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Abstract. An output-polynomial algorithm for the listing of minimal dominating sets
in graphs is a challenging open problem and is known to be equivalent to the well-
known Transversal problem which asks for an output-polynomial algorithm for listing
the set of minimal transversals in hypergraphs. We give a polynomial delay algorithm
to list the set of minimal dominating sets in chordal graphs, an important and well-
studied graph class where such an algorithm was open[5]. The algorithm uses a new
decomposition method of chordal graphs based on clique trees.

1 Introduction

A hypergraph H is a pair pV, Eq where V is a finite set and E Ď 2V is called the set of hyperedges.
Hypergraphs generalize graphs where each hyperedge has size at most 2. Given a hypergraph
H :“ pV, Eq and C Ď 2V , an output-polynomial algorithm for C is an enumeration algorithm
for C whose running time is bounded by a polynomial depending on the sum of the sizes of H
and C. One of the central problem in the area of enumeration algorithm is the existence of an
output-polynomial algorithm for the set of minimal transversals in hypergraphs, and is known
as the Transversal problem or Hypergraph dualization. A minimal transversal (or hitting set)
in a hypergraph pV, Eq is an inclusion-wise minimal subset T of V that intersects with every
hyper-edge in E . The transversal problem has several applications in artificial intelligence
[8,9], game theory [14,20], databases [1,3,2], integer linear programming [3,2], to cite few.
Despite the interest in Transversal problem the best known algorithm is the quasi-polynomial
time algorithm by Fredman and Khachiyan[10] which runs in time OpN logpNqq where N is the
cumulated size of the given hypergraph and its set of minimal transversals. However, there
exist several classes of hypergraphs where an output-polynomial algorithm is known (see for
instance [8,9,16] for some examples). Moreover, several particular subsets of vertices in graphs
are special cases of transversals in hypergraphs and for some of them an output-polynomial
algorithm is known, e.g. maximal independent sets, minimal vertex-covers, maximal (perfect)
matchings, spanning trees, etc.

In this paper we are interested in the particular case of the Transversal problem, namely
the enumeration of minimal dominating sets in graphs (Dom-Enum problem). A minimal
dominating set in a graph is an inclusion-wise subset D of the vertex set such that every
vertex is either in D or has a neighbor in D. In other words D is a minimal dominating set of



G if it is a minimal transversal of the closed neighborhoods of G, where the closed neighborhood
of a vertex x is the set containing x and its neighbors. Since in important graph classes an
output-polynomial algorithm for the Dom-Enum problem is a direct consequence of already
tractable cases for the Transversal problem, e.g. minor-closed classes of graphs, graphs of
bounded degree, it is natural to ask whether an output-polynomial algorithm exists for the
Dom-Enum problem. However, it is proved in [16] that there exists an output-polynomial
algorithm for the Dom-Enum problem if and only if there exists one for the Transversal
problem, and this remains true even if we restrict the Dom-Enum problem to the co-bipartite
graphs. This is surprising, but has the advantage of bringing tools from graph structural theory
to this difficult problem and is particularly true for the Dom-Enum problem since in several
graph classes output-polynomial algorithms were obtained using the structure of the graphs:
graphs of bounded clique-width [4], split graphs [16], interval and permutation graphs [17],
line graphs [15,18], etc.

Since the Dom-Enum problem in co-bipartite graphs is as difficult as the Transversal
problem and co-bipartite graphs are a subclass of weakly chordal graphs, i.e. graphs with no
cycles of length greater than or equal to 5, one can ask whether by restricting ourselves to
graphs without cycles of length 4, which are exactly chordal graphs [7], one cannot expect
an output-polynomial algorithm. In fact for several subclasses of chordal graphs an output-
polynomial algorithm is already known, e.g. split graphs [16], undirected path graphs [15],
chordal P6-free. Furthermore, chordal graphs have a nice structure, namely the well-known
clique tree which has been used to solve several algorithmic questions in chordal graphs. We
prove the following.

Theorem 1. There exists a polynomial delay algorithm for the Dom-Enum problem in chordal
graphs which uses polynomial space.

An enumeration algorithm is polynomial delay if the maximum computation time between
two outputs is polynomial in the input size, thus polynomial delay algorithm is output polyno-
mial time. Notice that there exist problems where an output-polynomial algorithm is known
and no polynomial delay algorithm exists unless P=NP [21].

Chordal graphs admit several linear structure (e.g. perfect elimination ordering) and tree
structures called clique trees. The existence of these structures makes many problems polyno-
mially solvable in chordal graphs. For example, using a clique tree we can split a chordal into
several subgraphs by removing a clique. This decomposition leads to a dynamic programming
algorithm for maximum independent set problem by considering the cases that each vertex of
the clique is included in the independent set, since any independent set can include at most
one vertex of the clique. However, dominating set may include several vertices in a clique,
thus this approach is not applicable directly. To the best of our knowledge, there is no good
way to deal with this difficulty, and this can explain why minimum dominating set problem is
NP-complete. In this paper, we propose to use an “anti-chain” of cliques to decompose chordal
graphs. The anti-chain decomposes a graph into several subgraphs, thus the solutions with
respect to the anti-chain are obtained by the combination of the solutions of the subgraphs.
Since the number of such subgraphs is limited, dynamic programming approach does work.
This approach is more powerful than usual decomposition with cliques, in the sense that we
can overcome the above difficulty when dealing with the minimal dominating set enumeration
problem, thus, gives a new method for designing algorithms for chordal graphs.
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2 Preliminaries

An algorithm is said to be output-polynomial if the running time is bounded by a polynomial
in the input and output sizes. The delay is the maximum computation time between two
outputs, pre-processing, and post-processing. If the delay is polynomial in the input size, the
algorithm is called polynomial delay.

We refer to [6] for our graph terminology. We deal only with finite simple loopless undi-
rected graphs. The vertex set of a graph G is denoted by VG and its edge set by EG. An
edge between two vertices x and y is denoted by xy (yx respectively). Let G be a graph. The
subgraph of G induced by X Ď VG, denoted by GrXs is the graph pX, pX ˆXq XEGq. For a
vertex x of G we denote by NGpxq the set of neighbors of x, i.e. the set ty P VG | xy P EGu,
and we let NGrxs, the closed neighborhood of x, be NGpxqYtxu. For S Ď VG, let NGrSs denote
Ť

xPS NGrxs. (We will remove the subscript when the graph is clear from the context and this
will be the case for all sub or superscripts in the paper.) We say that a vertex x is dominated
by a vertex y if x P NGrys. A dominating set of G is a subset D of VG such that every vertex
of G is dominated by a vertex in D. A dominating set is minimal if it includes no other
dominating set. For D Ď VG, a vertex y is a private neighbor of x P D if NGrysXD “ txu; the
set of private neighbors of a vertex x P D is denoted by P pD,xq. D Ď VG is an irredundant
set of G if P pD,xq ‰ H for all x P D. D Ď VG is a minimal dominating set of G if and only
if D is a dominating set of G and D is an irredundant set.

A clique of G is a subset C of G that induces a complete graph, and a maximal clique is
a clique C of G such that C Y txu is not a clique for all x P VGzC. We denote by CG the set
of maximal cliques of G.

For a rooted tree T , let us denote by ĺT the relation where u ĺT v if v is on the unique
path from the root to u; if u ĺT v then v is called an ancestor of u and u a descendant of v.
Two nodes u and v of a rooted tree T are incomparable if u ­ĺT v and v ­ĺT u. Given a node
u of a rooted T the subtree of T rooted at u is the tree T rtv P VT | v ĺT uus which is rooted
at u.

A graph G is called chordal if it does not contain chordless cycles of length greater than
or equal to 4. From [12] with every chordal graph G, one can associate a tree that we denote
by TG, called clique tree, whose nodes are the maximal cliques of G and such that for every
vertex x P VG the set TGpxq :“ tC P V pTGq | the maximal clique C contains xu is a subtree
of TG. Moreover, for every chordal graph G one can compute a clique tree in linear time (see
for instance [11]). In the rest of the paper all clique trees are considered rooted.

Let TG be a clique tree of a chordal graph G and let us denote its root by Cr. For each
C P CG, let us denote by PapCq its parent and let fpCq :“ CzPapCq, i.e., the set of vertices
in C that are not in any maximal clique C 1 ancestor of C. Notice that tfpCq | C P TGu is a
partition of VG. For each vertex x P VG, we denote by Cpxq the maximal clique C satisfying
x P fpCq. Notice that Cpxq is uniquely defined since exactly one maximal clique C satisfies
x P fpCq. For C P CG, the subtree rooted at C is denoted by TGpCq, and the set of vertices
Ť

C1PTGpCq
fpC 1q is denoted by V pCq.

Property 1. Any clique tree TG of a chordal graph G satisfies the following.
1. For each C P CG, and each x P VGzV pCq either ptxuˆfpCqq Ď EG or ptxuˆfpCqqXEG “ H.
2. For any two incomparable C and C 1 in CG, we have pfpCq ˆ fpC 1qq X EG “ H.
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For S Ď VG let CpSq denote the set tCpxq | x P Su, UppSq the set of vertices x in VG

such that Cpxq is a proper ancestor of a clique C P CpSq and UncovpSq be the vertex set
UppSqzNGrSs, i.e. the set of vertices in UppSq not dominated by S. For a vertex x, Uppxq
denotes Upptxuq. A subset A Ď VG is an antichain if (1) for any two vertices x and y in A we
have x R Uppyq and y R Uppxq, (2) for each vertex z P VGzUppAq, AX pCpzq Y Uppzqq ‰ H.
Intuitively, A is an antichain if CpAq is a maximal set of pairwise incomparable maximal
cliques. Given S Ď VG, the top-set ApSq is defined as the set of vertices of S included in the
upmost cliques in CpSq that are not descendants of any other in CpSq, i.e., ApSq :“ tx P S |
Cpxq is in max

ĺT
tCpSquu.

If S ‰ H, let LpSq be the set of maximal cliques C satisfying (1) no descendant of C
is in CpSq, (2) some descendant of PapCq is in CpSq. In other words, LpSq is the set of
upmost maximal cliques no descendant of which intersects with CpSq, i.e., LpSq :“ max

ĺT
tC P

CG | C has no descendant in CpSqu. If S “ H, let LpSq be tCru. We denote by L1pSq the set
max
ĺT
tC 1 P T pCq | C P LpSq and C 1 X S “ Hu.

We suppose that any clique tree T is numbered by a pre-order of the visit of a depth-first
search. In this numbering, the numbers of the nodes in any subtree forms an interval of the
numbers. It is worth noticing that this ordering is a linear extension of the descendant-ancestor
relation. We say a clique is smaller than another clique when its number in the ordering is
smaller than the other’s. We also extend this numbering to the vertices of the corresponding
graph so that the number of a vertex x is smaller than that of a vertex y if Cpxq is smaller than
Cpyq (whenever Cpxq “ Cpyq we choose anyone). We also say that a vertex is smaller than
another vertex if its number is smaller than the other’s. For a vertex set S, tailpSq denotes
the largest vertex in S. A prefix of a vertex set S is its subset S1 such that no vertex in SzS1

is smaller than tailpS1q. A partial antichain is a prefix of an antichain. We allow the H to be
a partial antichain.

Following this ordering of the vertices of a chordal graph G, a minimal dominating set D
is said to be greedily obtained if we initially let D :“ VG and recursively apply the following
rule: if D is not minimal, find the smallest vertex x in D such that Dztxu is a dominating
set and set D :“ Dztxu. Notice that given a graph G there is one greedily obtained minimal
dominating set.

3 When Simplicity Means NP-Hardness

A typical way for the enumeration of combinatorial objects is the backtracking technique. We
start from the emptyset, and in each iteration, we choose an element x, and partition the
problem into two subproblems: the enumeration of those including x, and the enumeration of
those not including x, and recursively solve these enumeration problems. If we can check the
so called Extension Problem in polynomial time, then the algorithm is polynomial delay
and uses only polynomial space. The Extension Problem is to answer the existence of an
object including S and that does not intersect with X, where S is the set (partial solution)
that we have already chosen in the ancestor iterations, and that includes all elements we
decided to put in the output solution, and X is the set that we decided not to include in the
output solution.
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It is known that the Extension Problem for minimal dominating set enumeration is
NP-complete [19], and one can even prove that it is still NP-complete in split graphs, which
is a proper subclass of chordal graphs. However, split graphs have a good structure and in
the paper [16], it is proved that if S YX induces a clique the Extension Problem in split
graphs can be solved in polynomial time and this combined with the structure of minimal
dominating sets in split graphs lead to a polynomial delay algorithm for the Dom-Enum
problem in split graphs. Chordal graphs also have a good tree structure induced by clique
trees. Thus, by following this tree structure, the Extension Problem seems to be solvable.
In precise, we consider the case in which a path P, from the root, of the clique tree satisfies
that both V pCq X pS Y Xq ‰ H and V pCq Ę pS Y Xq holds only for cliques C included in
P. In other words, the condition is that for any clique C R P whose parent is in P, either
V pCqXpSYXq “ H (totally not determined) or V pCq Ď pSYXq (totally determined) holds.
The solutions are partially determined on the path P, and thus the Extension Problem
seems to be polynomial. However, Theorem 2 states that the problem is actually NP-complete.

Theorem 2. The Extension Problem is NP-complete in chordal graphs even if a path
P, from the root, of the clique tree satisfies that any child C of a clique in P satisfies either
V pCq X pS YXq “ H or V pCq Ď pS YXq. [\

To overcome these difficulties, we will follow another approach. In fact the NP-hardness
comes from the fact that the root clique can have both un-dominated vertices and private
neighbors of several vertices of S. In the following, we will introduce a new strategy for
the enumeration, that repeatedly enumerates antichains in levelwise manner. Indeed for any
minimal dominating set D of a chordal graph G, one can easily check that the set ApDq is
an antichain that moreover dominates UppApDqq. Our strategy consists in enumerating such
antichains and for each such antichain A enumerates the minimal dominating sets D such
that ApDq “ A. Let’s be more precise in the forthcoming sections.

4 pK1,K2q-Extensions

From now on we consider a fixed chordal graph G and clique tree T of G with root Cr so
that we do not need to recall them in the statements. Let K1,K2 Ď Cr be given disjoint sets
that are decided to be included in the solution. Intuitively, we are considering the subgraph
induced by a subtree of the clique tree rooted at Cr, and K1 and K2 are vertices that we
already decided to include in the solution, such that vertices in K2 have private neighbors
outside the subgraph, and vertices of K1 do not. Without confusion we denote K1 YK2 by
K. A pK1,K2q-extension of a partial antichain A is a vertex set D such that pA YKq Ď D
and DzpA Y Kq Ď

Ť

CPLpAYKq

V pCq. Observe that if D is a pK1,K2q-extension of A, then A

is a prefix of ApDq. When the partial antichain is not specified, pK1,K2q-extension is that
for the empty partial antichain. A pK1,K2q-extension D is feasible if it is a dominating set
and P pD,xq ‰ H for all x P DzK2. A partial antichain A is pK1,K2q-extendable if it has a
feasible pK1,K2q-extension.

Let us briefly explain the ideas of the algorithm and why we introduce pK1,K2q-extensions.
We first observe that for any minimal dominating set D of G, its top-set is an pH,Hq-
extendable antichain. Moreover, DzApDq is composed of vertices below ApDq, i.e., any vertex
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inDzApDq is included in V pCqzC for some C P CpDq. Using this, we can partition the minimal
dominating sets according to their top-sets. Since these top-sets are pH,Hq-extendable, we
enumerate all pH,Hq-extendable antichains, and for each pH,Hq-extendable antichain A,
enumerate all minimal dominating sets whose top-set is A. As by definition of pK1,K2q-
extendable for some disjoint K1,K2 Ď Cr, for each pH,Hq-antichain A there is at least one
minimal dominating set whose top-set is A. Therefore, each output pH,Hq-antichain will give
rise to a solution. This is one of the key to polynomial delay.

Now for a minimal dominating set D and a clique C P CpApDqq, each vertex x in D X

pV pCq Y Cq cannot have a private neighbor in another GrV pC 1q Y C 1s for some other C 1 P
CpApDqq. Therefore, we can treat each GrV pCq Y Cs independently. However, for each C P

CpApDqq the set DXpV pCqYCq is not necessarily a minimal dominating set of GrV pCqYCs
since D X C may be equal to a singleton txu with x having a private neighbor in UppApDqq.
In such cases we are looking in GrV pCq YCs a dominating set D1 of GrV pCq YCs containing
x where x does not necessarily have a private neighbor, but all the other vertices in D1 do,
i.e., D1 is a feasible pH, txuq-extension in GrV pCq YCs with clique tree T pCq. This situation
is what exactly motivated the notion of pK1,K2q-extensions.

Assume now we are given a pair pK1,K2q of disjoint sets in Cr and a pK1,K2q-extendable
antichain A. Now contrary to pH,Hq-antichains we can have a vertex x in K :“ K1 Y K2

that belongs to several cliques in A. So we cannot independently make recursive calls in
GrV pCq YCs for each C P CpAq. But, for each feasible pK1,K2q-extension of A and each C P
CpAq the set DXpV pCqYCq is a feasible pK1

C ,K
2
Cq-extension of GrV pCqYCs for some disjoint

K1
C and K2

C in pAYKqXC. Now the whole task is to define for each C P CpAq the sets K1
C and

K2
C in pAYKq X C in such a way that by combining all these feasible pK1

C ,K
2
Cq-extensions

we obtain a feasible pK1,K2q-extension of A, and also any feasible pK1,K2q-extension can be
obtained in that way. Actually, the way of setting K1

C and K2
C is the key, and is described in

the next section.
Let us prove some technical lemmas about pK1,K2q-extensions needed for proving the

correctness of our algorithm. For C P CG and x P C, let FpC, xq :“ tC 1 ĺT C and C 1 P L1pxqu,
and let DCpxq denote a vertex set composed of

1. Z Ď V pCq X

˜

Ť

C1PFpC,xq

C 1

¸

such that |Z X C 1| “ |Z X fpC 1q| “ 1 for all C 1 P FpC, xq,

2. a greedily obtained minimal dominating set of GrpV pCqzNGrxsqzNGrZss.

If x R C, then we let DCpxq be a greedily obtained minimal dominating set of GrV pCqs.

Property 2. Let C P CG and let x P VG. Then DCpxq is an irredundant set in GrV pCqs and
every vertex in V pCqzNGrxs is dominated by DCpxq.

Given disjoint sets K1,K2 Ď Cr, D Ď VGzK and x P DYK1, a vertex y P P pDYK,xq is
said safe if either x “ y, or the following two conditions are satisfied

(S1) NGpyq X V pCq Ď NGrDCpyqs for all C P L1pD YKq with y P C and,
(S2) for each z P NGrys XUncovpDYKq, there is C P L1pDYKq such that z P NGrDCpyqs.

A vertex x P D is said safe if one of its private neighbors is safe.
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Property 3. Let x P D Y K1 and let y P P pD Y K,xq be a safe for x. Then V pCqztyu Ď
NGrDCpyqs for all C P L1pD YKq with y P C.

Lemma 1. Let A be a partial antichain and let x P A Y K1. For y P P pA Y K,xq that is
non-safe, no pK1,K2q-extension D of A that is a dominating set satisfies that y P P pD,xq.

Proof. Since y is not safe, we have x ‰ y, and therefore y violates one of the two conditions (S1)
or (S2) to be safe. Suppose that (S1) is not satisfied, i.e. there is a clique C P L1pAYKq, y P C
such that there is a vertex z in pNGpyq X V pCqqzNGrDCpyqs. Thus, any pK1,K2q-extension
D of A that is a dominating set includes some vertices in NGrys other than x, thus y is not
a private neighbor of x.

Suppose now that (S2) is not satisfied, i.e. there is a vertex z P NGrys X UncovpA YKq
such that no clique C P L1pAYKq satisfies z P NGrDCpyqs. It implies from the definition of
DCpyq that no vertex in V pCqzNGrys is adjacent to z in all cliques C P L1pAYKq. Thus, as
in the previous case, in any pK1,K2q-extension D of A, y is not a private neighbor of x unless
D is not a dominating set. [\

Lemma 2. Let A be a partial antichain and let x P A Y K1 be safe. Then there is y P
P pAYK,xq that is safe and such that y P V pCpxqq.

Proof. The statement holds if x P P pAYK,xq. If not, Cpxq includes another vertex in AYK,
and it is adjacent to any vertex in NGrxszV pCpxqq by Property 1. Thus all its safe private
neighbors are always in V pCpxqq. [\

Lemma 3. A partial antichain A is pK1,K2q-extendable if and only if the following two
conditions are satisfied

1. any vertex in UncovpAYKq is included in a clique of L1pAYKq,
2. all vertices in AYK1 are safe.

Proof. Let A be a pK1,K2q-extendable partial antichain. If (1) is not satisfied, there is a
vertex z P UncovpA YKq that is not included in any clique of L1pA YKq, and by definition
of pK1,K2q-extension no pK1,K2q-extension of A can dominate it. So (1) is always satisfied.
Now, if (2) is not satisfied, there is a non-safe vertex x in A YK1, thus all y P P pA YK,xq
are non-safe. By Lemma 1 it follows that P pD,xq “ H for each pK1,K2q-extension D of A
that is a dominating set, and then (2) is always satisfied.

Suppose now that the two conditions hold. For each x P A Y K1 let us choose one safe
private neighbor and let us denote the set of all these safe private neighbors by S. We consider
a pK1,K2q-extension D generated from A Y K as follows. First of all notice that from the
definition of private neighbor and safety for each C P L1pA Y Kq, |C X S| ď 1. So, let
L1 :“ tC P L1pA YKq | |C X S| “ 1u and L0 :“ tC P L1pA YKq | |C X S| “ 0u. It is clear
that tL0,L1u is a bipartition of L1pAYKq. Let z P S. Now let

D :“ pAYKq Y

¨

˝

ď

CPL1,CXS“tyu

DCpyq

˛

‚Y

˜

ď

CPL0

DCpzq

¸

.
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D is clearly a pK1,K2q-extension of A. By definition of DCpyq for each vertex x P DzpAY
Kq we have that P pD,xq ‰ H. It is moreover easy to check that for each x P A Y K1, we
have that S XP pAYK,xq P P pD,xq. Thus, from Property 1, P pD,xq ‰ H for all x P DzK2.
Each vertex in NGrAYKs is dominated. Moreover, since for each C P L0 we have z R C, by
definition of DCpzq we have V pCq is also dominated. Now, let C P L1 and let C X S “ tyu.
We know from Property 2 that V pCqzNGrys is dominated by DCpyq and y is dominated by
AYK since y is safe for some vertex in AYK1. So, it remains to show that NGpyq X V pCq
is dominated. By the definition of safety we know that the two conditions (S1) and (S2) are
satisfied, i.e. NGpyq X V pCq is dominated. [\

As a corollary we have the following.

Lemma 4. For any partial antichain A one can check in polynomial time whether A is
pK1,K2q-extendable.

Proof. By Lemma 3 it is enough to check if (1) all vertices in A Y K1 are safe and (2)
each vertex in UncovpA Y Kq is included in a clique in L1pA Y Kq. Since (2) can be easily
checked in polynomial time from G and a clique tree of G, it remains to show that (1) can
be checked in polynomial time. A vertex x P A Y K1 is safe if either x P P pA Y K1, xq or
there exists a safe y P V pCpxqq X P pA YK1, xq by Lemma 2. But by the definition of safety
for each y P V pCpxqq X P pAYK1, xq the conditions (S1) and (S2) are of course checkable in
polynomial time from G and a clique tree of G. [\

5 The Algorithm

Our enumeration strategy is composed of nested enumerations: enumeration of pK1,K2q-
extendable antichains, for each pK1,K2q-extendable antichain A and each C P CpAq define
K1

C and K2
C and enumerate all the feasible pK1

C ,K
2
Cq-extensions, and finally the combinations

of all these pK1
C ,K

2
Cq-extensions. Since any minimal dominating set is a feasible extension of

some pH,Hq-extendable antichain, the completeness of the enumeration is trivial. The rest of
the section is as follows. We first show how to enumerate pK1,K2q-extendable antichains for
some fixed pK1,K2q. Then we show, given a pK1,K2q-extendable antichain A, how to define
K1

C and K2
C for each C P CpAq and how to combine all the feasible pK1

C ,K
2
Cq-extensions in

order to obtain all feasible pK1,K2q-extensions of A. Before assuming that we can perform
both tasks with polynomial delay and use only polynomial space let us show that we can
enumerate with polynomial delay and polynomial space all the feasible pK1,K2q-extensions.

Enumeration of pK1,K2q-Extensions. The algorithm for enumerating all the feasible
pK1,K2q-extensions, including the case of the root of the recursion, is composed of pK1,K2q-
extendable antichain enumeration and of the enumeration of combinations of the feasible
pK1

C ,K
2
Cq-extensions for appropriate pK

1
C ,K

2
Cq. It can be described as follows.
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Algorithm EnumKExtensionpG, T ,K1,K2q

G:graph, T :clique tree
1. for each antichain A output by EnumAntichainpG, T ,K1,K2,Hq do
2. output each solution of EnumCombinationpG, T ,K1,K2, A,AYKq
3. end for

Assume that EnumAntichainpG, T ,K1,K2,Hq enumerates all pK1,K2q-extendable antichains
(Lemma 5) and EnumCombinationpG, T ,K1,K2, A,A YKq enumerates all feasible pK1,K2q-
extensions of A (Lemma 8), both with polynomial delay and use polynomial space. Then we
have the following.

Theorem 3. The call EnumKExtension pG, T ,K1,K2q enumerates all feasible pK1,K2q-extensions
in polynomial delay and uses polynomial space.

Proof. By definition for every feasible pK1,K2q-extension D the top-set ApDq is a pK1,K2q-
extendable antichain. So by Lemmas 5 and 8 below every feasible pK1,K2q-extension is output.
From the definition of pK1,K2q-extendable antichains every call in Step 1 outputs at least one
feasible pK1,K2q-extension. Therefore, EnumKExtension pG, T ,K1,K2q enumerates all feasible
pK1,K2q-extensions. Now since EnumAntichainpG, T ,K1,K2,Hq and EnumCombination
pG, T ,K1,K2, A,AYKq run in polynomial delay with polynomial space we can conclude that
EnumKExtension pG, T ,K1,K2q runs in polynomial delay and use polynomial space. [\

Enumeration of Antichains. Our strategy is to enumerate all pK1,K2q-extendable partial
antichains by an ordinary backtracking algorithm, that repeatedly appends a vertex to the
current solution that is larger than its tail. In this algorithm, any pK1,K2q-extendable partial
antichain A is obtained from AztailpAq. Since AztailpAq is a prefix of A, any pK1,K2q-
extendable partial antichain is generated from another pK1,K2q-extendable partial antichain.
This implies that the set of pK1,K2q-extendable partial antichains satisfies a kind of monotone
property, and thus we can enumerate all pK1,K2q-extendable partial antichains with passing
through only pK1,K2q-extendable partial antichains. The algorithm is described as follows.

Algorithm EnumAntichainpG, T ,K1,K2, Aq
G:graph, T :clique tree, A:pK1,K2q-extendable partial antichain

1. if A is an antichain then output A;
2. for each vertex z ą tailpAq do
3. if AY tzu is a pK1,K2q-extendable partial antichain then

call EnumAntichainpG, T ,K1,K2, AY tzuq
4. end for

Lemma 5. The call EnumAntichainpG, T ,K1,K2,Hq enumerates all pK1,K2q-extendable an-
tichains in polynomial delay with polynomial space.

Proof. We observe that for any pK1,K2q-extendable partial antichain A, AztailpAq is a
pK1,K2q-extendable partial antichain. Thus, one can easily prove by induction that the itera-
tion inputting A is recursively called only by the iteration inputting AztailpAq. Therefore, all
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pK1,K2q-extendable partial antichains are generated by this algorithm without repetition. For
a pK1,K2q-extendable partial antichain A, there is at least one feasible pK1,K2q-extension D.
By the definition of a feasible pK1,K2q-extension, ApDzKq is a pK1,K2q-extendable antichain
with A as a prefix. This implies that at least one descendant of any iteration outputs an an-
tichain, and every leaf of the recursion tree outputs an antichain. Then, the delay is bounded
by the maximum computation time of an iteration multiplied by the depth of the recursion.
The depth is at most |VG|, thus the algorithm is polynomial delay since the loop at Step 2
runs at most n times and the pK1,K2q-extendability check can be done in polynomial time
by Lemma 4. Since the depth is bounded by |VG|, the algorithm uses obviously a polynomial
space. [\

Enumeration of Combinations. We now show, given a pK1,K2q-extendable antichain
A, how to enumerate with polynomial delay and in polynomial space all feasible pK1,K2q-
extensions of A by computing for each C P CpAq all the pK1

C ,K
2
Cq-extensions of GrV pCqYCs

for appropriate K1
C and K2

C and combining all of them. Note that the set A is the top-set of
any feasible pK1,K2q-extension if and only if the pK1,K2q-extension is that of A. For pruning
redundant partial combinations, we introduce the notion of a partial pK1,K2q-extension. A
vertex set D Ě AYK is called a partial pK1,K2q-extension of A if there is a feasible pK1,K2q-
extension D1 of A such that DzpA Y Kq is a prefix of D1zpA Y Kq, and all the vertices in
V pCpxqq for x P A is dominated by D if x is smaller than tailpDzpA YKqq. Our strategy is
to enumerate all partial pK1,K2q-extensions of A, similar to the antichain enumeration. For
a partial pK1,K2q-extension D of A, let C˚pDq be the largest clique C in CpAq such that
pDzpAYKqqXV pCq ‰ H, and C˚pDq be the smallest clique C in CpAq such that a vertex in
V pCq is not dominated by D. Informally C˚pDq is the last clique C P CpAq such that V pCq is
dominated byD, and C˚pDq the first clique in CpAq such that V pCq is not dominated byD. To
enumerate all partial pK1,K2q-extensions of A and find all pK1,K2q-extensions of A, we start
from D “ AYK and repeatedly add a pK1

C˚pDq
,K2

C˚pDq
q-extension of GrV pC˚pDqqYC˚pDqs

to D for appropriate pK1
C˚pDq

,K2
C˚pDq

q, while keeping the extendability. To characterize the
possible pK1

C˚pDq
,K2

C˚pDq
q we state the following lemma. Let QpC 1q be the vertices x in KYA

that has no safe private neighbor in V pCq Y C,C ą C 1, and none of its private neighbor in
P pK Y A Y D,xq is included in UppAqzC 1 or in V pCq, C ă C 1. In other words QpC 1q is
the set of vertices in K Y A that we must give a private neighbor in V pC 1q Y C 1 for any
pK1,K2q-extension of A containing D.

Lemma 6. For a non-empty partial pK1,K2q-extension D, D X pV pC˚pDqq Y C˚pDqq is
a feasible pK 1

1,K
1
2q-extension in GrV pC˚pDqq Y C˚pDqs where K 1

1 “ QpC˚pDqq and K 1
2 “

ppAYKq X C˚pDqqzK 1
1.

Proof. By definitions of partial pK1,K2q-extension and of C˚, DXpV pC˚pDqYC˚pDqq dom-
inates V pC˚pDqq. Moreover, every vertex x in QpC˚pDqq has a private neighbor only in
V pC˚pDqq Y C˚pDq, and moreover x P C˚pDq. Thus, the statement holds. [\

Lemma 7. Let D be a partial pK1,K2q-extension of A and suppose that C˚pDq exists. For
any feasible pK 1

1,K
1
2q-extension D1 in GrV pC˚pDqq Y C˚pDqs where K 1

1 “ QpC˚pDqq, K 1
2 “

ppAYKq X C˚pDqqzK
1
1, D YD1 is a partial pK1,K2q-extension of A.
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Proof. As in the proof of Lemma 3, we choose one private neighbor for vertices in A Y K
that have safe private neighbors in V pCq, C ą C˚pDq and let S be the set of these selected
vertices. Then we let L1 :“ tC P L1pA Y Kq | C ą C˚pDq, |C X S| “ 1u and L0 :“ tC P

L1pAYKq | C ą C˚pDq, |C X S| “ 0u. Let z P S. Now let

D˚ :“ pAYK YD YD1q Y

¨

˝

ď

CPL1,CXS“tyu

DCpyq

˛

‚Y

˜

ď

CPL0

DCpzq

¸

.

According to the proof of Lemma 3, D˚ is a feasible pK1,K2q-extension of A. [\

We can now describe the algorithm.

Algorithm EnumCombinationpG, T ,K1,K2, A,Dq
G:graph, T :clique tree, A:pK1,K2q-extendable antichain
D: a partial pK1,K2q-extension of A

1. if C˚pDq does not exist then output D; return
2. K 1

1 “ QpC˚pDqq, K 1
2 :“ ppAYKq X C˚pDqqzK

1
1

3. for each D1 output by EnumKExtensionpGrV pC˚pDqq Y C˚pDqs, T pC˚pDqq,K 1
1,K

1
2q

4. call EnumCombinationpG, T ,K1,K2, A,D YD1q
5. end for

Lemma 8. The call EnumCombinationpG, T ,K1,K2, A,AYKq enumerates all feasible pK1,K2q-
extensions whose top-set is A in polynomial delay and uses polynomial space.

Proof. From Lemma 6, the iteration of a partial pK1,K2q-extension D of A is generated only
from the iteration of DzpV pC˚pDqzC˚pDqqq. This assures that the algorithm enumerates all
partial pK1,K2q-extensions of A without duplication. From Lemma 7, there is at least one
feasible pK1,K2q-extension D1 of A including the partial pK1,K2q-extension D of A that
is the input of the iteration. Thus, all the leaf iterations of the recursion of this algorithm
always outputs a feasible pK1,K2q-extension of A. Now the delay is bounded by the maximum
computation time of an iteration multiplied by the depth of the recursion. The depth is at
most |VG|, thus the algorithm is polynomial delay since EnumKExtension runs with polynomial
delay. Since the depth is at most |VG|, the algorithm is obviously polynomial space. [\

Proof (of Theorem 1). By definition every minimal dominating set of G is a feasible pH,Hq-
extension. Therefore, the call EnumKExtension pG, T ,H,Hq enumerates all minimal dominat-
ing sets in polynomial delay and polynomial space by Theorem 3. [\

6 Conclusion
We have proved that one can list all the minimal dominating sets of a chordal graph with
polynomial delay and polynomial space. The result enlarged the classes in that minimal dom-
inating set enumeration is output-polynomially solvable. However, the problem is still open
for several graph classes such as bipartite graphs and unit-disk graphs. In particular, chordal
bipartite graph admits an output-polynomial algorithm[13]. Applying our decomposition tech-
nique to chordal bipartite is an interesting future research.
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Appendix

Proposition 1. The Extension Problem is NP-complete in split graphs.

Proof. It is proved in [19] that the following problem is NP-complete: Given G and A Ă VG

decide whether there exists a minimal dominating set of G containing A. We reduce it to the
Extension Problem in split graphs. Let G be a graph, and let V 1G :“ tx1 | x P VGu a disjoint
copy of VG. We let SplitpGq be the split graph with vertex set VGYV 1G where VG and V 1G are
respectively the clique and the independent set in SplitpGq; now xy1 is an edge if x P NGrys.
Now it is easy to check that asking whether there exists a minimal dominating set of G that
contains A Ă VG is equivalent to asking whether there exists a minimal dominating set of
SplitpGq that contains A and does not intersect with V 1GzA

1 where A1 :“ NSplitpGqrAs X V 1G.
[\

Proof (of Theorem 2). We reduce Sat to our problem. Let ϕ be an instance of Sat with
x1, . . . , xn the variables and c1, . . . , cm the clauses of ϕ. We construct a chordal graph as
follows. The vertex set of the graph is

tx1, . . . , xn, c1, . . . , cm, p1, . . . , pn, p̄1, . . . , p̄n, l1, . . . , lnu
ď

tl̄1, . . . , l̄n, y1, . . . , yn, z1, . . . , zn, q1, . . . , qn, q̄1, . . . , q̄nu,

where li and l̄i are literals representing respectively xi and sxi (notice that if one literal does
not appear, the corresponding vertex is not created). Since with every clique tree one can
associate a unique chordal graph, we will construct the clique tree of the chordal graph. For
each 1 ď i ď n, we let Cpliq and Cpl̄iq be the set of clauses containing the literal li and l̄i
respectively. We let its root be Cr :“ tc1, . . . , cm, p1, . . . , pn, p̄1, . . . , p̄nu. The other maximal
cliques are defined as follows. For each 1 ď i ď n, we let Cxi

“ txi, pi, p̄iu, Cyi
“ tyi, xiu,

Czi “ tyi, ziu, Cqi “ tqi, liu, Cq̄i “ tq̄i, l̄iu, Cli “ tli, piu Y Cpliq, and Cl̄i “ tl̄i, p̄iu Y Cpl̄iq
with the following parent-child relation: Cxi

, Cli and Cl̄i are the children of Cr, Cyi
is the

only child of Cxi and Czi is the only child of Cyi , Cqi and Cq̄i are the only children of Cli

and Cl̄i respectively. It is easy to check that the constructed tree is indeed a clique tree. See
Figure 1 for an illustration.

We set S :“ tx1, . . . , xn, y1, . . . , ynu and X :“ tz1, . . . , zn, p1, . . . , pn, p̄1, . . . , p̄nuY
tc1, . . . , cmu and P :“ tCru. For each 1 ď i ď n, we have by construction V pCxiq Ď S YX,
and pV pCliqYV pCl̄iqqXpSYXq “ H. Therefore, for any maximal clique C child of Cr, either
V pCq X pS YXq “ H, or V pCq Ď pS YXq holds, thus the condition of the statement holds.

One can easily check that any satisfiable assignment of ϕ leads to a minimal dominating set
containing S and that does not intersect X. Let us prove the converse direction. We observe
when we choose both li and l̄i in the dominating set, xi loses its private neighbors. Thus,
any minimal dominating set can include at most one of them. On the other hand, exactly
one of li and qi (resp., l̄i and q̄i) must be included in any minimal dominating set, so that
it dominates li and qi (resp., l̄i and q̄i), and both must be private neighbors of the chosen
one. Moreover, to dominate each clause cj , at least one literal of cj has to be included in
any minimal dominating set. Hence, for any minimal dominating set D including S and not
intersect with X, the set of literals included in D corresponds to a satisfiable assignment.
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Therefore, the answer of the Extension Problem is yes if and only if ϕ has a satisfiable
assignment. [\

C1, . . . , Cm
p1, . . . , pn
p1, . . . , pn

Cr

x1, p1, p1

x1, y1

y1, z1

xn, pn, pn

xn, yn

yn, zn

. . .

. . .

. . .

︸ ︷︷ ︸
Variables

︸ ︷︷ ︸
Clauses

l1, p1, C(l1)

l1, q1

ln, pn, C(ln)

ln, qn

. . .

. . .

l1, p1, C(l1)

l1, q1

ln, pn, C(ln)

ln, qn

. . .

. . .

Fig. 1. An illustration of the construction of Theorem 2.

Proof (of Property 2). We first prove that DCpxq is irredundant. Since each minimal dominat-
ing set is also an irredundant set, we can assume that x P C. By definition of Z we have that
txu ˆ Z X EG “ H. Moreover, by Property 1(2) no two vertices of Z are adjacent. Since by
construction of DCpxqzZ no vertex in DCpxqzZ is adjacent to a vertex of Z, we can conclude
that for each z P Z we have z P P pDCpxq, zq. Moreover, since pDCpxqzZq X NGrZs “ H

and DCpxqzZ is a minimal dominating set of GrpV pCqzNGrxsqzNGrZss, we can conclude that
P pDCpxq, yq ‰ H for all y P pDCpxqzNGrxsqzNGrZs.

Let us now prove that V pCqzNGrxs is dominated by DCpxq. If x R C, then DCpxq is a
minimal dominating set of GrV pCqs and then we are done. So, assume that x P C and let
y P V pCqzNGrxs. Then Cpyq is necessarily a descendant of a clique C 1 P L1pxq and such that
C 1 ĺT C. So, either y P NGrZs or y R NGrZs. In both cases, it is dominated by DCpxq. [\

Proof (of Property 3). By Property 2 V pCqzNGrys is dominated by DCpyq. By definition of
safety NGpyq is dominated by DCpyq. Therefore V pCqztyu is dominated by DCpyq for all
C P L1pD YKq with y P C. [\
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