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Outline of the Thesis

Part I. Generalizations of Modular Decomposition

• Homogeneous relations and modular decomposition.

• Umodular decomposition: a new point of view.

Part II. Efficient Algorithms

• Overlap Components.

• NLC-2 graphs recognition algorithm.
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Basic definitions

Modules and Modular decomposition

Module

Substitution / Contraction

Contraction

Substitution
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Generalizing
Why and How ?

Modular decomposition

• Social sciences,

• Bioinformatics,

• Computer science

• ...

Known generalizations
Role coloring:Everett &
Borgatti’91

proven NP-complete by Fiala &

Paulusma’05 that this problem

Desired properties of the generalizations

• Polynomial computation

• Good structural properties

• Decomposition tree

• Compact encoding of the family

• ...
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Summary

Module
A module is a set of vertices which have the same neighborhood outside.

Homogeneous Relations
Homogeneous relation is something in between...

Role
A “role” in a graph is a set of vertices which plays the same role.
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Homogeneous Relations
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Homogeneous Relations

Definition
Let X be a finite set. A Homogeneous Relation is a collection of triples
on X, noted H(a|b, c) fullfiling the following properties:

1 Reflexivity: H(a|x, x),

2 Symmetry: H(a|x,y) ≡ H(a|y, x) and

3 Transitivity: H(a|x,y) and H(a|y, z)⇒ H(a|x, z)

H(a|b, c)

a is said to be homogeneous with respect to b and c,
or
a does not distinguish b from c.
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An example

X = {a,b, c,d}

Let H be defined as follows:

H(a|c,d),H(a|b,b),
H(b|a, c),H(b|c,d),H(b|a,d),
H(c|a,a),H(c|b,b),H(c|d,d),
H(d|b, c),H(d|a,a).

Homogeneous relation ∼ Equivalence relations
To each element x of X, thanks to the transitivity property we can
associate an equivalence relation Hx defined on X \ {x}
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Homogeneous Relations: Representation

Equivalence relation

Ha = {b}, {c,d}
Hb = {a, c,d}
Hc = {a}, {b}, {d}
Hd = {a}, {b, c}

Matrix representation
a b c d

a

b

c

d


0 1 2 2
1 0 1 1
1 2 0 3
1 2 2 0


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Graphic Homogeneous Relations

Graphic
A homogeneous relations H is graphic if there exists a graph G s.t.

∀v of V(G), Hv = N(v),N(v)

Theorem
A homogeneous relation H is graphic iff ∀ x,y, z ∈ X, H does not
contain:

1 H(x|y, z) ∧H(y|x, z) ∧H(z|x,y)

2 H(x|y, z) ∧H(y|x, z) ∧H(z|x,y)

a

b
c d

Ha = {b, c}, {d}
Hb = {a, c}, {d}
Hc = {a,b,d}
Hd = {a,b}, {c}
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Homogeneous Relations Properties

Local Congruence
Maximum number of classes associated to an element.

Example

Ha = {b}, {c,d}
Hb = {a, c,d}
Hc = {a}, {b}, {c}
Hd = {a}, {b, c}
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Modules

Definition
A Module in a Homogeneous relation H is a set M such that:

∀m,m ′ ∈M and ∀x ∈ X \M we have:

H(x|mm ′)

Family of modules
MH: family of modules.

Example
Ha = {b}, {c,d};Hb = {a, c,d};Hc = {a}, {b}, {d};Hd = {a}, {b, c}.

The modules are {a}, {b}, {c}, {d}, {a,b, c,d} and {c,d}.
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Basic Properties

Definition (Overlap)
Let A and B be subsets of X. A overlaps B if:

A©©B ≡ A \ B 6= ∅ and B \A 6= ∅ and A ∩ B 6= ∅

A B

Proposition (Intersecting family)
Let H be a homogeneous relation on X, and let M and M ′ modules of H
s.t. M©©M ′ then:

M ∩M ′ ∈MH and M ∪M ′ ∈MH

Theorem (Gabow’95)
MH can be stored in space O(n2)
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Results on Homogeneous Relations

Modular Decomposition
On Arbitrary Homogeneous relations:

Primality O(n2)
Decomposition algorithm: O(n3)

On good Homogeneous relations
Primality O(n2)
Decomposition algorithm: O(n2)

Where n is the cardinality of the ground set X.

Good Homogeneous Relations
The modules family on good homogeneous relations forms a weakly
partitive family.
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Umodules
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Umodules

Definition
Let H be a homogeneous relation defined on X, a Umodule U is a set
such that:

∀u,u ′ ∈ U and ∀x, x ′ ∈ X \U :

H(u|xx ′)⇐⇒ H(u ′|xx ′)

m

m'

x

x'

U

m

m'

x

x'

U

Hm={x},{x'}

Hm'={x},{x'}

We have H(m|xx ′) and H(m ′|xx ′)
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Basic properties

UH is the family of umodules.

Proposition (Union closed)
Let U and U ′ be two umodules of H such that U©©U ′ then:

U ∪U ′ ∈ UH
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Crossing families

Definition (Cross)
Let A and B be two subsets of X. A crosses B if:

A
•
©© B ≡ A©©B and A ∪ B 6= X

Definition (Crossing family)
Let X be a finite set and F be a family of subset. F is said to be
crossing if:

∀A,B ∈ F such that A
•
©© B

A ∪ B and A ∩ B belong to F .
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Homogeneous relations of Local Congruence 2 (LC2)

Proposition
Let H be a homogeneous relation of Local Congruence 2 (LC2)and : UH

is a crossing family.

Sketch of Proof
∪: from the previous proposition.
∩: Let A and B be two umodules. By hypothesis we have:

H(a|x,b) ⇐⇒ H(y|x,b) ⇐⇒ H(z|x,b)

H(b|x,a) ⇐⇒ H(y|x,a) ⇐⇒ H(z|x,a)

we obtain:

H(y|a,b) ⇐⇒ H(z|a,b)

�

y z

a

A

B
b

x

Theorem (Gabow’95 & Bernath’04)
Crossing families defined on a ground set X can be stored in O(n2) space.
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Bipartitive families

Let X be a finite set, and let B = {{B1
1,B2

1}, . . . , {B1
l ,B2

l}} be a set of
bipartitions of X.

Definition (Bipartitive families – Cunningham & Edmonds’80)
B is a bipartitive family if for all overlapping bipartitions {B1

k,B2
k} and

{B1
j ,B2

j } we have:

{B1
k ∪ B1

j ,B2
k ∩ B2

j } , {B1
k ∪ B2

j ,B2
k ∩ B1

j }

{B2
k ∪ B1

j ,B1
k ∩ B2

j } , {B2
k ∪ B2

j ,B1
k ∩ B1

j }

 ∈ B

Bk
1 Bk

2

Bj
1

Bj
2

Bj
1   U Bk

2Bj
1   U Bk

1

Bj
2   U Bk

1 Bj
2   U Bk

2Bj
2∩ Bk

2

Bj
1∩ Bk

1

Bj
2∩ Bk

2

Bj
1∩ Bk

2

X X
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Bipartitive families

Theorem (Cunningham & Edmonds’80)
Let B be a bipartitive family defined on X There exists a unique
unrooted tree encoding B. Its size is O(n).
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Self complemented families

Definition
Let H be a Homogeneous Relation defined on X. H is said to be
self-complemented iff:

∀U ∈ UH, X \U belongs to UH

Theorem
Let UH be self-complemented then UH form a bipartitive family.
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Self complemented families

4 Points condition
Let H be a homogeneous relation on X. For all x, x ′,m,m ′ of X we
have:

• H(m|xx ′) ∧H(m ′|xx ′) ∧H(x|mm ′)⇒ H(x ′|mm ′)

• H(m|xx ′) ∧H(m ′|xx ′) ∧H(x|mm ′)⇒ H(x ′|mm ′)

Proposition
Let H be a Homogeneous relation fullfiling the 4 points condition then
UH is self-complemented.

24 / 45



Seidel switch on graphs

Definition (Seidel switch)
Let G = (V,E) be a undirected loopless graph, and
S ⊆ V, A Seidel switch on G is the graph obtained
by removing all the edges between S and S̄, and
adding all the missing edges.

Schema

S

Definition (Pointed Seidel switch)
The pointed Seidel switch: S = N(v)

Schema
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... on Homogeneous Relations

Definition (Seidel switch on Homogeneous Relations)
Let H be a Homogeneous relation of local congruence 2 defined on X,
the Seidel switch at an element s is defined in the following way:

∀x ∈ X \ {s}, H(s) =

 H(s)1
x = (H1

x∆H
j
s) \ {s}

H(s)2
x = (H2

x∆H
j
s) \ {s}

Theorem
Let H be a LC2 Homogeneous relation s.t. UH is self-complemented.
Let s an element of X, and let U ⊆ X s.t. s ∈ U. Then

U is a umodule of H

⇐⇒

M = Ū is a module of H(s) (Homogeneous relation on X− s).
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Algorithmic consequences

Theorem
Given a Self-complemented LC2 Homogeneous relation H on X, its
decomposition tree can be obtained in linear time.

Sketch of Proof

• Pick an element s of X.

• Seidel switch at x.

• Compute modular decomposition of H(x).

• Add x carefully.

�
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Umodules & Undirected graphs

Definition (Bi-Joins de Montgolfier & Rao’05)
Let G = (V,E) a graph, a bi-join in G is a bipartition V1,V2 of V, s.t.
V1 = {V1,1,V1,2} and V2 = {V2,1,V2,2} and V1,i is completely connected
to V2,i and V1,i is completely disconnected from V2,j.

Self complement
The bi-joins of a graph are self-complemented.

Bipartitivity
Bi-joins of a graph form a bipartitive family.
There is a unique decomposition tree.

Schema

V1 V2

V1,1

V1,2

V2,1

V2,2
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Completely decomposable graphs

Theorem (de Montgolfier & Rao’05)
The graphs completely decomposable w.r.t. Bi-join decomposition are the
graphs without C5, Bull, Gemma and co-Gemma as induced subgraphs.

Forbidden Subgraphs

C5

Bull Gemma
co-Gemma
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Computation - de Montgolfier & Rao’05

Decomposition Algorithm Complexity
(1) Choose a vertex v, proceed to a Seidel switch G ∗ v O(n+m)
(2) Compute modular decomposition of (G ∗ v) \ v O(n+m)
(3) Turn the modular decomposition tree of (G ∗ v) \ v into
the bi-join decomposition tree of G

O(n+m)

Completely Decomposable graph Recognition
(1) Choose a vertex v, proceed to a Seidel switch G ∗ v O(n+m)
(2) Check if (G ∗ v) \ v is a cograph O(n+m)
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Tournaments

Umodules in tournaments

V1 V2

V1,1

V1,2

V2,1

V2,2

Locally transitive tournaments
A tournament T = (V,A) is locally locally if for each vertex v

T [N+(v)] and T [N−(v)] are transitive tournaments.

Completely decomposable tournaments
Completely decomposable tournaments are exactly locally transitive
tournaments.
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Completely decomposable tournaments

Forbidden characterization
A tournament T = (V,A) is completely decomposable w.r.t. umodular
decomposition

⇐⇒

Sketch of Proof
A tournament is completely decomposable w.r.t. modular decomposition

iff it is a transitive tournament. i.e. does not contain a
−→
C3

We then check that only these graphs can produce a
−→
C3, after a Seidel

switch
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Simple Recognition Algorithm

Naive approach

• To check in O(n4) time if T contains or as induced
sub-tournaments.

• To check for each vertex v if T [N+(v)] and T [N−(v)] are transitive
tournaments. We obtain a O(n3) time algorithm.

Linear time algorithm

1 Pick a vertex v and check T [N+(v)] (A) and T [N−(v)] (B) are
transitive tournaments

2 Check that the edges between A and B do not contain a forbidden
configuration.
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A Simple Recognition Algorithm

Proposition (Locally Transitive Tournament)
Let T = (V,A) a tournament, T is locally transitive
iff:
(i) T [N+(v)] and T [N−(v)] are transitive tournaments,

(ii) If a vertex a ∈ T [N+(v)] has an outgoing neighbor
b ∈ T [N−(v)] and an ingoing neighbor
c ∈ T [N−(v)] then (b, c) ∈A.

(iii) If a vertex a ∈ T [N−(v)] has an outgoing neighbor
b ∈ T [N+(v)] and an ingoing neighbor
c ∈ T [N+(v)] then (b, c) ∈A.

The second step of the algorithm is equivalent to check

the previous proposition.

Complexity

1 The first step is done in linear time.

2 the second step is done O(1) per edge
between A and B. Every edge is considered
only once. Thus overall complexity is O(n2).

b

v

a

c

v

b

a

c

A

A

B

B
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Isomorphism testing & Feedback Vertex Set

Isomorphism
Thanks to the unicity of the structure obtained, we are able to decide in
linear time if two completely decomposable tournaments are isomorph.

Feedback Vertex Set
The Feedback Vertex Set problem is polynomial on completely
decomposable tournaments.
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Algorithmic results

Primality testing : O(n3)

Umodular decomposition : O(n5)
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Overlap Components
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Overlap components

The problem
Let X be a finite set, and let F={X1, . . . ,Xt} be a family of subsets of X
input: F
output: Overlap Components of F .

Size of the data is |X| +
∑t

i=1 |Xi|,

n = |X| and f =
∑t

i=1 |Xi|.

Overlap graph
Let OG = (F ,E) be the overlap graph of F . uv ∈ E iff u©©v.

Overlap component
The overlap components of F are the connected components of OG.
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Examples

CA B   D
E

FF =

A B C D E FOG =

A pathologic example

2
n 4

3
1F =

1 2

3

4

nOG = = Kn
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A first idea

Naive approach
First compute OG and then output the connected components.
But OG is not necessarily linear in the size of F .

Dahlhaus’s algorithm
Linear time and space algorithm to find overlap components of F in
O(n+ f)

Our result
A drastic simplification of Dahlhaus’s algorithm.

Output a spanning subgraph of OG in time O(n+ f).
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Homogeneous Relations

Homogeneous relations

• Characterize “digraphic” and “oriented” homogeneous relations.

• Improve modular decomposition algorithm:

1 Conjecture: a O(n+m) algorithm
2 a O(n2) algorithm for arbitrary Homogeneous relations.

Umodular decomposition

• Improve the O(n5) decomposition algorithm.

• Corresponding decomposition for directed and oriented graphs.

• Necessary and sufficient condition to characterize self-complemented
families.

• Investigate Seidel minor properties.
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Overlap Component and related problems

Overlap component

• Overlap-k component.

• recognition specific properties of the overlap graph in linear time:

1 Bipartite,
2 Chain, tree
3 ...

Partition refinement

• To “implement” Least Common Ancestor (LCA) with partition
refinement techniques.

• Dynamic partition refinement.

43 / 45



Overlap Component and related problems

Overlap component

• Overlap-k component.

• recognition specific properties of the overlap graph in linear time:

1 Bipartite,
2 Chain, tree
3 ...

Partition refinement

• To “implement” Least Common Ancestor (LCA) with partition
refinement techniques.

• Dynamic partition refinement.

43 / 45



NLC-2 Graphs

NLC-width

• Improve recognition algorithm to O(n.m).

• What about NLC-3 graphs ?

• Is NLC-k a FPT problem ?

Clique-width

• Clique-width > 4 ?

• Is clique-width FPT ?
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