whether or not G is a facility location graph in O(|E|).

Proof. In O(|E|) we may remove all the edges e = bc with both b and c of degree
two. Then we apply a breadth-�rst search in O(|E|). If a node is encountered
more than twice or there are two nodes that were encountered twice, then there
are two cycles. Otherwise G is a facility location graph. ut

4 Recognizing facility location graphs is np-complete

The main result of this section is the following theorem.

Theorem 5 Recognizing facility location graphs is np-complete.

We will reduce the problem 3-sat to the recognition of FL graphs. We assume
we are given an instance of 3-sat. That is, variables x1, . . . , xn and a Boolean
formula F = C1∧· · ·∧Cm, where each clause Cj = λj1∨λj2∨λj3 , for j = 1 . . . ,m.
We construct an undirected graph GF from F and we show that F is satis�able
if and only if GF is a facility location graph.

We build GF using gadgets for variables and clauses. Values for variables are
stored, replicated and negated through the �branches� of the variable gadgets.
These branches are then connected to the clauses gadgets of clauses that contain
these variables (and their negation).

More precisely, the construction of GF follows three steps: (1) for each vari-
able xi, we construct a graph called Gad1

i (Gad stands for gadget), (2) for each
clause Cj , another gadget called Gad

2
j is constructed and (3) we connect the

graphs Gad1
i and Gad

2
j to produce GF . Each graphGad1

i contains 2m branches
where each branch express the fact that the variable xi (or x̄i) is present in the
clause Cj , j = 1, . . . ,m. Each graphGad2

j contains exactly three branches where
each branch expresses the literals of this clause λj1 , λj2 and λj3 .

The three following subsections are devoted to the construction of the graphs
Gad

1
i , Gad

2
j and GF .

4.1 Variable gadgets

Our variable gadgets is built by identifying vertices in many copies of a graph
I with only two preimages. We think of one preimage of I as the Boolean value
�true� and the other as �false�. I (see Figure 2(b)) is constructed from the wheel
W5 (see Figure 2(a)) by adding four vertices.

a

b

c

d

e

f

(a) The wheel W5.

I

a

b

c

d

e

f

g h

i j

I ′

a′
b′

c′

d′

e′

f ′

g′ h′

j′ i′

(b) I and I ′ are extensions of W5

Fig. 2.

We make m copies of I for each variable and combine these copies so that the
associated Boolean values are all equal. To ease our analysis, we �rst examine
two copies of I identi�ed on the vertex j in both copies (see Figure 3). Then the
preimage of the two copies of I are forced to be the same. We call this graph
Inv, the inverter, and will use in later construction.

a
b

c

d

e

f

g h

i
j

a′
b′

c′

d′

e′

f ′

g′ h′

i′

g g′b′b

Fig. 3. The graph Inv and its abbreviation.

Now if we take m copies of I and identify the node labelled j in a copy
with the node labelled i in the next copy (for the �rst m− 1 copies, which have
successor) then the resulting gadget (see Figure 4) forces all copies of I to have
the same preimage. In fact, the preimages of vertices labelled i, j and d in all
copies for a directed path.

ai
1

bi1

ci1

di
1

ei1

fi
1

gi
1 hi

1

ii1
ii2

ai
2

bi2

ci2

di
2

ei2

fi
2

gi
2 hi

2

ii3

ai
m

bim

cim

di
m

eim

fi
m

gi
m hi

m

iim

iim+1

Fig. 4. Graph for every variable xi, Gad
1
i .

Lemma 4. For each directed graph D with I(D) = Gad
1
i exactly one of the

following two assumptions holds:

(i) h(bij) = t(gij) and t(f ij) = h(hij) for each j = 1, . . . ,m,

(ii) t(bij) = h(gij) and h(f ij) = t(hij) for each j = 1, . . . ,m.

4.2 Clause gadgets

We now describe how to build clause gadgets (see Figure 5(a) for one such gadget
and the labelling we use). They are built from three nets (triangles with three
degree 1 vertices, one adjacent to each vertex of the triangle) and two copies of
Inv (of the previous section) by identifying some edges.

a′

b′ e′

f ′

a

b

c d

e

f

r

r′

s

s′

t

t′

(a) Graph Gad2j for clause Cj .

D1 D2 D3

(b) The solid line are the nodes of
the triangle ∆ and the dashed lines
are its pending nodes.

Fig. 5.

We begin with the following remark.

Remark 6 There are only three possible preimages for a triangle of a net: those
shown in Figure 5(b).

Lemma 5. No preimage of Gad2
j has h(r′j) = t(rj), h(s′j) = t(sj) and h(t′j) =

t(tj).
However, if we pick any proper subset of the above three contraints then

there is a preimage of Gad2
j where those constraints are satis�ed and no other

constraints are satis�ed.

4.3 Reduction from 3-sat

As discussed at the beginning of this section, we build a graphGF from a Boolean
formula F . Build a copy of Gad1

i for each Boolean variable xi and a copy of
Gad

2
j for each clause Cj . We combine some of these disjoint gadgets as follows.

We connect Gad1
i and Gad

2
j through their branches if xi or x̄i appears in

Cj . Speci�cally, for each clause Cj = λj1 ∨ λj2 ∨ λj3 we identify the following
vertices:

if λj1 = xj1 , we identify rj with g
j1
j and r′j with b

j1
j ,

if λj1 = x̄j1 , we identify rj with h
j1
j and r′j with f

j1
j .

We proceed in the same way for remaining literals λj2 and λj3 .

4.4 Proof of Theorem 5

Since the problem 3-sat is NP-complete, it is su�cient to prove that a Boolean
formula F is true if and only if the graph GF we build is a facility location graph.

Suppose GF is a facility location graph with preimage D. Then we claim F
evaluates to true with the following assignment.

xi =

{
true if the arc gi1 enters the arc bi1 in D,
false otherwise

We say an arc a enters an arc b if h(a) = t(b).
Notice that from Lemma 4 whenever the arc gi1 enters the arc bi1, then gij

enters the arc bij for each j = 1, . . . ,m. Let Cj be any clause of F . From Lemma
5 (i), we must have that rj enters r′j , or sj enters s′j or that tj enters t′j in any

directed graph whose intersection graph is Gad2
j . We may assume that rj enters

r′j . By the de�nition of GF the branch rjr
′
j is identi�ed with gijb

i
j when xi is

present in Cj and in this case xi = 1 and so Cj = 1. Otherwise the branch rjr
′
j

is identi�ed with hijf
i
j when x̄i is present in Cj . So the arc hij enters the arc f ij

and from Lemma 4 we have that the arc bij enters the arc gij and by de�nition
we have xi = 0, which implies that Cj = 1.

Now assume that there is an assignment of the variables xi, i = 1, . . . , n for
which F evaluates to true. We build a preimage of GF as follows. By Lemma 4,
we can (independently) build preimages for each Gad1

i so that gij enters b
i
j if xi

is true and bij enters g
i
j if xi is false. Now given a clause Cj = λj1∨λj2∨λj3 , from

Lemma 5 there is no preimage only when the assumption (i) of Lemma 5 is not
satis�ed. But one can check that this may happen only when all of λj1 , λj2 , λj3
are false, which is not possible.

5 Consequences and related problems

5.1 The vertex coloring problem

A vertex coloring of a graph is an assignment of colors to the nodes of the graph
such that no two adjacent nodes receive the same color. The minimum number
needed for a such coloring is called the chromatic number and denoted by χ(G).
It is well known that �nding χ(G) is np-complete for triangle-free graphs. A
direct consequence of the previous section shows that when G is a triangle-free
facility location graph, it is 2-degenerate, and therefore χ(G) ≤ 3.

Theorem 7 If G is a triangle-free facility location graph, then χ(G) ≤ 3. More-
over, χ(G) may be computed in O(|E|).

A natural question arises: whether or not coloring facility locations graphs is
polynomial. Unfortunately this problem is np-complete by a reduction from the
edge coloring problem (i.e., the vertex coloring problem for line graphs).

Theorem 8 Coloring facility locations graphs is np-complete.

Proof. Given an input graph G that we wish to k edge color (a task that is
np-complete [8]), we build an auxiliary digraph D obtained from vertices V (G)
with no arcs by adding a vertex xuv for each edge uv ∈ E(G) with entering arcs
from u and v and k − 1 leaving arcs to k − 1 new vertices. Now any k vertex
coloring of I(D) forces vertices corresponding to both entering arcs of xuv to be
colored the same as vertices of leaving arcs from xuv take up k − 1 colors. It is
easy to see that a k vertex coloring of I(D) leads to a k edge coloring of G by
giving e ∈ E the color of arcs entering xe. Similarly, a k edge coloring of G gives
a k vertex coloring of I(D). ut

5.2 The stable set problem

Given an undirected graph G = (V,E), a subset of nodes S ⊆ V of an undirected
graph is called a stable set if there is no edge between any two nodes of S. The
maximum stable set problem is to �nd a stable set of maximum size. This size is
usually called the stability number and denoted by α(G). If we associate a weight
w(v) to each vertex v ∈ V , then the maximum weighted stable set problem is to
�nd a stable set S with

∑
v∈S w(v) maximum.

The maximum stable set problem is np-complete for triangle-free graph. Pol-
jak [9] showed this by building an auxiliary graph SubG from an input graph
G = (V,E) by replacing any edge e = uv in E by a path uu′, u′u′′, u′′v. Now
SubG is triangle-free and α(SubG) = α(G) + |E|. By Theorem 3, SubG is also a
facility location graph since the removal of the edges u′u′′ yields a graph where
each connected component is a star. Hence, we obtain the following result,

Theorem 9 The maximum stable set problem is np-complete in triangle-free
facility location graphs.

Since any triangle-free facility location graph can be colored with 3 colors in
O(|E|) Theorem 7, we can get a 3-approximation algorithm for the maximum
(weighted) stable set problem. Indeed, we may assume the input graph G has
only positive weights and pick the color class S of maximum (total) weight. Now
S has weight at least a third of the weight of all of G which is at least a third of
the weight of largest stable set in G.

5.3 The facility location problem

Recall that the uncapacitated facility location problem (UFLP) associated with
a directed graph D is equivalent to the maximum weighted stable set problem
for I(D). Therefore, from Theorem 9 we have the following corollary.

Corollary 10 The uncapacitated facility location problem remains np-complete
even when the input digraph does not contain the four graphs of Figure 6(a) as
subgraphs.

T1 T2 T3 T4

(a)

F1 F2

(b)

Fig. 6. (a)Graphs T1, T2, T3 and T4 (b)Graphs F1 and F2

Mohar proved the following result in [10].

Theorem 11 [10] The maximum stable set problem in 2-connected cubic planar
graphs is np-complete.

This results allows us to strengthen Corollary 10 to the following theorem.

Theorem 12 The uncapacitated facility location problem is np-complete for
graphs that do not contain any of T1, T2, T3, T4, F1 and F2 as a subgraph.

Proof. Let G = (V,E) be an undirected 2-connected cubic planar graph. From
G de�ne the subdivision of it, SubG, as in the previous subsection, that is each
edge e = uv ∈ E is replaced by path of size three. Now we construct a directed
graph D containing none of the graphs T1, T2, T3, T4, F1 and F2 as a subgraph
and such that I(D) = SubG. Thus from Theorem 11 the maximum weighted

stable set problem is np-complete in 2-connected cubic planar graphs, and by
equivalence we have that UFLP is also np-complete in graphs satisfying the
theorem's hypothesis. Now let us give the construction of D.

From Petersen's theorem the graph G contains a perfect matchingM . Let G′

be the graph obtained by removingM . Each component ofG′ is a chordless cycle.
Let C = v0, v1, . . . , vp be one of these cycles. In SubG this cycle corresponds to
a cycle C ′ = v0, v1, v2, . . . , v3p, v3p+1, v3p+2. Let us construct a directed graph D
with I(D) = SubG. Each cycle C ′ of SubG may be de�ned in D by the directed
cycle where the arc vi enters the arc vi+1 for each i = 0, . . . , 3p + 1, and the
arc v3p+2 enters the arc v0 (an arc a enters an arc b means that the head of a
coincide with the tail of b). To complete the de�nition of D we need to consider
all the edges of M and their subdivisions. Let e = uv ∈M and u1, u2, u3, u4 the
corresponding path in SubG. Complete the construction of D by creating for
every such edge e two arcs u2 and u3 having the same tail where u2 enters the
arc u1 and u3 enters the arc u4.

References

1. De Simone, C., Mannino, C.: Easy instances of the plant location problem. Tech-
nical Report R. 427, IASI, CNR (1996)

2. Avella, P., Sassano, A.: On the p-median polytope. Mathematical Programming
89 (2001) 395�411

3. Cornuejols, G., Thizy, J.M.: Some facets of the simple plant location polytope.
Math. Program. 23 (1982) 50�74

4. Chvátal, V., Ebenegger, C.: A note on line digraphs and the directed max-cut
problem. Discrete Applied Mathematics 29 (1990) 165 � 170

5. Balas, E.: The asymmetric assignment problem and some new facets of the travel-
ing salesman polytope on a directed graph. SIAM Journal on Discrete Mathematics
2 (1989) 425�451

6. Beineke, L.W.: Characterizations of derived graphs. Journal of Combinatorial
Theory 9 (1970) 129 � 135

7. Baïou, M., Beaudou, L., Li, Z., Limouzy, V.: On a class of intersection graphs.
http://arxiv.org/abs/1306.2498 (2013)

8. Holyer, I.: The np-completeness of edge-coloring. SIAM Journal on Computing
10 (1981) 718�720

9. Poljak, S.: A note on stable sets and colorings of graphs. Commentationes Math-
ematicae Universitatis Carolinae 15 (1974) 307 � 309

10. Mohar, B.: Face covers and the genus problem for apex graphs. J. Comb. Theory,
Ser. B 82 (2001) 102�117

http://arxiv.org/abs/1306.2498

	Hardness and algorithms for variants of line graphs of directed graphs

