Polynomial Delay Algorithm for Listing Minimal
Edge Dominating sets in Graphs

Mamadou Moustapha Kanté!, Vincent Limouzy®, Arnaud Mary?, Lhouari
Nourine!, and Takeaki Uno?®

L Clermont-Université, Université Blaise Pascal, LIMOS, CNRS, France
2 Université de Lyon, Université Lyon 1, UMR CNRS 5558, LBBE, INRIA Erable,
France
3 National Institute of Informatics, Japan

Abstract. It was proved independently and with different techniques in
[Golovach et al. - ICALP 2013] and [Kanté et al. - ISAAC 2012] that there
exists an incremental output polynomial algorithm for the enumeration
of the minimal edge dominating sets in graphs, i.e., minimal dominating
sets in line graphs. We provide the first polynomial delay and polynomial
space algorithm for the problem. We propose a new technique to enlarge
the applicability of Berge’s algorithm that is based on skipping hard
parts of the enumeration by introducing a new search strategy. The new
search strategy is given by a strong use of the structure of line graphs,
and we hope is of great interest and could be used to get new output
polynomial algorithms.

1 Introduction

The MINIMUM DOMINATING SET problem is a classic and well-studied graph
optimization problem. A dominating set in a graph G is a subset D of its set
of vertices such that each vertex is either in D or has a neighbor in D. Com-
puting a minimum dominating set has numerous applications in many areas,
e.g., networks, graph theory (see for instance the book [I0]). The MINIMUM
EDGE DOMINATING SET problem is a classic well-studied variant of the MINI-
MUM DOMINATING SET problem [I0]. An edge dominating set is a subset F' of
the edge set such that each edge is in F' or is adjacent to an edge in F. In this
paper, we are interested in an output polynomial algorithm for listing without
duplications the (inclusion-wise) minimal edge dominating sets of a graph. An
output polynomial algorithm is an algorithm whose running time is bounded by
a polynomial depending on the sum of the sizes of the input and output. The
enumeration of minimal or maximal subsets of vertices satisfying some property
in a (hyper)graph is a central area in graph algorithms and for several proper-
ties output polynomial algorithms have been proposed e.g. [TIGI7UTE/T9], while
for others it was proven that no output polynomial time algorithm exists unless
P=NP [15/16].

The existence of an output polynomial algorithm for the enumeration of min-
imal dominating sets of graphs (DoM-ENUM problem) is a widely open question

and is closely related to the well-known TRANS-ENUM problem in hypergraphs
which asks for an output polynomial algorithm for the enumeration of all min-
imal transversals in hypergraphs. A transversal (or a hitting-set) in a hyper-
graph is a subset of its vertex set that intersects every of its hyper-edges. This
is a long-standing open problem (see for instance [5]) and is well-studied due to
its applications in several areas [BJ6J9]. Up to now only few tractable cases are
known (see [12] for some examples). It is easy to see that the minimal dominat-
ing sets of a graph are the minimal transversals of its closed neighbourhoodsﬂ
and then, as a particular case, it seems that the DoM-ENUM problem is more
tractable than the TRANS-ENUM problem, but some of the authors have very
recently proved in [I2] that the TRANS-ENUM problem can be polynomially re-
duced to the DOM-ENUM problem. They also investigate the enumeration of
minimal dominating sets in the perspective of graph theory and exhibit several
new tractable cases, split graphs [12], undirected path graphs [I1], interval and
permutation graphs [13] and chordal Ps-free graphs [12]. In particular, they prove
that the enumeration of minimal edge dominating sets can be done in (incre-
mental) output polynomial (a result obtained independently by Golovach et al.
[8]). Many enumeration problems admit an output polynomial algorithm but no
polynomial delay algorithm [?, Section 2.3], and so a natural question is whether
one can enumerate with polynomial delay all the minimal edge dominating sets,
and we answer positively to this question in this paper.

Further, some of the aforementioned tractable cases of the TRANS-ENUM
problem are based on Berge’s algorithm [2]. Berge’s algorithm consists in order-
ing the hyper-edges F1,..., B, of a given hypergraph H and computes incre-
mentally the minimal transversals of {Fy, ..., E;} from the minimal transver-
sals of {F1,..., F;_1}. The algorithm is not output polynomial when there is
a possibility that the intermediate steps have huge output sizes compared to
the output solution. Indeed, it is proved in [2I] that there exist hypergraphs
for which Berge’s algorithm is not output polynomial for any ordering. But,
even though the applicability of Berge’s algorithm seems to be limited, for sev-
eral cases, e.g., bounded tree-width graphs, planar graphs and more generally
k-degenerate graphs, one can prove that Berge’s algorithm is output polynomial.
On the other hand, compared to the other algorithms (for instance Khachiyan’s
algorithm), Berge’s algorithm has a great potential to produce polynomial delay
polynomial space algorithm since the algorithm admits a depth-first search on
the solution space so that it does not require to store the solutions already found
in the memory. In this sense, expanding the applicability of Berge’s algorithm is
quite important for more understanding the TRANS-ENUM problem.

In this paper, we propose a new way of expanding the applicability of Berge’s
algorithm. One of the disadvantage of Berge’s algorithm is a huge computation
time on the intermediate steps. Our first idea is to identify intermediate steps
which produce intermediate solutions that can be extended to an output solution,
and ”skip” the other costly intermediate steps. But the search cost for finding

4 The closed neighborhood of a vertex v in a graph is the set containing v and all its
neighbors.

neighboring solutions becomes hard; we have to spend much time and use much
space for finding each solution in the next intermediate step, from the solution of
the current step. Our idea is to introduce another enumeration scheme to cope
with this difficulty, to enable polynomial delay enumeration of the solutions to
the next intermediate step. We apply this idea to the minimal edge dominating
set enumeration problem, and obtain the first polynomial delay polynomial space
algorithm for this problem.

2 Preliminaries

If A and B are two sets, A\B denotes the set {x € A | x ¢ B}. The power-set
of a set V is denoted by 2. The size of a set A is denoted by |A|. A graph
G = (V,E) is a pair of vertex set V and edge set E € V x V. We only deal
with finite and simple graphs. An edge between x and y in a graph is denoted
by xy (equivalently yz) and sometimes it will be convenient to see an edge zy
as the set {x,y}, but this will be clear from the context. A hypergraph is a pair
(V, F < 2V) with V called its vertex set and F its set of hyper-edges.

Let G := (V, E) be a graph. For a vertex x, we denote by ﬁ(a:) the set of
edges incident to x, and N(z) denotes the set of vertices adjacent to z. For
every edge e := zy, we denote by NJe] the set of edges adjacent to e, i.e.
Nle] := N(z) U N(y). A subset D of E is called an edge dominating set if for
every edge e of G, we have N[e]n D # ¢, and D is minimal if no proper subset
of it is an edge dominating set.

An enumeration algorithm for a search problem consists in listing completely
all the solutions without duplications. When an enumeration algorithm always
terminates in time polynomial in n and N where n is the input size and N is the
output size, the algorithm is called output polynomial, and it is called polynomial
space if it uses space bounded by a polynomial in n. The delay of an enumeration
algorithm is the maximum computation time from the time that a solution is
output to the time until the next solution, or the termination of the algorithm.
The algorithm is called polynomial delay if its preprocessing time and the delay
are both polynomial to the input size. It is worth noticing that such an algorithm
has a running time bounded by the sum of the preprocessing time, and the delay
multiplied by the number of solutions.

Let H := (V, F) be a hypergraph. The set of private neighbors of a vertex x
w.rt. T €V, denoted by Py (z,T),is{E€ F | EnT = {x}. A subset T of V is
called an irredundant set if Py (x,T) # ¢ for all z € T. A transversal (or hitting
set) of H is a subset of V that has a non-empty intersection with every hyper-
edge of H; it is minimal if it does not contain any other transversal as a proper
subset. It is known that a transversal is minimal if and only if Py (z,T) # ¢ for
all z € T. The set of all minimal transversals of H is denoted by tr(#).

For a graph G := (V,E) and E' < E, we denote by H(E’) the hypergraph
(E,{N[e] | e € E'}), and the edge neighborhood hypergraph of G is the hyper-
graph H(F). The following proposition is easy to obtain.

Proposition 1. For any graph G := (V,E), T < E is an edge dominating set of
G if and only if T is a transversal of H(E). Therefore, T < E(G) is a minimal
edge dominating set of G if and only if T is a minimal transversal of H(E).

For a better readability we say that an edge f is a private neighbor of an
edge e wr.t. T in H(E'), for E' < E, if N[f] € Py (e, T), and by abuse of
notation we will write f € Py (g (e, T) instead of N[f] € Py g (e, T).

3 Berge’s Algorithm and Basic Strategy

Our strategy for the enumeration is based on Berge’s algorithm [2]. For a given
hypergraph H := (V,F) with hyper-edges enumerated as Fi, ..., Fy,, let F; be
{F1,..., F}} for each 1 < j < m. Roughly, Berge’s algorithm computes, for each
1 < j < m, tr(F;) from tr(F;_1). Although the algorithm is not polynomial
space, there is a way to reduce the space complexity to polynomial. The algo-
rithm follows a tree of height m rooted at ¥ and such that the nodes located on
the i-th level correspond to the minimal transversals of F;. Thus, the leaves at
level m correspond to the minimal transversals of the hypergraph. The tree can
be described by the following parent-child relation. For j > 1 and T € tr(F;),
we define the parent Q'(T, j) of T as follows

O(T.5) = {T T € tr(Fj-a),
T\{v} if v is such that Pr, (v,T) = {F}}.

We can observe that T' ¢ tr(F;_1) if and only if Pz, (v,T) = {F};} holds
for some v € T, thus the parent is well defined and always in ¢r(F;_1) [I4/Ig].
One can moreover compute the parent of any T € tr(F;) in time polynomial in
[V|+> per | F|- The tree induced by the parent-child relation spans all members
of |J tr(F;). We can traverse this tree in a depth-first search manner from

1<j<m
the rZ)ot by recursively generating the children of the current visiting minimal
transversal. Any child is obtained by adding at most one vertex, then the children
can be listed in polynomial time. In this way, we can enumerate all the minimal
transversals of a hypergraph with polynomial space.

Formally and generally, we consider the problem of enumerating all elements
of a set Z that is a subset of an implicitly given set X'. Assume that we have a
polynomial time computable parent function P : X — X u{nil}. For each X € X,
P(X) is called the parent of X, and the elements Y such that P(Y) = X are
called children of X. The parent-child relation of P is acyclic if any X € X is not
a proper ancestor of itself, that is, it always holds that X # P(P(--- P(X))---).
We say that an acyclic parent-child relation is irredundant when any X € X has
a descendant in Z, in the parent-child relation. The depth of an acyclic parent-
child relation P is the size of the longest chain between nil and an element of
X. The following statements are well-known in the literature [TJ20/T7T4I18].

Proposition 2. All elements in Z can be enumerated with polynomial space if
there is a polynomial depth acyclic parent-child relation P : X — X u {nil} such
that there is a polynomial space algorithm for enumerating all the children of
each X € X v {nil}.

Proposition 3. All elements in Z can be enumerated with polynomial delay and
polynomial space if there is a polynomial depth irredundant parent-child relation
P : X — X v {nil} such that there is a polynomial delay polynomial space
algorithm for enumerating all the children of each X € X v {nil}.

With acyclic (resp., irredundant) parent-child relation P : X — X v {nil},
the following algorithm enumerates all elements in Z, with polynomial space
(resp., with polynomial delay and polynomial space).

Algorithm ReverseSearch(X)
1. if X € Z then output X
2. for each candidate child Y, if X = P(Y") then call ReverseSearch(Y)

The call ReverseSearch(nil) enumerates all elements in Z. Since the above
parent-child relation for transversals @’ is acyclic, the algorithms proposed in
[T4J18] use polynomial space. However, the parent-child relation @’ is not irre-
dundant and hence ReverseSearch(nil) does not guarantee a polynomial delay
neither an output polynomiality. Indeed, we can expect that the size of tr(F;)
increases as the increase of j, and it can be observed in practice. However, tr(F;)
can be exponentially larger than tr(F,,), thus Berge’s algorithm is not output
polynomial [2I]. Examples of irredundant parent-child relations can be found in
the literature [TJ20/17].

One idea to avoid the lack of irredundancy is to certify the existence of
minimal transversals in the descendants. Suppose that we choose some levels
1 =1i,...,l = m of Berge’s algorithm, and state that for any T € tr(Fy;), we
have at least one descendant in ¢r(F;,,,). This implies that any transversal in
tr(Fi;) has a descendant in tr(F,,), thus we can have an irredundant parent-child
relation by looking only at these levels, and the enumeration can be polynomial
delay and polynomial space.

We will use this idea to obtain a polynomial delay polynomial space algorithm
to enumerate the minimal edge dominating sets, the levels are determined with
respect to a mazimal matching. From now we assume that we have a fixed graph
G := (V, E) and we will show how to enumerate all its minimal edge dominating
sets. A subset of E is a matching if every two of its edges e and f are not
adjacent. A matching is mazimal if it is not included in any other matching. Let

{b1,...,bx} be a maximal matching of G, and let b; = x;y;. For each 0 < i < k,
let ‘/1 = V\ < U bi/), and let El = {6 | e ‘/7}) Let Bz = i\Ei—l for 7 > 1.
3>

Note that any edge in F; is adjacent to by and by definition B; never includes
an edge b; # b;. Without loss of generality, we here assume that we have taken
a linear ordering < on the edges of G so that: (1) for each e € B; and each
f e E;i_y wehave f <e, (2) for each e € N(z;) n B;, each f € N(y;) n B; we

have b; < e < f. Observe that with that ordering we have e < f whenever e € B;
and f € B; with ¢ < j. We consider that Berge’s algorithm on 7 (E) follows that
ordering. In fact we will prove using Berge’s algorithm that we can define an
irredundant parent-child relation to enumerate tr(H(E;)) from tr(H(FE;_1)).

Lemma 1. Let 1 <i < k. Any T € tr(H(E;—1)) has at least one descendant in

Proof. It T' € tr(H(E;)) satisfies T’ = T, then T” is a descendant of T since the
parent is never greater than the child. If T ¢ tr(H(E;)), some edges X of B; are
not dominated by T', and consider T” := T u {b;}. We observe that b; is adjacent
to all edges of B; and the edges in X are private neighbors of b; in T", thus T”
is included in tr(H(E;)). Let us compute the ancestor of 77 in ¢r(H(FE;—1)) as
follows: set 177 := T" and repeatedly compute the parent of T” and set T to its
parent, until reaching a minimal transversal in tr(H(FE;—1)). In this process no
vertex of T is removed since each vertex in T has a private neighbor in E; 1.
But, at some point b; is removed from T” since it is the only one in 7" which
has a private neighbor in B;. This means that T is an ancestor of 7’, and thus
T always has a descendant in tr(H(E;)). O

For conciseness, we introduce a new parent-child relation for edge dominating
set enumeration. For T' € tr(H(E;)), let Q' (T, |E;|) be the ancestor of T' located
on the j-th level of Berge’s algorithm, i.e., Q" (T, |E;|) = Q"(Q'(- - (T, | E4|), | Ei| -
1),--+,7+1). Then, we define the skip parent Q(T,i) of T by QTE’L'—II(T7 |E;]). T
is a skip-child of T € tr(H(E;—1)) if and only if 7" € tr(H(E;)) and Q(T",i) = T.
The set of skip-children of T' € tr(H(E;)) is denoted by C(T', 7). From Propositions
and [3] and Lemma [T] we have the following proposition.

Proposition 4. If we can list all skip-children of T € tr(H(E;)), for each 1 <
1 < k, with polynomial delay and polynomial space, then we can enumerate all
minimal edge dominating sets with polynomial delay and polynomial space.

But, as we will show in the next section, for a transversal T in tr(H(FE;-1)),
the problem of finding a transversal of tr(H(E;)) including T' is NP-complete in
general. In order to overcome this difficulty, we will identify a pattern, that we
call an H -pattern, that makes the problem difficult. We will first show that one
can enumerate with polynomial delay and polynomial space all the skip-children
that include no edges from H-patterns, and then define a new parent-child re-
lation that will allow to enumerate also with polynomial delay and polynomial
space the other skip-children in a different way. In the following sections, we
explain the methods for the enumeration.

4 Computing Skip-Children

Let T be in tr(H(E;—1)) and T € tr(H(E;)) a skip-child of T'. First notice that
every edge in T'\T can have a private neighbor only in B;. Indeed every edge in

E,;_ is already dominated by T and an edge in 7"\T is only used to dominate an
edge in B;. Moreover, an edge e # b; in N(z;) n (T'\T) (resp. in N(y;) n (T'\T))
can only have private neighbors in N (z;) n B; (resp. N(y;) n B;). And from the
proof of Lemma [1|if b; € T'\T then T'\T = {b;}.

Let us first consider the case that every edge in T"\T is adjacent to b;. From
our discussion above, when two edges in T"\T are incident to x; (resp. y;), they
cannot have both private neighbors. Thus T"\T can include at most two such
edges. Therefore, by choosing all combinations of one or two edges adjacent to
b;, adding them to T" and then checking if the skip-parent of the resulting set
is T, we can enumerate all the skip-children 7" of T' such that 7'\T < B; with
polynomial delay and polynomial space.

We now consider the remaining case that an edge in T7'\T is not adjacent
to b;. We call such a skip-child eztra. We can see that at least one edge f # b;
adjacent to b; has to be included in 7" to dominate b;. Actually, since b; < e for
any e € B;\{b;}, any extra skip-child of T is a descendant of some T'u {f} with
f # b; incident to z; or y; in the original parent-child relation. So, without loss
of generality, we will assume that such an edge f # b; is incident to x; and is
included in T. Hereafter, we suppose that N(y;) := {z1,...,2;} and assume T”
is an extra skip-child of T

A vertex z, € N(y;) nV; is free if it is not incident to an edge in T, and
is non-free otherwise. A free vertex is said to be isolated if it is not incident to
an edge in F;_;. Clearly, if there is an isolated free vertex, then 7" has no extra
skip-child. Thus, we assume that there is no isolated free vertex. Edges in E;\B;
that are incident to some free vertices are called border edges. Observe that any
border edge vz, incident to a free vertex zj is adjacent to an edge vw € T if
v € V;_1. The set of border edges is denoted by Bd(T,i). Note that no edge in
Bd(T, 1) is incident to two free vertices, otherwise the edge is in E;_; but not
dominated by T', and then any border edge is incident to exactly one free vertex.
We can see that an edge of B; incident to y; is not dominated by T if and only
if it is incident to a free vertex, and any edge in T"\T that is not incident to x;
is a border edge. Then, for any border edge set Z < Bd(T,i), T v Z € tr(H(E;))
only if each free vertex has a border edge e € Z incident to it. Since any border
edge is incident to exactly one free vertex, for any Z < Bd(T,4) such that T u Z
is irredundant and for any edge vz, € Z with free vertex zp, Py g,)(e,T U Z)
is always {vzp}. This implies that T v Z is in tr(H(E;)) only if Z < Bd(T,7)
includes exactly one edge incident to each free vertex. We call such an edge set
Z a selection. We observe that all border edges are dominated by Z. We have
the following lemma which is straightforward to prove.

Lemma 2. For any edge subset Z with ZnT = &, there holds TuZ € tr(H(E;))
only if Z is a selection.

An edge e € T is called redundant if all edges in Py g, ,)(e,T) are border
edges and no edge y;2, is in Py g, (e, T).

Lemma 3. If T has a redundant edge, then any selection Z does not satisfy
T U Zetr(H(E;)).

Proof. Let e be a redundant edge of T'. Since any border edge f is incident to
a free vertex zp, any selection Z should contain one edge incident to z; and
then if f is incident to e, we have f ¢ Py (g, (e, T U Z). Since no edge y;z, is in
Py g,y (e, T), there holds that Py g,)(e,T U Z) = J for any selection Z.]

Let X7 := {e e Bd(T,i) | 3¢’ € T and Py g, (e/,T U {e}) < Bd(T,i)}. The
addition of any edge e € X7 to T transforms an edge ¢’ of T into a redundant
one with respect to T' U {e}, and thus by Lemma [3| for any Z < Bd(T,1),
T v Zetr(H(E;)) holds only if Z n X1 = (&. Therefore, the following follows.

Lemma 4. If a free vertez is not incident to an edge in Bd(T,i)\Xr, then any
Z < Bd(T,1i) does not satisfy T u Z € tr(H(E;)).

One can hope that we can characterize the selections Z not intersecting X
such that T'U Z € tr(H(FE;)) and be able to use it for listing the extra skip-
children. Unfortunately, checking whether there is such a selection Z is NP
-complete.

Theorem 1. Given T € tr(H(E;_1)), it is NP-complete to check whether there
is a selection Z such that Z n X7 = & and T U Z € tr(H(E;)).

In order to overcome this difficulty, we identify a pattern, that we call an
H -pattern, that makes the problem difficult.

Definition 1 (H-Pattern). A vertex set {z¢,ve, zj,v;} is an H-pattern if z
and z; are free vertices, vev; is in T, and vev; has two non-border private neigh-
bors in E;_1\T': one is adjacent to vy and the other to v;. We also say that the
edges zpvy, z;v; and vev; induces an H-pattern.

We will see that the NP-completeness comes from the presence of H-patterns.
Indeed, for an H-pattern {z, v, zj,v;}, any private neighbor of v,v; is adjacent
to either zpvp or to z;v;, thus we cannot add both to a selection Z since in
that case Py (g,)(vevy, T U Z) will be empty. Let Hr be the set of border edges
included in an H-pattern. In the next two subsections we will see how to list
selections including no edge from Hp, and those that do.

Lemma 5. If T has no redundant edge, then T U Z € tr(H(E;)) holds for any
selection Z < Bd(T,i)\(Xt v Hr).

Proof. From the definition, T'U Z dominates all the edges in F; and for each e € Z
it holds that Py g, (e,T U Z) # . Since Z includes no edge from Hr u Xr,
and T has no redundant edge, one easily checks from Lemmas and [4] by case
analysis that any edge e € T has a private neighbor f that is adjacent to no
border edge, or an edge y;zp, is adjacent to e and not to edges in T\{e}. Thus,
either f € Py (g, (e,T U Z) or yizn € Py(p,(e,T U Z). These imply that T'u Z
is in tr(H(E;)). O

4.1 Dealing with Redundancies

The lemmas above demonstrate how to construct transversals 7" € tr(H(E;))
from T, but some generated transversals may not be extra skip-children of
T. This is because such T’ can be also generated from other transversals in
tr(H(E;—1)). Such redundancies happen for example when two edges f1 and fo
in 7" have private neighbors only in B;, but after the removal of either one from
T’, the other will have a private neighbor outside B;. Assuming in this case
that fi € T and fo € T'\T, it holds that 7" can be generated from T or from
(T\{f1})u{f2}. And since the number of selections Z such that TuZ € tr(H(E;))
can be arbitrarily large, we need to avoid such redundancies.

To address this issue, we state the following lemmas to characterize the edges
not to be added to selections Z such that T'u Z is an extra skip-child of 7. We
say that a border edge vz, is preceding if there is an edge vz, in T satisfying
Pyg,_(vzn, T) © Nlvze] and y;ze < y;zn, and denote the set of preceding
edges by X7.. We also say that an edge vz, € T is fail if Pyp, ,)(vzn, T) <
Bd(T\,i), yizn is in Pyg,)(vzn, T), and no edge wze € Py (g, ,)(vzy, T) satisfies
Yizh < YiZe-

Lemma 6. For any selection Z including a preceding edge, T u Z s not an
extra skip-child of T'.

Lemma 7. If T has a fail edge, then T U Z is not an extra skip-child of T for
any selection Z.

We are now able to characterize exactly those selections Z not intersecting
Hp and such that T' U Z is an extra skip-child of T

Lemma 8. Suppose that T has neither redundant edges nor fail edges and any
free vertex is incident to an edge in Bd(T,i). Then, T U Z withT nZ = & is
an extra skip-child of T including no edge of Hr if and only if Z is a selection
including no edge of Xp v X v Hr.

As a corollary we have the following.

Proposition 1 One can enumerate with polynomial delay and space all the extra
skip-children of T that do mot contain edges of Hr.

Proof. If T has redundant edges or fail edges or has a free vertex not incident
to an edge in Bd(T,i)\Xr, then by Lemmas and [7| we can conclude that T'
has no extra skip-child. Since we can compute Xr in polynomial time and check
in polynomial time whether an edge is redundant or is a fail edge, this step can
be done in polynomial time. So, assume 7" has no redundant edges, no fail edges
and every free vertex is incident to an edge in Bd(T,i)\Xr. By Lemma |8 by
removing all edges in Hr u Xp u X/, any selection Z is such that T u Z is a
skip-child of T'. One easily checks that the enumeration of these selections can
be performed by picking exactly one edge in each incident star.]

4.2 Dealing with the Presence of H-Patterns

As we saw in Theorem [T} it is hard to enumerate all extra skip-children having
some edges in H-patterns from a given transversal T' € tr(H(E;—1)). Let us call
these children slide-children. We approach this difficulty by introducing a new
parent-child relation among slide-children, and enumerate them by traversing
the forest induced by the new relation. In this way, we now do not follow the
skip-parent skip-child relation for slide-children. However, the root of each tree
in the induced forest is a transversal obtained with the skip-child skip-parent
relation. Let us be more precise now. For two sets S and S of edges we write
S <jex ST if min(SAS’) € S, called lexicographical ordering.

Hereafter, we consider an extra skip-child 77 = T U Z of T € tr(H(E;-1))
such that T"nHy # . Let H*(T") := {vp2p, veze, vpve} be the lexicographically
minimum H-pattern among all H-patterns of T' that includes an edge of Z.
Without loss of generality, we assume that vyz is in Z. Let uzp, be the edge in Z
incident to zj,. Notice that such an edge exists because zj, is a free vertex. Then,
we define the slide-parent Q*(T",i) of T' by T" U {vrpzp \{uzpn, vhve}.

Lemma 9. The slide-parent of T is well-defined and is a member of tr(H(E;)).

Proof. Since zy, is a free vertex for T', Z includes exactly one edge incident to zj,
thus uzp is uniquely determined, and thus the slide-parent is uniquely defined.
Since uzp, is a border edge, either u ¢ V;_1 or w is incident to an edge of T.
This together with that vj,z, and vez, dominate all edges in N|vjve] leads that
Q*(T",4) dominates all edges in F;.

By adding vy z, to T”, no edge in T"\{uzp, vyve} loses its private neighbor. The
edge vp,zp, is adjacent to no edge in T"\{uzy, vpve}, and vazn € Pyy(g,) (vhzn, Q*(T",1)).
These imply that Q*(7",4) is a member of tr(H(E;)). o

The slide-parent of T has less edges than T, thus the (slide-parent)-(slide-
child) relationship is acyclic, and for each T € tr(H(E;)), there is an ancestor
T" € tr(H(E;)) in the (slide-parent)-(slide-child) relation such that the skip-
parent of 7" has no H-pattern. Similar to the depth-first search versions of
Berge’s algorithm [T418], we will traverse the (slide-parent)-(slide-child) relation
to enumerate all transversals including H-pattern edges. The following follows
from the definition of slide-parent.

Proposition 5. Any slide-child T’ of T" is obtained from T" by adding two
edges and remove one edge.

The computation of the slide-parent of any T” € ¢r(H(E;)) including edges
of H-patterns can be easily done in polynomial time: compute its skip-parent
T in polynomial time, choose H*(T') and then compute its slide-parent in poly-
nomial time as described above. Proposition [5| shows that there are at most n?
candidates for slide-children, thus the enumeration of slide-children can be done
with polynomial delay and polynomial space.

Lemma 10. For any T € tr(H(E;)), all its slide-children can be enumerated
with polynomial delay and polynomial space.

10

We can now summarize the steps of the algorithm.

1. All transversals in tr(H(FE7)) can be enumerated with polynomial delay and
polynomial space, since they include at most two edges from N[b].

2. In Section |4 (second paragraph), we have explained how to enumerate all
non-extra skip-children with polynomial delay and polynomial space.

3. By Proposition [I] all the extra skip-children not including any edges of H-
patterns can be enumerated with polynomial delay and polynomial space.

4. By Lemma all the extra skip-children including some edges from H-
patterns can be enumerated with polynomial delay and space.

5. Therefore, by executing these three enumeration algorithms for each minimal
transversal T € tr(H(F;_1)), we can generate all the members in tr(H(E;))
with polynomial delay and polynomial space.

All these show that the conditions of Proposition [are satisfied. And thus
we can state our main result.

Theorem 2. All edge minimal dominating sets in a graph G can be enumerated
with polynomial delay and polynomial space.

The greatest delay is reached by the computation of the slide-children of a given
T € tr(H(E;)). We have O(n?) candidates and for each one we compute its
slide-parent in time O(m). Then the slide-children can be enumerated with delay
O(mn?). Since the depth of the (skip-parent)-(skip-child) relation is the size of
the maximal matching, it is bounded by n, and then the total delay is bounded
by O(nf).

5 Conclusion

In this paper, we propose a polynomial delay polynomial space algorithm for list-
ing all minimal edge dominating sets in a given graph. This improves drastically
the previously known algorithms which were incremental output polynomial and
use exponential space. We state furthermore that usual approaches with Berge’s
algorithm involves an NP-complete problem, and thus it is difficult with usual
approaches of Berge’s algorithm to produce an efficient algorithm. To cope with
this difficulty, we introduce a new idea of “changing the traversal routes in the
area of difficult solutions” (the notion of skip-children and the removal of edges
involved in H-patterns). Based on this idea, we give a new traversal route on
these difficult solutions, that is totally independent from Berge’s traversal route
(the (slide-parent)-(slide-child) relation). As a result, we are able to construct a
polynomial delay polynomial space algorithm.

The idea of changing the traversal routes seems to be new and to be able to
apply to many other kind of algorithms in enumeration area. Interesting future
works are applications of this idea to other kind of enumeration algorithms, e.g.
the one used by Lawler et al. for enumerating maximal subsets [16] or other
algorithms for enumerating minimal transversals (see for instance [0]).

11

References

1.

2.
3.

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Applied Mathe-
matics, 65(1-3):21-46, 1996.

C. Berge. Hypergraphs: Combinatorics of Finite Sets. North-Holland, 1989.

A. Bondy and U.S.R. Murty. Graph Theory. Graduate Texts in Mathematics.
Springer, 2008.

E. Boros, K. M. Elbassioni, and V. Gurvich. Transversal hypergraphs to perfect
matchings in bipartite graphs: Characterization and generation algorithms. Journal
of Graph Theory, 53(3):209-232, 2006.

T. Eiter and G. Gottlob. Identifying the minimal transversals of a hypergraph and
related problems. SIAM J. Comput., 24(6):1278-1304, 1995.

T. Eiter, G. Gottlob, and K. Makino. New results on monotone dualization and
generating hypergraph transversals. SIAM J. Comput., 32(2):514-537, 2003.

F. V. Fomin, P. Heggernes, D. Kratsch, C. Papadopoulos, and Y. Villanger. Enu-
merating minimal subset feedback vertex sets. Algorithmica, 69(1):216-231, 2014.
P. A. Golovach, P. Heggernes, D. Kratsch, and Y. Villanger. An incremental poly-
nomial time algorithm to enumerate all minimal edge dominating sets. In ICALP
(1), volume 7965 of LNCS, pages 485—496. Springer, 2013.

D. Gunopulos, R. Khardon, H. Mannila, and H. Toivonen. Data mining, hyper-
graph transversals, and machine learning. In PODS, pages 209-216, 1997.

T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Fundamentals of Domination
in Graphs, volume 208 of Pure and Applied Mathematics. M. Dekker, 1998.

M. M. Kanté, V. Limouzy, A. Mary, and L.Nourine. On the neighbourhood helly
of some graph classes and applications to the enumeration of minimal dominating
sets. In ISAAC, pages 289298, 2012.

M. M. Kanté, V. Limouzy, A. Mary, and L. Nourine. On the enumeration of
minimal dominating sets and related notions. SIAM J. Discrete Math., 28(4):1916—
1929, 2014.

M. M. Kanté, V. Limouzy, A. Mary, L. Nourine, and T. Uno. On the enumeration
and counting of minimal dominating sets in interval and permutation graphs. In
ISAAC, volume 8283 of LNCS, pages 339-349. Springer, 2013.

D. J. Kavvadias and E. C. Stavropoulos. An efficient algorithm for the transversal
hypergraph generation. J. Graph Algorithms Appl., 9(2):239-264, 2005.

L. Khachiyan, E. Boros, K. Borys, K. M. Elbassioni, V. Gurvich, and K. Makino.
Generating cut conjunctions in graphs and related problems. Algorithmica,
51(3):239-263, 2008.

E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Generating all maximal
independent sets: Np-hardness and polynomial-time algorithms. STAM J. Comput.,
9(3):558-565, 1980.

K. Makino and T. Uno. New algorithms for enumerating all maximal cliques. In
SWAT, volume 3111 of LNCS, pages 260-272. Springer, 2004.

K. Murakami and T.Uno. Efficient algorithms for dualizing large-scale hyper-
graphs. Discrete Applied Mathematics, 170(0):83 — 94, 2014.

B. Schwikowski and E. Speckenmeyer. On enumerating all minimal solutions of
feedback problems. Discrete Applied Mathematics, 117(1-3):253-265, 2002.

A. Shioura, A. Tamura, and T. Uno. An optimal algorithm for scanning all span-
ning trees of undirected graphs. SIAM J. Comput., 26(3):678-692, 1997.

K. Takata. A worst-case analysis of the sequential method to list the minimal
hitting sets of a hypergraph. SIAM J. Discrete Math., 21(4):936-946, 2007.

12

A Omitted proofs

Proof (Proof of Theorem . We reduce the 3SAT problem to IMT. Let C =
C1,C4, -+, C,, be the sets of clauses of a 3SAT instance over variables x1, ..., Z,.
We create an instance of IMT as follows:

= Vici={z; lj<ntu{zjlj<ntu{Culh<mbufz |j<ntuly|j<
n} u{w}

— By = A{2;Cp | xj € Cn} u{T;Cn | T5 € Cp} u{a;z;} [J < npu{Tjy; [J <

n} o {a;T; | j <n}

Vi:= ‘/i—lu{xay}

— E;:=F;,_1 u{yCh | h <m} u {zy, 2w}

= T :={z;7; | j < n}u{zw}

Notice that X7 = (&, and then any selection Z is such that 7 n X = (7.
Now we claim that the 3SAT instance is satisfiable if and only if there is an edge
set Z < Bd(T,i) with Z n T = ¢J such that T U Z is included in tr(H(E;)).

Note that here we have Bd(T,i) = {z;Ch | z; € Cp} v {7Z;C) | T; € Ch}.
Notice now that a subset Z of Bd(T,1) is such that T u Z ¢ tr(H(E;)) if and
only if Z contains an edge of J\Nf(xz) and an edge of ﬁ(:}:ﬁ) for some i < n.

Let f : {x1, -+ ,zn} — {0,1} be an assignment to the variables which satisfies
the 3SAT formula. Then consider the following subset Z of Bd(T), 1),

Z = J N(z)) o BA(T,i) |u U N@)n BT, i)
@j|f(z;)=1 x| f(x;)=0

Clearly, since f satisfies the formula, Z is a selection in Bd(T,i) since oth-
erwise a clause would not be satisfied by f. Notice now that by construction,

13

either N(x]) NZ = or 1\7(@) N Z = & for every j < n, and then there exists
Z' < Z such that T v Z' is in tr(H(E;)).

Assume now that there exists a selection Z such that T'u Z € tr(H(E;)). Let
f{x1, -+ ,zn} — {0,1} be such that:

L J1 #N@)nzZ D
Jes) = {0 it N@j) n Z # @.

Notice first that f is well-defined. Indeed, assume that for some x;, we have

N(x]) N Z # & and 1\7(@) N Z # . Then the private neighbor of the edge
x;Z; with respect to T'u Z would be empty, contradicting the fact that T'u Z e
tr(H(E;)). Now since Z is a selection of Bd(T,i), for every h < m, Z n N(C}) #
& and then there exists either z; € Cj, with f(z;) = 1 or T; € C} with f(z;) = 0.
Thus f satisfies all clauses.]

zZ] &

Uy v,

Fig. 1. Examples of H-pattern

Proof (Proof of Lemma @ We can assume without loss of generality that T U
Z € tr(H(E;)), otherwise the statement holds. Suppose that there are several
edges vizp,, - ,v12,, in T that are adjacent to preceding edges included in
Z, and among them let v;zj, be such that y;z;, is greater than any y;zp, for
1 <f<pand/{# j, and let vjz,, be the preceding edge included in Z such
that Py (g,_,)(vzn,,T) S Nlvjz,]. Let t be the index of y;zj,; in our ordering
of the edges of E and let F; be the first ¢ edges of E in our ordering (which
includes of course y;zp,;). Since Py (g, ,)(vzn,,T) S N[vjze,] no edge of T' but
vjzp, is adjacent to y;zp, otherwise Py (p,)(vjzn,, T v Z) would be empty, and
then Py g,y (vjzn,, T U Z) = {yizn,}. From the choice of v;z; it follows that for

14

any edge e € T' that is adjacent to a neighbor zj of y; and such that y;z5 > y;zp,
there exists an edge f € E;_1 N Py (g, (e, Q{(T U Z,|E;|)). Thus, every edge in T
has a private neighbor in F; and hence Q}(T'u Z, |E;|) includes all edges of T'. But
since y;zp,; has index t and Pr, (vjzn;, T U Z) = Pyp,(vizn,, T U Z) = {yizn, },
we can conclude that Q; (7" u Z,|E;|) does not contain v;zp,, and then the
skip-parent of T'U Z does not include v;zj;. Therefore, T'U Z is not an extra
skip-child of T O

Proof (Proof of Lemma @ Let vz, be a fail edge of T and let Z be a selection.
Suppose without loss of generality that TuZ e tr(H(E;)). Since Py g, _,)(vzn, T)
Bd(T,i) and each free vertex should be incident to an edge in Z we can con-
clude that Py g,)(ven, T U Z) = {y;zn}. Now let ¢ be the index of y;z;, in the
ordering of E and let F; be the first ¢ edges in this ordering. Assume also that
Qi(T v Z,|E;|) contains all edges of T, otherwise T'U Z is not an extra skip-child
of T. But, since Pr,(vjzn,;, T U Z) = Py g,y (vjzn;, T v Z) = {yizn}, we can con-
clude that Q;_,(T U Z, |E;|) does not contain v;zj, and then the skip-parent of
T U Z does not include v;zp,. Thus, T'U Z is not an extra skip-child of 7. o

Proof (Proof of Lemma @ The only if part is clear from lemmas |§| and
Let us now prove the if part. Suppose that we have a selection Z including no
edge in Xr u X/ U Hp. By Lemmas [4] and [5| it holds that T u Z € tr(H(E;)).
Suppose now that Q(T U Z,i) # T. Then, let us consider the computation of
Q(T v Z,i) in E;: we compute Q' (T v Z,|E;|), Q(Q(T v Z,|E;|), |E;] — 1),
and so on. Let I be the set of edges not in B; incident to the neighbors of y;
in V;, i.e. F:= N(N(y;))\IV(y;). First notice that T\F = Q(T v Z,i)\F'. So,
T and Q(T v Z,i) can differ only on edges in F'. So, let vz;, be the first edge
removed among T\Q(T'u Z,14) in this operation sequence, i.e., Q) (T'u Z,|Ei)
includes all edges in T\Q(T' v Z,1), but Q;(T" v Z,|E;|) does not include vzp,.
Let F; be the first j edges in our ordering. Notice that all edges in F;_; are in
Fj. Then, we can see that Py (g,)(vzn, T U Z) = {y;zn}. This implies that any
private neighbor in Py (g, ,)(vzs,T) is dominated by some edges in Z, and no
edge in (T\{vzp}) U Z is adjacent to z;. We further see that if there is a private
neighbor uv € Py g, ,)(vzp,T) that is not a border edge, then no border edge
is incident to u. Indeed, w is not a free vertex and is necessarily in V;_; and
if there is a border edge uzy this edge should be in E;_; and since it should
be dominated by 7" and vu € Py (g,_,)(vzn,T), there would exist an edge in T
incident to z; contradicting that uzy is a border edge. Similarly if there is a non
border uzy € PH(Ei_l)(vzh, T), then no border edge is incident to wu.

Suppose that all edges in Py(g, ,)(vzn, T) are border edges. Since vzy, is not a
fail edge, there exists an edge wzy € Py (g, _,)(vzn, T) satisfying y;zn, < yiz,. This
implies that the edge wz, € Pr, (ven, Q11 (T U Z, |E;])), and then vz, should be
in Q;(T' v Z,|E;]), otherwise wz, would not be dominated by Q(T" v Z, |E;|),
thus yielding a contradiction.

Suppose now that there is a non-border edge vu in Py g, ,)(vzn,T). We
note that u can be 2, so that vu = vz;,. Since vz, is not in Q(T v Z, |Ey|),
there should be a border edge in Z adjacent to wvzp. We can observe that

15

u is incident to no edge in T\{vzp}, thus any border edge adjacent to wv
is incident to v. If Py (g, ,y(ven,T) S N(v), then since T has no preceding
edge any border edge vz, € Z satisfies that y;z;, < y;2z¢. This implies that
"+1(T U Z,|E;]) includes no such border edge, and uv is a private neigh-
bor of vz, in Pr,(vzn, Q) (T U Z,|E;|)). This implies that vz is included
in Q(T v Z,|E;]), yielding a contradiction. So, there is a non border edge
znw € Pyp,)(ven,T). Let zs and z, be free vertices adjacent respectively
to zj, and v and such that z,zs and vz, are in Z. If z; # z,, then {zs, 23, 2p, v}
would form an H. So there is at most one free vertex z, such that vz, and
znzs are in Z. If such a z, exists, then one of z,z, and vz, is not in Z. And
then in this case either wz, or vu is in Pr, (vzn, Q) (T v Z,|E;])), contra-
dicting that vz is not in Qj(T' U Z,|E;|). If 2, is not adjacent to a border
edge, then w2, € Pr,(vzn, Q)1 (T U Z,|E;|)), and then again vz, would be in
Q,(T v 2,).
From the discussion, we have that T\Q(T'v Z,i) = . Since Q(T'u Z, i) and
T are both minimal in tr(H(E;—1)), we have Q(T v Z,i) =T. O

16

	Polynomial Delay Algorithm for Listing Minimal Edge Dominating sets in Graphs

