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Introductory example

5 3

STOCK

1 6

0 1

1 1 6 2

Objective : Minimize the span of the stock

1



Introduction 1D Problem Generalised Problem Conclusions

Introductory example

5 3

STOCK

1 6

0 1

1 1 6 2

Objective : Minimize the span of the stock

1



Introduction 1D Problem Generalised Problem Conclusions

Introductory example

5 3

STOCK

1 6

0 1

1 1 6 2

Objective : Minimize the span of the stock

1



Introduction 1D Problem Generalised Problem Conclusions

Introductory example

5 3

STOCK

1 6

0 1

1 1 6 2

Objective : Minimize the span of the stock

1



Introduction 1D Problem Generalised Problem Conclusions

Introductory example

5 3

STOCK

1 6

0 1

1 1 6 2

Day + -

1

6

5

2

1

0

3

1

2

4

2

3

Objective : Minimize the span of the stock

1



Introduction 1D Problem Generalised Problem Conclusions

Introductory example

5 3

STOCK

1 6

0 1

1 1

6

2

Day + -

1 6 5

2

1

0

3

1

2

4

2

3

Objective : Minimize the span of the stock

1



Introduction 1D Problem Generalised Problem Conclusions

Introductory example

5 3

STOCK

1 6

0 1

1

1

6

2

Day + -

1 6 5

2 1 0

3

1

2

4

2

3

Objective : Minimize the span of the stock

1



Introduction 1D Problem Generalised Problem Conclusions

Introductory example

5 3

STOCK

1 6

0 1

1 1 6 2

Day + -

1 6 5

2 1 0

3 1 2

4 2 3

Objective : Minimize the span of the stock

1



Introduction 1D Problem Generalised Problem Conclusions

Representation of the stock over time
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Definition of the Gasoline problem
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Instance Refill orders X and
Production orders Y with∑

i xi =
∑

i yi

Solution A permutation (matrix)
Z of X

min β − α s.t.

n∑
j=1

k∑
i=1

xizij −
k−1∑
i=1

yi ≤ β for 1 ≤ k ≤ n

n∑
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k∑
i=1

xizij −
k∑
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yi ≥ α for 1 ≤ k ≤ n

Z1 ≤ 1

1TZ ≤ 1T

zij ∈ {0, 1} for 1 ≤ i , j ≤ n

α, β ∈ R

3



Introduction 1D Problem Generalised Problem Conclusions

Definition of the Gasoline problem

0 2 4 6 8
−2

0

2

4

6

β

α

β

α

Instance Refill orders X and
Production orders Y with∑

i xi =
∑

i yi

Solution A permutation (matrix)
Z of X

min β − α s.t.

n∑
j=1

k∑
i=1

xizij −
k−1∑
i=1

yi ≤ β for 1 ≤ k ≤ n

n∑
j=1

k∑
i=1

xizij −
k∑

i=1

yi ≥ α for 1 ≤ k ≤ n

Z1 ≤ 1

1TZ ≤ 1T

zij ∈ {0, 1} for 1 ≤ i , j ≤ n

α, β ∈ R

3



Introduction 1D Problem Generalised Problem Conclusions

Principle of the Iterative Rounding algorithm

Algorithm 1: Iterative Rounding (Rajković 2022)

For each slot :

• Compute the LP relaxation while fixing the item in the
current slot for each remaining item

• Assign the most promising item to this slot according to
the LP relaxations
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Results

Proposition 1: Lower bound

The Iterative Rounding algorithm for the Gasoline Problem has
an approximation ratio greater or equal to 2.

NB : there exists already a 2-approximation for the Gasoline
problem

Proposition 2: Upper bound

The Greedy algorithm for the {1,K}-Gasoline Problem has an
approximation ratio of 2.
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Experiments : a quick remark
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Experiments : Local Search
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Instance construction for the lower bound

Staircase instance (ai ≤ m − 1) :

X = [a0 , · · · , ak , m , · · · , m , 0 ]
Y = [a0 , · · · , ak , m − 1 , · · · , m − 1 , m − 1]

IR always yields the identity permutation : value = 2(m − 1)
↪→ find the (ai )i so that the optimal value is around m.
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Back to the example...
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Experiments

Local Search adapted to the generalised problem

• In previous works, conjecture on an approximation factor of 2

• Experiments for d ≤ 10 tends to confirm this
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Result

Proposition 3

The Iterative Rounding algorithm for the Generalised Gasoline
problem has an approximation ratio greater or equal than 2.

Comes directly from the lower bound on 1D version (0 everywhere
except on the 1st coordinate)
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Recap and further work

• No better approximation with IR algorithm

• Still interesting to consider for higher dimensions

• Higher dimensions seem not to be harder for the IR algorithm

Further possible works:

• Prove guaranties for the IR algorithm for {1,K} and general
cases

• Identify other subcases where a greedy algorithm has a
constant approximation ratio

• Understand whether augmenting the dimension creates worse
instances (lower bound)
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Appendix

Instance for which Greedy approximates arbitrarily badly :

X = {2, . . . , 2︸ ︷︷ ︸
n
4
times

, 1, . . . , 1︸ ︷︷ ︸
n
2
times

, 0, . . . , 0︸ ︷︷ ︸
n
4
times

},

Y = {2, 0, . . . , 2, 0︸ ︷︷ ︸
n
2
times

, 2, . . . , 2︸ ︷︷ ︸
n
4
times

, 0, . . . , 0︸ ︷︷ ︸
n
4
times

}.
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Left : 1.86, Right : 1.57
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Appendix

min ∥β − α∥ s.t.

n∑
j=1

k∑
i=1

x
(p)
i zij −

k−1∑
i=1

y
(p)
i ≤ β(p) for 1 ≤ k ≤ n, ∀p ≤ l

n∑
j=1

k∑
i=1

x
(p)
i zij −

k∑
i=1

y
(p)
i ≥ α(p) for 1 ≤ k ≤ n, ∀p ≤ l

Z1 ≤ 1

1TZ ≤ 1T

zij ∈ {0, 1} for 1 ≤ i , j ≤ n

α, β ∈ Rl
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Appendix

n Max Mean σ % of non-optimal

5 1.5 1.036 0.006 6.77

10 1.667 1.085 0.011 18.30

15 1.667 1.100 0.012 22.06

20 1.667 1.111 0.013 24.89
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Appendix

IR yields the identity permutation
as solution:

(
Ik+1 0
0 1

mJm

)
where Jm =

1 · · · 1
...

. . .
...

1 · · · 1



Value : 2(m − 1)

Goal : find (ai ) so that the opti-
mal value is around m
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Pattern Pi = (m, ui+1, ui , ui+1)
with m + ui = 2ui+1 and m = 2p
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