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Abstract. In this paper, a new general decomposition theory inspired
from modular graph decomposition is presented. Our main result shows
that, within this general theory, most of the nice algorithmic tools de-
veloped for modular decomposition are still efficient.

This theory not only unifies the usual modular decomposition gen-
eralisations such as modular decomposition of directed graphs and of
2-structures, but also decomposition by star cutsets.

1 Introduction

Several combinatorial algorithms are based on partition refinement techniques
[16]. Graph algorithms make an intensive use of vertex splitting, the action of
partitioning classes between neighbours and non-neighbours of a vertex. For
instance, all known linear-time modular decomposition algorithms [4J6)8T2T4]
use this technique.

In bioinformatics also, the distinction of a set by an element, so-called splitter,
seems to play an important role, as for example in the nice computation of the
set of common intervals of two permutations by T. Uno and M. Yagiura [I7].

We investigate the abstract notion of splitters and subsequently propose a for-
malism based on the concept of homogeneity. Our aim is a better understanding
of the existing modular decomposition algorithms by characterising the algebraic
properties on which they are based. Our main result is that most of the nice algo-
rithmic tools developed to compute a representation for modular decomposition
[4U6I8IT2IT4] are still efficient within this general theory.

This theory not only unifies the usual modular decomposition generalisations
such as modular decomposition of directed graphs [I3] and of of 2-structures [9],
but also allows to handle star cutsets.

The paper is structured as follows: we first detail the new combinatorial de-
composition theory, then present a general algorithmic framework, and close the
paper with interesting outcomes.

2 Homogeneity, a New Viewpoint

Throughout this section X is a finite set, and P(X) the family of all subsets of
X. Two sets A and B overlap if AN B, A\ B and B\ A are all nonempty. It
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is denoted A®@ B. A reflectless triple is (x,y,z) C X3 with z # y and x # 2.
Reflectless triples will be denoted by (z|yz) instead of (x,y, z) since the first
element does not play the same role. Let H be a relation over the reflectless
triples of X. Given s € X, we define H, as the binary relation on X \ {s} such
that Hy(x,y) iff H(s|xy).

Definition 1. H is a homogeneous relation on X if, for all s € X, Hg is an
equivalence relation on X \ {s} (i.e. it fulfills the Symmetry and Reflexivity and
Transitivity properties). The equivalence classes of Hy are called the s-classes
and denoted H}...HE.

Definition 2. Let H be a homogeneous relation on X. M C X is a module of
H ifVm,m' e M, Vse X\ M, H(slmm').

If =H(s|mm') we say that s distinguishes m from m', or is a splitter of
{m,m'}. A module M is trivial if | M| <1 or M = X. The family of modules of
H is denoted by My, or M if not ambiguous. H is prime if My is reduced to
the trivial modules.

Remark 1. From the definition it is obvious that, given a module M, if —H (s|xy)
for some x,y € M then s € M.

Homogeneity and distinction can be applied to graphs. Indeed, there is a
natural homogeneous relation associated to graphs as follow:

Definition 3. The standard homogeneous relation H(G) of a directed graph
G = (X, E) is defined such that, for all s,x,y € X, H(s|zy) is true if and only
if the following two conditions hold:

1. either both x and y or none of them are in-neighbours of s, and

2. either both x and y or none of them are out-neighbours of s.

In other word, H(s|zy) tells if s “sees” z and y in the same way. Of course
this definition also holds for undirected graphs, tournaments, and can also be
extended to 2-structures [9].

Proposition 1. For a graph G, the modules of its standard homogeneous
relation H(G) are the modules of G in the usual sense [T1[15].

Proposition 2. For all A,B € M if A® B then (ANB) € M and (AUB) € M.

This property is called here closure under intersection and union. It is easy to
check, and can be used to prove:

Proposition 3 (Lattice structure). Let H be a homogeneous relation on X
and My = My U{0}. Then, MYy, C) is a lattice.

This lattice is a sublattice of the boolean lattice (hypercube) on X. Moreover,
if we consider A € M such that |4| > 1, M(A) = {M € My and M DO A}
then (M(A), Q) is a distributive lattice. Let us now define some useful types of
homogeneous relations.
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Definition 4. A homogeneous relation H is said to be

— Graphical ifV z,y,z € X, H(z|lyz) N H(ylzz) = H(z|zy)
— Quotiental if V s,t,x,y € X, H(z|st) N H(y|st) N H(tlzy) = H(s|zy)
— Digraphicalifvs,t,z,ye X, H(z|st)NH (y|st)\NH (t|sz) NH (t|sy) = H (s|zy)

Notice that if H is Quotiental then for each module M and for all z,y € M
and s,t € X \ M, H(z|st) < H(y|st). Indeed, for the Quotiental relations,
elements in a module M uniformly perceive a set A not intersecting M: if one
element of M distinguishes A then so do all. This allows to shrink M into a
single element, the quotient by M, or to pick a representative element from the
module. This is here called the Quotient property.

Given A C X one can define the induced relation H[A] as H restricted to
reflectless triples of A3. If A is a module we have the following nice property:

Proposition 4 (Restriction). Let H be a homogeneous relation, M a module
and M" € M. Then, M' € Mgy & M'e€ My.

Recursiveness can therefore be used when dealing with modules. Notice that the
proposition is not always true if M is not a module. The Quotient and Restriction
properties were used first with modular decomposition of graphs and are useful
for algorithmics [15].

3 Submodularity of Homogeneous Relations

Definition 5. A set function p: P(X) — R is submodular if and only if for
all A;B C X p(A)+ p(B) > pu(AU B) + (AN B) (see e.g. [10]).

Theorem 1 (Submodularity). Let H be a homogeneous relation on X. Let
s(E) be the function counting the number of splitters of a nonempty subset E of
X, and such that s(0) = —|X|. s is submodular.

Proof. Tt suffices to prove s(A) + s(B) > s(AUB) + s(AN B) for all overlapping
A, B C X.Solet A, B C X be two overlapping sets. For convenience 8 4 denotes
the set of all splitters of A. We note X = {X1,..., X} if {X1,..., Xy} is a
partition of X. Obviously, Sang = {Sans \ B, Sans N B}.

As 84N A =0, the partition Saus = {Saun\ 84, SausNSa} can be reduced
to Saup = {SAuB\SA, SA\(AUB)}. Similarly, Sg = {SB \SAOB7 S4AnB \B} .
Finally, 84 = {SA \ B, (SA N B) \SAQB, (SA n B) N SAQB} can be reduced to
84 = {SA \ (A U B)7 (SA N B) \ 8AnB, SanB N B}.. Hence,

184+ 188 —[8auB| —[8anB| = [(84aNB)\8ann|+188\8ans| —[Saun\ Sal.

To achieve proving the theorem, we prove that Saup \ 84 C 8p \ Sans-
Indeed, let 2 € Saup \ 8a. Then, z ¢ AU B and H(z|xy) for all z,y € A. Now,
suppose that z ¢ §p. Since z is not in AU B, we have H(z|zy) for all 2,y € B.
Furthermore, as A and B overlap and thanks to the transitivity of H, we have
z ¢ AU B and H(z|zy) for all x,y € AU B, which is by definition z ¢ S4up.
Contradiction. Finally, supposing z € Synp would imply z € 8 4. O
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Submodular functions are combinatorial objects with powerful potential (see
e.g. [10]). Theorem [ enables the application of this theory to homogeneous
relations. In [I7], T. Uno and M. Yagiura gave a (restricted) version of this
theorem, and constructed a very nice algorithm computing the common intervals
of a set of permutations. It would be interesting to generalise this approach to
any homogeneous relation, as done in [3] for modular decomposition of graphs.

4 Strong Modules and Primality

In a family F of subsets of X, a subset is strong if it overlaps no other subset of
F. The other subsets are weak. If F contain X and the singletons {z} for every
element € X, then X and {x},ex form the trivial strong subsets. The set
inclusion orders the strong subsets into a tree. This is a quick proof that there
are at most 2|X | — 1 strong subsets (and at most | X | — 2 nontrivial ones), as the
tree has no internal node of degree 1.

The parent of a (possibly weak) subset M is the smallest strong subset Mp
properly containing M, and M is said to be a child of Mp. If M is strong, Mp
is by definition its parent in the inclusion tree.

An overlap class is an equivalence class of the transitive closure of the overlap
relation @ on F. The support of an overlap classC = {C1,...,Cy} is C1U- - -UCY.
A is an atom of the overlap class if it is included in at least one subset C;, and
it does not overlap any subset of the class, and is maximal for these properties.
All the atoms of a class form a partition of its support, the coarsest partition
compatible with the class. An overlap class is trivial if it contains only one subset;
it is then clearly a strong one.

A strong subset is prime if all its children are strong, and decomposable oth-
erwise. It is a classical result of set theory that

Lemma 1. IfF is a family closed under union of overlapping sets, then there is
an one-to-one correspondence between the nontrivial overlap classes of F and the
decomposable strong subsets of F. More precisely, the overlap class C associated
with a decomposable subset D is simply the set of weak children of D, and the
support of C is D.

Of course we apply all these notions to the family of modules of a homogeneous
relation.

Theorem 2. Let H be a homogeneous relation and Z be the family of modules
containing x but noty, and maximal for this property, for all x andy. The strong
modules of H are exactly the supports and atoms of all overlap classes of Z.

Proof. First, remark that, thanks to the closure under union of overlapping
sets, the supports and atoms of every overlap class of Z are strong modules.
Lemma [I] tells they cannot be overlapped by an element of Z and if one, say
A, is overlapped by a module B ¢ Z then for z € A\ B, the maximal module
containing y but not x overlaps A, a contradiction. So the family of supports
and atoms is included in the family of strong modules. Conversely, let us prove
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that if M is a strong module then it is the support or an atom of some overlap
class. We shall distinguish four cases.

Let Mp be the strong parent of M (for M # X). 1. M is trivial (X or {z}).
There is no problem.

2. M is decomposable. It has k strong children My, ..., M. Let us pick an
element x; in each M;. Then for all i and j we consider the maximal module
containing x; but not x;. They form an overlap class of Z. Its support is M,
thanks to Lemma [Il

3. M is prime and Mp is prime. Then for all x € M and ally € Mp \ M, M
is the maximal module containing x but not y. As it is strong, it belongs to a
trivial overlap class and is equals to its support.

4. M is prime and Mp is decomposable. Then for all x € Mp\ M, M is included
in some maximal module M, not containing x (the one that contains the vertices
of M). Let us consider the intersection I of all subsets of {M, | z € Mp \ M}.
It is an atom of the overlap class associated with Mp and thus is strong. As M
is a children of Mp, I = M. O

5 Partitive Families of Homogeneous Sets

A generalisation of modular decomposition, known from [5], less general than
homogeneous relations but more powerful, is the partitives families. The sym-
metric difference of two sets A and B, denoted AAB, is (A\ B) U (B \ A).

Definition 6. A family F C P(X) is weakly partitive if it contains X and
the singletons {x} for all x € X, and is closed under union, intersection and
difference of overlapping subsets, i.e.

AeF ANBeF AN A®B = ANBeF AN AUBeF AN A\BeF
Furthermore a weakly partitive family F is partitive if it is also closed under
symmetric difference: A€ F N BEF N ADB = AABeJF

As mentionned before, strong subsets of a weakly partitive family F can be
ordered by inclusion into a tree. Let us define three types of strong subsets, i.e.
three types of nodes of the tree:

— prime nodes which have no weak children,

— degenerate nodes: any union of strong children of the node belongs to &,

— linear nodes: there is an ordering of the strong children such that a union of
children belongs to F if and only if the children follow consecutively in this
ordering.

Theorem 3. [B] In a partitive family, there are only prime and degenerate
nodes. In a weakly partitive family, there are only prime and degenerate and
linear nodes.

The strong subsets are therefore an O(|X|) space coding of the family: it is
enough to type the nodes into complete, linear or prime, and to order the chil-
dren of the linear nodes. All weak subsets can be outputted by making simple
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combinations of the strong children of decomposable (complete or linear) nodes.
Now, the following properties state that modules of some homogeneous relations
are a proper generalisation of (weakly) partitive families.

Proposition 5. Let H be a homogeneous relation. If H is Graphical or is
Quotiental, then H is Digraphical.

Proposition 6. The modules of a Quotiental (resp. Digraphical) relation form
a weakly partitive family. The modules of a Graphical relation form a partitive
Sfamily.

Proof. Let us suppose A € Fy and B € Fy and A® B. Thanks to transitivity
an element not in AU B cannot distinguish AU B (it would distinguish A or B).
As an element not in A cannot distinguish A and an element not in B cannot
distinguish B, then no element can distinguish AN B. For the same reason, only
an element of AN B can distinguish A\ B or AAB.

If s € AN B distinguishes A \ B, then this set contains « and y such that
—H(z|zy). As B\ A is nonempty it contains ¢ and we have H(x|st) and H (y|st)
and H (t|sz) and H(t|sy) and H(t|xy). Then H is neither Quotiental nor Di-
graphical.

Let us suppose H is Graphical. As it is also Digraphical, A\ B and B\ A
are modules. If z € AN B distinguishes AAB, then there exists x € A and
y € B such that ~H(z|zy). Since H(x|yz) and H(y|zz), H is not Graphical, a
contradiction. O

6 Modular Algorithmics for Homogeneous Relations

In the following, we consider a given ground set X and a homogeneous relation H
on X, that are the input of all algorithms described here. The input H consists in
| X | partitions (the equivalence classes of H, for each x) and thus can be stored
in O(|X|?) space, instead of the naive O(]X|?) space representation storing all
triples.

6.1 Smallest Module Containing a Subset

Let S be a nonempty subset of X. As Fy is closed under intersection, there is a
unique smallest module containing S, the intersection of all modules containing
S, denoted henceforth SM(S).

Theorem 4. Algorithm[ computes SM(S) in O(|X|.|SM(S)|) = O(|X|?) time.

Proof. Time complexity is obvious as the while loop runs | M| —1 times and the
for loop | X| times. The algorithm maintains the invariant that every splitter of
M is in F. When M is replaced by M U {y}, every element that distinguishes
M U{y} distinguishes z from y, or already is in F. The algorithm ends therefore
on a homogeneous set that contains S, and thus we have SM(S) C M. If M #
SM(S) let s be the first element of M \ SM(S) added to F' (eventually added
to M). It distinguished two elements z and y from SM(S), contradicting its
homogeneity. So SM (S) = M. O
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Algorithm 1. Smallest Module containing S

Let = be an element of S, M := {z} and F := S\ {z}
while F' is not empty do
pick an element y in F' ; F:= F\ {y} ; M := M U {y}
for every element z do
if H(z|z,y) then F := FU{z}
output M (now equals to SM(S))

6.2 Maximal Modules Not Containing an Element

Proposition 7. Let x be an element of X. As Fy is closed under union of
intersecting subsets, there is a unique partition of X \ {z} into Si,...,Sk such
that every S; is a module of Fg and is maximal w.r.t. inclusion in Fy.

We call MaxzM (xz) C P(V) this partition of maximal modules not containing .
We propose a partition refining algorithm [16]. It is obvious that

Lemma 2. FEvery module (especially the maximal ones) not containing x is in-
cluded in a x-class H. of H.

Therefore our algorithm starts with the partition P = {H},..., H*} of the z-
classes of H, each part is an a-class. Then the partition is refined (parts are
splitted) using the following rule. Let y be an element, called the pivot, and Y
the part of P containing y.

Rule 1. split every part A of P, except for Y, into ANH,,..., AN H]
Notice that a part if broken in smaller ones iff it is distinguished by y.

Lemma 3. Starting from the partition Py = {H},... HF}, the application of
Rule 1 (for any pivot in any order) until no part can be actually splitted, produces
MazM(x).

Proof. The refining process ends when no pivot can split a part, i.e when every
part is a module. Let us suppose one of these modules M is not maximal w.r.t.
inclusion: it is included in a module M’, itself included in a z-class H:. Let
us consider the pivot y that first broke M’. It cannot be out of M’, as M’ is
module, nor within M’, as a pivot does not break its own part. But M’ was
broken, contradiction. a

Let us now implement this lemma into an efficient algorithm. Let P; be the
partition after the ith application of Rule 1, y be a given vertex used as pivot,
and Y; the part of P; containing y. We say that a part B of P; descends from a
part A of P; if i < j and A C B. Clearly, after y is chosen as pivot at step 7, y
does not distinguish any part of P; excepted Y;. If y is chosen as pivot after, at
step j > i, y may only split the parts of Pj_; that descend from Y;. Only these
parts have to be examinated for implementing Rule 1. But Y; itself has not to
be examinated.
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Let us suppose that, for a part A, we can split it in O(|A]) time when applying
Rule 1 with pivot y. Then the time spent at step j is O(|Y;| — |Y;|), the sum of
the size of the parts that descend from Y; save Y;. The time of all splittings with
y as pivot is O(|X|), leading to an O(|X|?) time complexity.

Let us suppose that the parts are implemented as a linked list [12], and the
new parts created after splitting an old one replace it and follow consecutively
in the list. Then for each pivot y two pointers, one on the first part that descend
from Y; and the second to the last part, are enough to tell the parts to be
examinated. A simple sweep between the pointers, omitting Y, gives them.

Now let us see how a part A can be split in O(|A|) time. It is a classical
trick of partition refining [T6I12]. If the y-classes are numbered from 1 to k, then
A can be bucket sorted in O(]A| + k) time, then each bucket gives a new part
that descend from A. If |A| < k, we have to renumber the used y-classes from
1 to k' < |A| before bucket sorting. A first sweep on A marks the used y-class
numbers. A second sweep unmarks an used number the first time it is seen, and
replace it by the new number (an incremented counter) which is less than |A].
The vector of y-classes numbers is initialized once in O(k) time.

The last point is the order in which the pivot are taken. Using all elements as
pivots, and repeating this | X| time, i.e. | X|? applications of Rule 1, is enough.
A clever choice is to use y only if Y; has been split, keeping a queue of “active”
pivots. We thus have:

Theorem 5. MaxM (x) can be computed in O(|X|?) time.

6.3 Testing if a Homogeneity Relation Is Trivial

A homogeneous relation H on X is trivial if Fg contains only X and the sin-
gletons.

Theorem 6. Let S be a nonempty subset of X. One can test in O(|X|?) time
if H is trivial.

Proof. If | X| < 2 the answer is yes. Otherwise let 2 and y be two elements of X.
In O(|X|?) time, the algorithm of Section [6.2] outputs the maximal modules not
containing z. If one of them is nontrivial the answer is no. Otherwise all nontrivial
modules contain z. In O(|X|?) time, the algorithm of Section outputs the
maximal modules not containing y. If one of them is nontrivial the answer is
no. Otherwise all nontrivial modules contain z and y. Then Algorithm [l is used
with S = {x,y}, in O(]X|?) time. The answer is yes iff SM ({z,y}) = X. O

6.4 Strong Modules of a Homogeneous Relation

Theorem [2 straightforwardly leads to an algorithm:

Theorem 7. The strong modules of a homogeneous relation H on X can be
computed in O(|X|?) time.
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Proof. First compute MaxM (x) for all x € X. All these sets together exactly
form the family Z defined in Theorem[2l It can be done in O(| X |?) time using the
algorithm of Section | X | times. The size of this family (sum of the cardinals
of every subsets) is O(|X|?) since they form |X| partitions. Using Dahlhaus
algorithm [7] the overlap components can be found in time linear on the size
of the family, namely O(]X|?). According to Lemma [ there are at most |X|
nontrivial overlap classes.

For each class it is easy to compute its support, and in O(| X |?) time easy to
compute its atoms. For instance, consider the vector of parts of the overlap class
containing a given element: the atoms are the elements with the same vector.
Sorting the list of elements of the supports O(|X|) times, one time per part,
gives the elements with the same vector, thus the atoms.

And at least the O(|X|?) supports and atoms must be sorted by inclusion
order into the inclusion tree of the strong modules. It can be done in O(|X|?)
time using the same sorting technique. a

7 Outcomes

Let us examine in the sequel some of the applications of this homogeneity theory
to modular decomposition of graphs and 2-structures, and to other graph rela-
tions. The name of Graphical, Quotiental, and Digraphical relations are justified
by the following proposition:

Proposition 8. The standart homogeneous relation of a directed graph is Quo-
tiental and Digraphical. If the graph is undirected, its standard relation also is
Graphical.

The notion of modules also extends to 2-structures [9]. A (symmetric) 2-structure
is a complete edge-coloured (undirected) graph and H (z|yz) is true when edges
(zy) and (zz) have the same colour. We still have:

Proposition 9. The standart homogeneous relation of a 2-structure Quotiental
and Digraphical. If the 2-structure is symmetric, its standard relation also is
Graphical.

The modules of an undirected graph and of a symmetric 2-structure thus form a
partitive family, while the modules of a directed graph just form a weakly par-
titive family. All know properties of modular decomposition [15] can be derived
from this result. An O(n?) modular decomposition algorithm can also be derived
from Section algorithm, but it is less efficient than the existing algorithms
[4J6I-IT2T4].

In a graph we can consider different homogeneous relations, for instance the
relation “there exists a path from vertex x to vertex y avoiding the verter s”, or a
more general relation “there exists a path from x toy avoiding the neighbourhood
of s”. It is easy to see that these two relations fulfill the basic axioms (symmetry,
reflexivity and transitivity). In the first case, the strong modules form a partition
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(into the 2-vertex-connected components, minus the articulation points). The
second relation is related to decomposition into star cutsets.

Another interesting relation is Dy (s|zy) if d(s,z) < k and d(s,y) < k, where
d(z,y) denotes the distance between = and y. The case k = 1 corresponds to
modular decomposition. It is worth investigating the general case.

8 Conclusion

We hope that this homogeneity theory will have many other applications and
will be useful to decompose automata [I] and boolean functions [2]. Obviously,
the algorithmic framework presented here can be optimised in each particular
application, as it can be done for modular decomposition [4J6IRT2/T4]. We think
the homogeneity concept is a very general idea.
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