INP Ensimag~~ YCA L

Uni ité ..
UGA Grenoble Alpes UNIVERSITAT

Master Operations Research and Combinatorial Optimization
Master Mathématiques & Applications

Iterative Rounding algorithms for the
Extended Gasoline Problem

19/02/2024 - 26/07 /2024

Lucas Lorieau

tutored by

Moritz Mihlenthaler Heiko Roglin
Grenoble INP - Ensimag, UGA University of Bonn

Defended on the 26/06/2024 before a jury composed of

Prof Nadia Brauner
Prof Van-Dat Cung
Prof Heiko Roglin
Prof Moritz Miihlenthaler
Prof Alantha Newman

Acknowledgement

First and foremost, I would like to deeply thank my supervisor Heiko Roglin for the
constant support he was able to bring me before and during my stay in Bonn, and for
the inspiring work sessions we had throughout the internship. Working with him was
a real pleasure and I'm glad that I could undergo my first academic experience (and
first abroad professional experience too!) under his supervision.

Special thanks to Moritz Miihlenthaler for being my supervisior back in France and
helping me while I was looking for a position for my master’s thesis. Without him, I
might not have found such an interesting topic, especially abroad. I also thank him for
his reassuring words during some of our meetings.

I would also like to thank some of the professors of the ORCO master in Grenoble
for their valuable teachings and discussions that were a true motivation for my studies.
In particular, I want to thank Nadia Brauner, Van-Dat Cung and Alantha Newman, that
will join the defense jury of this thesis. Many thanks to Zoltan Szigeti for his everlasting
cheerfulness during his talks and for introducing me to the world of combinatorics and
graph theory during my studies at Ensimag.

I would like to thank my colleagues at the Institute of Computer Science in Bonn
for the multiple exchanges we have had together and for having me feel a part of the
institute since the very beginning of my stay. Thanks to Sarah, Joshua, Jan, Rebecca,
Alex, Anurag and all the other ones.

Thanks to my friends Logan, Antoine, Adéle, Maxime and Olympe for support-
ing me from a distance during this long stay in an unknown country. A special
acknowledgement to Jolan for helping me training for my defense and for his kind and
empowering words. Finally, I owe very special thanks to my family and especially my
parents, that have been an endless source of strength and motivation since the very
beginning of my studies.

Abstract

The Gasoline Problem is related to scheduling with non-renewable re-
sources constraints. In this thesis, we study an approximation algorithm
called “Iterative Rounding” that was introduced by Rajkovi¢ (2022) for two
variants of the problem: the first one in one dimension for which a 2-
approximation is presented by Newman et al. (2018), and the other one
in 2 or more dimensions that was also introduced by Rajkovi¢ (2022). A
conjecture in this article claims that the algorithm is a 2-approximation for
both variants. We show that the approximation factor of Iterative Rounding
algorithm cannot be lower than 2 by describing a type of instances for which
the approximation factor can be made arbitrarily close to 2. We also present
guarantees on the approximation factor of a Greedy algorithm on a special
case. Experimental results that led to analyse the behavior of the Iterative
Rounding algorithm are presented for both variants of the problem, and
followups for the analysis of the 2 dimensions and more version of the
problem are proposed.

Résumé

Le Gazoline Problem est un probleme d’ordonnancement avec contraintes
de ressources non renouvelables. Dans ce rapport, nous étudions un algo-
rithme d’approximation dit « Iterarive Rounding » décrit par Rajkovi¢ (2022)
pour deux variantes de ce probléme; I'une en une dimension pour laquelle
une 2-approximation est présentée dans Newman et al. (2018) et l'autre
en 2 dimensions et plus, également introduite par Rajkovi¢ (2022). 11 est
conjecturé dans cet article que 1’algorithme est une 2-approximation pour
chacune des variantes du probléeme. Nous montrons que l'algorithme Ite-
rative Rounding ne peut avoir un facteur d’approximation plus petit que 2
en décrivant une famille d’instances pour laquelle le facteur d’approxima-
tion peut étre rendu arbitrairement proche de 2. Nous prouvons également
dans un cas particulier des garanties sur le facteur d’approximation dun
algorithme Glouton. Des résultats expériementaux ayant permis d’analyser
le comportement de l'algorithme Iterative Rounding sont présentés pour les
deux versions du probléme, et des pistes d’analyses pour la version en 2
dimensions et plus sont proposées.

11

Contents

Acknowledgement
Abstract
1 Introduction
1.1 Problemstatement
1.2 Previousresults
1.3 Relatedwork e
2 Iterative Rounding algorithm
2.1 Definitionandremarks
2.2 Comparison to the Greedy algorithm
2.3 Numerical experiments
2.3.1 Generalbehavior
232 LocalSearch
233 Generalised problem 0 L
3 Approximation results
3.1 One dimension VErSiON v v v v v vt v et e e e e e
3.1.1 Lowerbound
3.1.2 Upper bound for the {1,K} subcase
3.2 Generalised version e

4 Conclusion

Bibliography

B [
Introduction

Among one of the most widely represented domains of Combinatorial Optimization
and Operational Research, Scheduling enables to finely tune industrial processes. The
intensive research in this domain led to the development of powerful tools that are
pivotal in managing complex industrial systems, especially when subtle constraints
have to be addressed to obtain feasible solutions.

The Scheduling term specifically deals with problems where tasks have to be as-
signed to agents (e.g. machines), with the goal to find an optimal assignment given a
specific criterion. This assignment task is sometimes critical for the industrial process
to run smoothly and is sometimes the bottleneck preventing improvements in effi-
ciency. A significant part of scheduling problems are NP-complete, which means only
approximation algorithms are known for polynomial time solving of such problems.

We will focus throughout this thesis on the “scheduling with non renewable re-
sources” framework. In this type of problems, a stock of “rare” resource is one of
the main constraints of the problem. This stock is used for the consuming tasks we
have to schedule and has a finite value, and it has to be restocked by using specific
orders that also have to be scheduled accordingly. Of course, consuming tasks cannot
be scheduled if the stock is not sufficient. This type of problem has been studied first
by Carlier et al. (1982) in the early 1980’s, and continues to be studied because of the
numerous applications of this framework.

One of those applications is the Stock size problem studied by Kellerer et al. (1998).
In this problem, we can imagine that a factory using a specific rare material has some
orders to fulfill, each of those consuming a specific amount of the material. It also has
some replenishment orders available, to refill its stock of product. All orders mentioned
before have a fixed value of needed (respectively delivered) material. Of course, having
a stock is costly and the factory wants to have at any point of time the smallest stock
possible to limit its expenses. The goal is then to schedule the different orders so
that the stock is always sufficient to process the incoming consuming task, and the
maximum stock over the time period is minimized. One could also want to schedule
a delivery each day, and thus enforcing the constraint of having alternating delivery
orders and replenishment orders. Newman et al. (2018) introduce this variation of the
problem and prove the first results on this new problem.

2 CHAPTER 1. INTRODUCTION

One can also consider to only be allowed to permute one of the two sequence of
values, then creating another problem, called the Gasoline Problem. This problem was
tirst introduced following a puzzle presented by Lovész (1979) and will be the one we
focus on throughout this thesis. This problem shares common structure with different
classical problems, such as bin packing, bin covering, or discrepancy problems. In par-
ticular, one can think about this problem as a “dual version” of the prefix discrepancy
problem (or signed series problem). Some of these related problems will be briefly
stated in Section 1.3.

The first part of this thesis will define properly the problem, and give some in-
sights on problems related to the Gasoline Problem as well as presenting some known
results concerning this problem and its generalisations. The next section will define
one generic approximation algorithm solving the Gasoline Problem, called iterative
rounding, and will present its differences with usual iterative rounding procedures. It
is worth to study this algorithm because it can be quite easily adapted when dealing
with generalisations of the Gasoline problem unlike other known algorithms tackling
this kind of problems. We will first present some numerical results that helped getting
some intuition on the behavior of the algorithm, and we will focus specifically on try-
ing to understand on what type of instance our algorithm can struggle to compute a
good approximation of the optimal solution. Then, we will give some results on the 1D
version of the Gasoline problem. Among them, we prove that the approximation factor
of the Iterative Rounding is at least 2. We also consider a subcase of the problem, for
which we were able to give some guarantee on the approximation factor for a Greedy
algorithm. Finally, we also state some remarks on the extended version of the problem,
and present again some numerical results that might also help to get more insight on
the behavior of the algorithm for this extended version of the problem.

1.1 Problem statement

The first appearance of a puzzle from which originates the Gasoline problem is due to
Lovész (1979) and is presented as follows:

Along a speed track there are some gas stations. The total amount of
gasoline available in them is equal to what our car (which has a very large
tank) needs for going around the track. Prove that there is a gas station
such that if we start there with an empty tank, we shall be able to go around
the track without running out of gasoline.

Kellerer et al. (1998) naturally formulate a general problem from this puzzle. Sup-
pose that each road segment is associated with a positive integer representing the
amount of fuel necessary to travel on the said segment, and that each station can refill
a fixed positive integer amount of gasoline. Let us also assume that there is exactly one
spot for a station between each road segment, and that every spot has to be occupied
by one station. We are allowed to choose the final spot of all stations, and our goal is

1.1. PROBLEM STATEMENT 3

to minimise the size of the gasoline tank of our car so that we can travel through the
speed track without running out of fuel. This problem called the Stock Size problem,
was the first studied (see Section 1.3) after the Lovasz statement cited above.

The problem considerd in this thesis is slightly different and we can use another
simple example to illustrate it. Consider a factory that produces every day goods that
are send in the evening. For one good produced, the factory has to consume one
ingredient. Each morning, the factory has the possibility to order a certain amount of
ingredients. If the factory orders too much, it can store the overload in its stock, and
can use the stored ingredients afterwards. Typically, the stock can be used if the factory
does not order a sufficient amount of ingredients to fulfill the demand of produced
goods on a day. Finally, over a specified period of time, the factory knows for each day
how many goods their customers require, and also knows the different quantities of
ingredients it can order from its suppliers. The goal is then to decide each day which
ingredient order to ask for in order to minimize the span of the stock over the period.
This objective is rather easy to understand : if the span is small, then the factory do not
have to buy or rent a big storage space and will spare money.

Let us define more formally the problem described above. We are given as input
two sequences of positive integers X = {x1,...,x,} and Y ={y1,...,y»} with)/, x; =
Y.i-1Yi.- The order of y; values being fixed, our goal is to find a permutation 7 that
minimises the maximum prefix sum discrepancy n = — a, where

k k-1
D xai = D yi <P for1 <k <n; (1)
i=1 i=1

k k
an(i)—Zina for1 <k <n. 2)
i=1 i=1

For a fixed value of k, we will call the left-hand side expression of (1) a major prefix
sum (and we denote it by Si) and the left-hand-side expression of (2) a minor prefix sum
(denoted by si). We will also denote by u, (respectively u,) the maximum value of
the X (respectively Y) sequence, and define u = max(yy, y,). Observe that u is a lower
bound on the value of . We model this problem with a Mixed Integer Linear Program,
whose definition is presented in Figure 1.1.

This original version of the problem is based on two lists of scalars. One can also
imagine some extension of the problem where vectors in / dimensions are considered,
and a distance function over R¥ is used for the discrepancy objective while keeping
other characteristics of the problem unchanged. We will call this problem the Extended
Gasoline Problem. Of course, defining a MILP for this problem might not be possible
depending on the distance function we will use for the objective, as this objective might
not be expressed as a linear expression. We will mainly consider the case of /; in this
thesis, as it can be easily described in terms of linear expressions and have practical
interpretation. Indeed, if one thinks back to the example of Lovasz, we could consider
a vehicule consuming several types of fuel at the same time, in different quantities on

4 CHAPTER 1. INTRODUCTION

each part of the track. The goal would be then to minimise the total volume of fuel
tanks, which would correspond to using the /1 norm as the objective of the problem.

Let us introduce notations for this extended problem. Now, we specifically denote

by xgp) (respectively yfp)) the p-th coordinate of the i-th value of the sequence X

(respectively Y). Other notations are also adapted when necessary, with the addition
of - P) to indicate the coordinate of the value considered. Furthermore, we will denote
the norm used in the objective by ||-||. The associated MILP is displayed in Figure 1.2.
It can be seen as a repetition of the program of Figure 1.1 on each coordinate, with a
general objective (i.e. an objective encompassing all coordinates).

1.2 Previous results

The main results about the Gasoline problem can be found in Newman et al. (2018).
They prove that the problem is NP-complete with a reduction from the 3-partition
problem. They also present a 2-approximation algorithm operating in two steps,
first computing a specific doubly stochastic matrix presenting a “consecutiveness”
property, and then using a rounding technique to transform the previous matrix into
a permutation matrix. Guarantees arise from ad-hoc arguments based on the specific
structure associated with consecutiveness. This algorithm relies heavily on sorting the
values of the X sequence and cannot be adapted to the extended version of the problem
in a reasonable fashion.

The only previous mention of the generalised problem can be found in Rajkovi¢
(2022). The generalised problem is defined, as well as an Iterative Rounding algorithm
for both 1D and generalized versions of the problem. This algorithm will be studied
later in Chapter 2. No major results are present in the thesis concerning the generalized
problem, but 2 conjectures that we will examine are stated.

min -« s.t. 3)
n k k-1
inzi,-—Zyiéﬁ forl<k<n (4)
=1 i=1 i=1
n k k
inzi]._zyiza forl<k<n (5)
=1 i=1 i=1
zZ1<1 (©6)
1Tz <17 ()
zjj € {0,1} for1<i,j<n 8)
a,B R ©)

Figure 1.1: MILP formulation for the Gasoline problem

1.3. RELATED WORK 5

min || — a1 s.t.

n k k-1

Z xz(.p)zij—nyp) <pW¥ for1<k<n,Vp<I
j=1i=1 i=1

n k k

Z xgp)zij —Zyﬁp) > alP) for1<k<n,Vp<I
j=1i=1 i=1
Z1<1
1"z <17
zij € {0,1} forl1<i,j<n
a,peR!

Figure 1.2: MILP formulation for the Generalised Gasoline Problem

Conjecture 1.2.1 (Rajkovi¢ 2022, Conjecture 1). The Iterative Rounding algorithm has an
approximation ratio of 2.

Conjecture 1.2.2 (Rajkovi¢ 2022, Conjecture 3). The Multidimensional Iterative Rounding
algorithm has an approximation ratio of 2.

Those conjectures are supported by numerical experiments that were performed
in order to describe the average behavior of the algorithm on randomly constructed
instances of the gasoline problem in 1D and 2D cases. The study of the previous
conjectures is the main motivation of this thesis, especially because no approximation
algorithm is known for the extended version of the Gasoline problem. Moreover, little
to no research has been conducted on the “bad instances” of the Gasoline problem,
and finding constructions of instances for which an interesting lower bound on the
approximation ratio of the Iterative Rounding algorithm is reached would be the first
step to understand better which kind of instance is difficult to optimise on.

1.3 Related work

The Gasoline problem is closely related to the combinatorial discrepancy problems. In
those kind of problems, a ground set of vectors E € R" is given, and we consider a set of
subsets of E, denoted by S. The goal is to assign each vector v € E a sign c(v) € {-1,1}
(i.e. find a two coloring of E) so that the quantity

Zc(v)v

vES

disc(c) = max

is minimized, with ||-|| being a norm over R9. The first formal definition of this class
of problems is found in Matousek (1999), but some problems contained in this class

6 CHAPTER 1. INTRODUCTION

were studied well before. Main works of this field are focusing on results concerning
the maximal discrepancy of the system considered, rather than on computing the
actual discrepancy of a given system. The proofs associated are for the majority non
constructive, like with the “partial coloring” technique, a widespread technique in the
tield of discrepancy theory. One example of a major result in discrepancy is the Beck-
Fiala theorem that can be found in Beck et al. (1981). This paper deals with the case
where each element of the ground set is at most present ¢ times throughout the sets of
S. Under this constraint, the discrepancy of unitary vectors can be bounded by 2¢ —1.
Another well known result is stated in Spencer (1985) and gives a bound of discrepancy
on systems where the number 7 of sets considered equals the number of elements of
the ground set. In this case, the bound is in O (y/n). The discrepancy theory is a rich
domain with extended research on some sub-problems, and has applications in either
very specific topics like numerical integration or random trial formulation but also
in more widespread subjects like theoretical results about the Divide-and-Conquer
algorithm.

When we consider Sy = {S; | Si = {vnq1),-..,Vn@)},1 <1 < |E|} for some permutation
11, we then obtain a "dual" problem of the Gasoline problem: instead of trying to find a
permutation minimizing the discrepancy of prefix sums while the sign of each vector
is fixed, the goal is to find the optimal sign assignment for a specific permutation.
This problem has been named the Prefix Discrepancy problem and was introduced by

Spencer (1977). Banaszczyk (2012) gives a O (\/log(d) + log(n)) bound for the maximal

discrepancy of unit vectors, where d is the dimension of the vectors and n the length
of the sequence of vectors. The problem is also generalised in Bansal et al. (2022) to
prefixes in a directed acyclic graph and some negative results are also given.

Some work concerning the related problems of the Stock Size problem and the
Alternating Stock size problem can also be found in the literature. As stated before,
Kellerer et al. (1998) studied the Stock Size problem and proved it to be NP-hard. They
describe some approximation algorithms to solve the problem, ranging from a simple
sequencing-based 2 approximation to a more involved algorithm resorting to a dual bin
packing approach resulting in a 3 approximation factor. The alternating version of the
problem is first defined in Newman et al. (2018). They prove that it is also NP-hard and
give 2 approximation algorithms for this problem, one involving a pairing procedure
yielding an approximation factor of 2, and present a more involved algorithm whose
approximation factor is 1.79.

9
Iterative Rounding algorithm

2.1 Definition and remarks

The Iterative Rounding algorithm that we will study in this section is related, in a
way, to classical Iterative rounding procedures. The algorithms of this type are based
on linear relaxation of integer linear programs. Such a relaxation is computed at each
iteration, and either a rounding on variables that are close to be integer is performed, or
some constraints that are only slightly violated are relaxed. Some argument depending
on the studied problem and classical linear programming results ensures that those
operations can be applied at each iteration. This framework can be applied to a wide
range of different combinatorial problems, and can be used to provide efficient and
elegant approximation algorithms for a lot of NP-hard problems. For a deeper analysis
of this technique see Lau et al. (2011).

In our case, the general process of the algorithm is somewhat different. We will
heavily rely on the linear relaxation of our MILP defined in Figure 1.1, like for classical
Iterative Rounding algorithms. However, the considered algorithm solve multiple
linear programs fixing one value z;; at a time to 1, and keeps for this iteration the
added constraint that yielded the best value for its iteration.

The intuitive goal of this algorithm lies in a balance between preventing an im-
mediate degradation in the value of the computed solution and preventing a future
degradation. To do so, at some step i the relaxed LP is used to detect whether a possible
choice at step i will provoke a big deterioration in the value of the solution in the
future steps. For instance, it could be possible that incoming Y values sum to a large
value, and it might be better to choose at step i a smaller X value so that afterwards,
the biggest X values are available to prevent the prefix sums from becoming too low
and increasing the value of the approximated solution. In that sense, Algorithm 1 is
an improved version of the basic greedy algorithm: it will as well prevent choosing a
trivially bad value (i.e. a one that will increase directly the value of the partial solution
because either S; or s; is becoming the new maximal (respectively minimal) prefix
sum), but will also prevent choosing a value that will not worsen directly the solution,
but would provoke a big increase afterwards, whatever the future choice would be.

8 CHAPTER 2. ITERATIVE ROUNDING ALGORITHM

Algorithm 1 : Iterative Rounding
I<—{1,...,n}
LP « LP*
forj=1ton do
optValue = +o0
5: optIndex = -1
foriecldo
NewLP < LP +"z; j =1"
value « optimal value of NewLP
if value < optValue then
10: optValue < value
optIndex « icity
end if
end for
LP «— LP + ”Zoptlndex,j =1"
15: I < I\{optIndex}
end for

2.2 Comparison to the Greedy algorithm

The structure of the Iterative Rounding algorithm seems very close to a Greedy al-
gorithm (some pseudo-code describing this algorithm is presented in Algorithm 2).
Indeed, at each step, the Iterative Rounding algorithm chooses a value for the next
unfilled slot of the solution, based on the previous choices he made and the remaining
values. In that regard, it shares with the Greedy algorithm the property that it tries
to avoid immediate losses in the value of the computed solution. Indeed, this is not
sufficient to obtain an algorithm with a bounded approximation ratio. Consider the
next instance

X=1{2,...,2,1,...,1,0,...,0},
— ——
% times J times § times

Y={2,0,...,2,0,2,...,2,0,...,0}.
—_——— —— ~——
7 times % times I times
By placing first all 1 values, then all 2 values and finally all 0 values, one can verify
that this instance has an optimal value of 2. But the greedy algorithm will place all 2
and 0 values (by alternating them) first, before placing the remaining 1 values. It is also
easy to see that this solution will create a value of 7, thus producing an approximation

factor of % —— +00.
n—+oo

The increase in complexity of the Iterative Rounding procedure is then necessary:
future consequences are to be assessed if the algorithm is to produce good solutions,
even on pathological instances. This is the role of the LP relaxation used in the Iterative
rounding, as explained in the previous section.

2.3. NUMERICAL EXPERIMENTS 9

Algorithm 2 : Greedy algorithm
s<«—0
foriinl,...,n do
Choose an available value v of X so that |s +v—y;| is
minimised fo slot i
Make v unavailable
5: end for

2.3 Numerical experiments

To get a first idea of the behavior of the algorithm and further understanding what type
of instance can be hard to solve, some numerical experiments were conducted. Those
experiments consist in solving both exactly and with the approximation algorithm
some randomly-generated instances and compute the ratio between the optimal and
approximated values. There are two different goals for this type of experiment. First,
we want to compute some experimental lower bound on the approximation ratio, to
give us insight on the best approximation ratio possible for the algorithm. On top
of that, finding such lower bound means that we also get the instance achieving this
ratio and both optimal and approximated solution for this specific instance. With this,
observations on several results can lead us to conjecture some results before proving it.
It appears that this technique lead to find the lower bound proved in Proposition 3.1.1.

2.3.1 General behavior

As a first step, some of the experiments of Rajkovi¢ (2022) were reproduced. In
particular, we compute mean and maximal approximation ratio of some randomly
generated instances in order to check that the results of Rajkovi¢ (2022) and to confirm
some intuition on the behavior of the algorithm. To do so, we generate instances by
using a simple procedure. The size of the sequence X and Y is fixed, and the sequences
are initialized with zeroes. Then, we will repeat some simple random modification
k times in order to generate the final instance. This modification consist in drawing
uniformly one value of each of the sequence, and choose with probability 3 to either
increment both values or decrement them. By doing so, we end up with two sequences
of integers that each sums to the same value. If one value in either sequence is negative,
we begin again the process until we end up with some valid instance.

Those results are displayed in Table 2.1a. We used the same conditions as in the
original thesis, namely using Python3 as our coding language and using Gurobi as
a MILP solver. Furthermore, for each size of the instance n (i.e. the size of the X
sequence) we used N = 10000 instances. The results we obtain are similar to those
presented in Rajkovi¢ (2022), and confirms that it is difficult to obtain instances with
an approximation ratio above around 1.7 using local search and small instances. In
particular, we also observe that the approximation ratio does not significantly increase
with the size of the instance when the values are also bounded. This might indicate

10 CHAPTER 2. ITERATIVE ROUNDING ALGORITHM

Max Mean o % of non-optimal

5 15 1.036 0.006 6.77
10 1.667 1.085 0.011 1830
15 1.667 1100 0.012 206
20 1667 1111 0013 2489

(a) Slot Ordered algorithm

Max Mean o0 % of non-optimal

5 15 1.033 0.005 5.81
10 1667 1.085 0.011 1936
15 1667 1116 0.015 2832
20 1.667 1135 0016 33.06

(b) Value Ordered algorithm
Table 2.1: Results of random generation of instances experiments

that varying one parameter at a time light not be sufficient. As a small remark, one can
think about modifying the Iterative Rounding algorithm so that instead of choosing
iteratively which value will be placed in a specific slot (we call this algorithm “Slot
Ordered”), the algorithm (called “Value Ordered”) chooses first where the first value
will be placed, then the second value, etc. As one can see in Table 2.1b, there is no
real difference with the original Iterative Rounding algorithm, which lead us not to
consider only the Slot ordered version for the rest of this thesis.

2.3.2 Local Search

In order to reach the best lower bound possible, we considered a second type of
experiment. Some local search has been used to improve iteratively our results. Local
searches are mainly used in optimisation problems when the search space has some
structure. Indeed, this type of searches relies on the idea that the value of solutions has
some continuous property, and thus that making step by step local improvement leads
in the end to reaching a (local) optimum. This type of search is easy to implement and
can be adapted to a lot of different contexts, including our problem. The algorithm used
for our local search is displayed in Algorithm 3 and consists in the following: at each
step a current best instance is maintained, and modified slightly with some random
noise. We obtain then a new instance that we can solve both optimally and with the
Iterative Rounding algorithm. We compute then its approximation ratio, and if it is
greater than the current best, the current best instance is updated by replacing it with
the modified instance. The noise used in line 7 to modify the instance is produced with

2.3. NUMERICAL EXPERIMENTS 11

Algorithm 3 : Local search of a bad instance

Generate a random instance [
Compute the approximation ratio p hit by instance I
currentInstance « I
currentRatio « p
5 1«1
while i < N do
Modify randomly I to obtain a new instance I’
Compute the approximation ratio p” hit by I’
if p’ > p then
10: currentInstance « I’
currentRatio « p’
end if
i—i+1
end while
15: return currentInstance

the exact same process that was used previously to generate new instances randomly.
Of course, whenever we generate and apply a noise that creates a negative value in one
of the two sequence of the modified instance, we discard the change and generate new
noises until the modified instance is valid.

Before presenting and commenting the results of the experiments, let us highlight
that the behavior of the algorithm can vary greatly on two neighboring instances,
meaning that the local search might not be as efficient as for other classical problems it
is used for. Indeed, let us consider the next instance (X,Y’) defined as follows

X =112,10,1,1,12,19, 18, 30, 22, 26, 30, 29, 30, 29, 0];
Y =121, 25,15,17,8, 10, 6, 3,11, 21, 26, 26, 29, 27, 24].

Consider also a slightly modified instance (X’,Y”) defined as follows (modified values
are in bold)

X’'=[12,10,1,1,12,19,17, 30, 22, 26, 30, 29, 30, 29, 0];
Y’ =121,25,15,17,8,10, 6, 3,11, 20, 26, 26, 29, 27, 24].

As one can remark, those two instances varies only from a small amount: only one
value in each sequence is decremented by one. Intuitively, one might think that the
approximation algorithm should have the same behavior for the two instances, or at
least that the differences should not be too important, since the instances are very
similar to each other. Figure 2.1 shows on the contrary that the behavior of the Iterative
Rounding is visibly different between the two instances. For each instance, the red plot
correspond to the optimal solution, and the blue one to the solution produced by the
Iterative Rounding algorithm. If the optimal solution seems almost identical for both
instances, the approximated solution is on the contrary quite different: for the (X,Y)

12 CHAPTER 2. ITERATIVE ROUNDING ALGORITHM

0 5 10 15 20 25 30 0 5 10 15 20 25 30
(a) Instance (X, Y) (b) Instance (X’,Y”)

Figure 2.1: Comparison of the behavior of Algorithm 1 on two close instances

instance, the value of the solution is 56, but for the (X’,Y’) instance the value is 46. This
lead do a decrease of the approximation ratio from 1.86 to 1.57.

This example shows that the “neighborhood” of one instance can present quite large
variation of approximation ratio. From this observation, one can then understand that
the Local search can become inefficient as we reach higher approximation ratio: some
neighbors of the current best instance will have a smaller approximation ratio, slowing
down the whole search process and preventing it from reaching a local optimum value
close to the global one in a reasonable time. Nevertheless, our Local Search algorithm
managed to compute better lower bounds than the best one given in Rajkovié¢ (2022),
and those are presented in Figure 2.2.

Each instance found thanks to the Local Search algorithm shares some common
properties, that seems to be creating the large gap between the optimal solution and
the approximated solution. First, each instance contains in the X sequence a 0 value.
If we observe the optimal solution of each of those instances, the 0 value tends to be
placed in the very first slots of the solution. On the contrary, the 0 value is rather
located in the last slots of the approximated value. In general, the Y sequence contains
also substantially higher values in the end of the sequence, compared with the other Y
values. This has a consequence on the general outline of the approximated solutions:
one can notice that, before the 0 is reached in the permutation computed by the Iterative
Rounding algorithm, the value of the different S; prefix sums gets quite high, with a
peak just before reaching the 0 value. This peak is seemingly what is causing the
high approximation ratio hit by those type of instance. Those observations reveal
some intuition on the type of instance for which the Iterative Rounding algorithm is
not performing well, and lead ultimately to the proof of Proposition 3.1.1 in the next
section.

2.3. NUMERICAL EXPERIMENTS

13

Example Sequence Values

X [3,5,7,0,8,12,13, 12, 13]
Small Instance

Y [5,9,311,9,11,9, 13, 3]

_ X [6,14,6,0,8,10,15,7,10, 8,10, 14, 14, 11, 15]

Medium Instance

Y [6,11,3,15,6,12,6,12,2,14,10,13, 12, 15, 11]
X [13,14,7,0,7,9,17,8,5,3,6,17,14, 11, 10, 23,

' 22,22,22,21,21]

Big Instance

Yy [6,17,3,13,7,13,11,12,4,11, 12,10, 13, 14, 9,

18, 18, 20, 20, 22, 19]

Table 2.2: Instances obtained by using Algorithm 3

0 5 10 15 20 25 30

(a) Small instance, ratio = 1.69 (b) Medium instance, ratio = 1.80

10 20 30 40

(c) Big instance, ratio = 1.83

Figure 2.2: Graphical representation of instances obtained by using Algorithm 3

14 CHAPTER 2. ITERATIVE ROUNDING ALGORITHM

151 o

0.5 1

0

0 2 4 6 8 10

Figure 2.3: Values of the highest approximation ratio found by Local Search for the
several number of dimensions

2.3.3 Generalised problem

Finally, some experiments were conducted in order to assess the behavior of the al-
gorithm on the generalised problem, especially for high dimensions. The goal was
to support Conjecture 1.2.2 by trying to find the worst possible instances for a given
dimension of the problem and see whether those bad instances could yield an ap-
proximation ratio greater than 2. We adapted the Local Search algorithm presented
previously and used it to generate bad instances. In order to keep the execution time
reasonable, we performed 5000 iterations of the Local search on randomly generated
instances of size 10 (i.e. with 10 entries in each sequence X and Y) for each dimension
from 2 to 10. Results are displayed in Figure 2.3. One can notice that the maximum
approximation ratios obtained for the several dimensions tested are quite close one to
another, but seem to be decreasing for increasing dimension. This tends to confirm
the conjecture previously cited, as finding bad instances randomly seems not to be
easier when several dimensions are considered instead of only one. Yet, one could also
argue that augmenting the dimension of the problem is also augmenting drastically
the combinatorial complexity, and so it might be necessary to also augment the number
of iteration of the Local Search in order to obtain similar results.

One must still mitigate the previous claim concerning the behavior of the algorithm.
Indeed, the new structure induced by considering several dimensions might enable
new behaviors that we could not directly spot during the Local Search procedure. It
requires some more investigations that go beyond the scope of this thesis, but this is
a natural followup to the work presented here. In particular, determine whether the
2D case is behaving in a similar way as the 1D case in terms of approximation could
already be very instructive on this question.

3
Approximation results

This chapter will present all the original results of the thesis. The main result concern-
ing the lower bound on the approximation ratio of the Iterative Rounding algorithm
for the 1D case will be presented first. Then, the presentation of an upper bound
result for a restricted case or the problem will be given. The chapter ends with a quick
commentary on results for the Generalised version of the problem.

3.1 One dimension version

3.1.1 Lower bound

In this section, we introduce a construction of instances for the Gasoline Problem for
which the approximation ratio of the Iterative Rounding algorithm is arbitrarily close
to 2, proving the next proposition.

Proposition 3.1.1. The Iterative Rounding algorithm has an approximation ratio greater or
equal than 2.

To construct such an instance, let us define a specific type of instances for which the
behavior of Iterative Rounding is easily described.

Definition 3.1.1. Let n be an non-negative integer. An instance (X,Y) of the Gasoline
Problem is called an n-staircase instance if there exists a finite sequence of non-negative
integers (a;)o<i<k So that

X =(ay,...,ax,n,...,n,0),

N———
n—1 times
Y =(ag,...,ax,n—-1,...,n-1),
————
n times

VO<i<k,a;<n-1.

This type of instance is defined with two different blocks. In the first one, the same
values are present in X and in Y while in the second, that we will call the staircase block,

16 CHAPTER 3. APPROXIMATION RESULTS

values and their number of occurrences are chosen so that the only value present in
the Y sequence is n —1, a single 0 is present in the X sequence, and X and Y still sum
to the same value. This construction is motivated by the observations of the previous
section. Indeed, one 0 value is present in the X sequence, and the biggest values of the
Y sequence are placed at the very end of it. Observe that because of the third property
of n-staircase instances, u = n is a lower bound on the optimal value of those instances.
The next proposition gives some insight on the behavior of the Iterative Rounding
algorithm on those instances.

Proposition 3.1.2. Let n be a non-negative integer. The Iterative Rounding algorithm always
yields a solution of value at least 2(n — 1) for any n-staircase instance of the Gasoline Problem.

Recall that the Iterative Rounding algorithm uses the relaxed version of the MILP
defined in Figure 1.1 whose feasible solutions are doubly stochastic matrices. Fur-
thermore, we also recall that y, = max(Y) is a lower bound of the optimal solution of
the linear relaxation of the MILP. To prove Proposition 3.1.2, we provide an optimal
solution to the relaxed MILP, and argue that this prevents the algorithm from placing
the 0 value of the n-staircase instance before the staircase block.

Proof. Let n be a non-negative integer, and (X,Y) a n-staircase instance, i.e.

X =(ag,...,ax,n,...,n,0)and Y = (ag,...,ax,n-1,...,n—1).
S—— —
n—1 times n times

Let us consider the following block matrix

1 -~ 1

M = e 10 where [, =|: .. !]isannXn matrix.
Ol 1 1

This matrix is clearly doubly stochastic, so it is a solution of the relaxed MILP
formulation of the Gasoline problem. Let us show that this solution has a value of
n—1= uy, and thus is optimal for this relaxed MILP. First, if 0 < I < k, we have that

S; = Z}zoaj—Z“;;éaj =q<n-1 Ifk<IlI<k+n-1, then §; = Z;=k+1zf:]:‘;12%><n—

Z;;lk n—1=mn—1. Furthermore, we have for all [that s; = 0, and this instance is then of
value n —1.

By recurrence, let us prove that the algorithm sets the value a; at the i-th slot for
0<i<k-1. For i =0, the first constraint considered is “zp0 = 1”. When it is added
to our MILP, M remains a feasible solution, and thus the value associated with ag for
this iteration is minimum. Because the algorithm picks the first X-value yielding the
minimum solution-value, ap will be chosen at this iteration. Let us suppose next that
the first i values have been already chosen during the i first iterations of the algorithm.
On the (i + 1)-th iteration, the first unchosen value is then a;,1. When we consider
this value at current iteration, the MILP is appended with constraints “z;; = 1” for

3.1. ONE DIMENSION VERSION 17

0<j<i+1. M is still a feasible solution for this MILP, so for the same reasons the
algorithm will choose the value 4,41 at this iteration.

Observe that the previous statement implies that the value 0 is never placed during
the first k iterations. This means that it will be placed between two n —1 values of the
Y sequence. This ensures that the value of the solution obtained is of value at least
2(n—1). O

The previous proposition describes the behavior of the Iterative Rounding algo-
rithm, but gives no insight on the optimal value of the n-staircase instances. Consider
the next example

X=(mn,n,...,n0), Y=mn-1,---,n-1)

for n a non negative integer. Indeed, this instance is n-staircase with an empty first
block. Its optimal value is clearly 2(n — 1) and the Iterative Rounding algorithm would
yield an optimal solution for this instance. We thus have to consider n-staircase
instances with low optimal value. We define a new tool that will be used to describe
such an instance.

Definition 3.1.2. Given a fixed sequence of positive integers Y = (yo,...,y1) and n a non-
negative integer, we say that a sequence of positive integers X = (xo,...,x;) forms an n-valid
pattern if

I I
i) Z Xi = Z Yi;
i=0 =

o

=
—_

ii) xi—) yi<nfor0<k<[;

iii) Xi—

M- 1D

I
o

M~ L[]

I
o

yi=0for0<k<I-1

1 1

Valid patterns, similarly to batches in Kellerer et al. (1998), can be seen as compo-
nents of “good” solutions to an instance: consider Yy, ..., Yj-1 sequences of numbers,
and let us denote Y the concatenation of those sequences. If X can be partitioned
(without keeping order) into j sequences X, ..., Xj-1 so that each (Xi,Y;) is forming an
n-valid pattern, then the optimal solution of the instance (X, Y) has a value at most 7.

We will next construct an n-staircase instance which can be decomposed into 7-
valid patterns. This will ensure that the instance has an optimal value sufficiently
low to prove Proposition 3.1.1. This instance is composed of regular patterns whose
components are linked by a simple recurring formula.

18 CHAPTER 3. APPROXIMATION RESULTS

Proposition 3.1.3. Let k be a non-negative integer and (u;)o<i<k be a non-constant sequence
of positive integers. The following statements are equivalent

i) The patterns P; = (2%, u;), (i1, uiv1)) for 0 < i < k are 2%-valid;
i) u; =2K1-2"") forall0 <i<k.

Proof. Suppose i). Then, forall 0 <i <k, 2k u; =2ui,1. We recognise an arithmetico-
geometric sequence of the form ;1 = au; +b with a = % and b = 251, The closed form
formula for u; is then

b
1-a” 1-a
=27 (g —25) + 2%,

i =a'(ug— ——)+

The first major prefix sum of a 2k_valid pattern for Py then gives the constraint 1y < 2k
and because all u; must be integers, we have in particular for i = k that ug — 2% = 2kp
with p an integer. We deduce from those two observations that ug =0 or ug = 2k,
Becausekthe sequence (u;) is not constant, 19 = 0 and the general term of the sequence
isu; =25(1-271).

Now, suppose ii). For 0 <i < k, we have u; = 2k _2k=i 55 all u; are positive integer.
Furthermore, (1;) is clearly non-constant, and by construction of the sequence in the
tirst part of the proof, 2K 4y = 2ui. Finally, let us consider a pattern P; for some
0<i<k. Wehave

2k 4120 because (1;) is increasing and uy = 2k_1;

2k i +u; < 2K because (1;) is increasing.

This means that all prefix conditions are respected, and that all P; are 2k.valid. O

An example of the previously defined patterns is represented in Figure 3.1. The
patterns P; are exactly the components that we will use to build the instance in the
proof of Proposition 3.1.1.

Proof of Proposition 3.1.1. Let k be a non-negative integer and u; = 2K(1-277) for all
0 <i < k. Consider the following instance

k k .
X :(ullul /uZ/-"/u2/~-'/uk—1/'-'/uk—1/2 /"~/2 /uO)/

—_—— ——— —_———— ——
21 times 22 times 2k-1 times 2k—1 times

Y = (u].lu]. IuZI"'IuZI'"Iuk—ll"'luk—llukl"'Iuk)'
—_—— ———— —_— ——
21 times 22 times 2k=1 times 2k times

Recall that g =0, ux =2¥—1,and u; > 0so by definition (X,Y)isa 2k_staircase instance.
By Proposition 3.1.2, the Iterative Rounding algorithm outputs a solution of value at
least 2(2F — 1) when run on the instance (X, Y).

3.1. ONE DIMENSION VERSION 19

15 |

10 |

0

0
Figure 3.1: Patterns Py and P; for k =4

Consider now the following partition (considering order) Y = (Y3,...,Yx) with Y; =
(4i,...,u;). BachY; can then also be decomposed in 2’ —1 couples Y;; = (u;,u;) for
N—
2 times
1<j <21 Letus define a partition of X (without considering order) in the following
way

X = U X = (25 u;-1).
1<i<k
1<j<2i1

First, let us argue that the X; ; form actually a partition of X. For each 1 <i < k the
211 gets Xi,;j are identical, formed of one 2k value and one u;_; value. Each u; is then

present 2 times exactly and each 2 is present Z;‘:l 2i=1 =2k _1 times exactly in this
union, so the X; ; are effectively a partition of X.

Then, observe the patterns (X;,Y;;) for 1 <j < 2171 are equal to the P; pattern
of Proposition 3.1.3. By the same proposition, because of the definition of (u;), the
patterns P; are 2F-valid. This means that we found a decomposition into 2*-valid
patterns of the instance (X,Y), and its optimal value is at most 2¥. Because u = 2F for
this instance, the optimal value of (X,Y) is exactly 2¥. The approximation ratio of the

kZ
Iterative Rounding algorithm on this instance is then ry > 2(22k D2 O

k—+o0

As a side note, for some fixed k the instance (X,Y) is following the behaviors
we identified in Section 2.3.2. Indeed, there is always one 0 value in X, and it is
always placed at position 2 for the optimal solution and at the last position for the
approximated one. Also, the biggest values of the Y sequence are located at the end of
the sequence, and they represent almost half of the sequence. One complete graphical
representation of the optimal and approximated solutions for the value k = 3 is given
in Figure 3.2.

20 CHAPTER 3. APPROXIMATION RESULTS

Figure 3.2: Optimal and approximated solutions for the instance (X,Y) and k =3

Proposition 3.1.1 implies that The Iterative Rounding algorithm will not improve
on the algorithm described in Newman et al. (2018). Yet, it is still interesting to study
it because of two main reasons. First, the algorithm is significantly simpler than the
current 2-approximation algorithm known. Indeed, the procedure used in Newman
et al. (2018) is quite involved, and the rounding technique described is somewhat not
intuitive to implement, because of its complexity. Furthermore, this algorithm cannot
be extended easily to the extended version of the Gasoline problem. As explained in
Section 1.2, the known approximation algorithm relies heavily on sorting the X values,
and this could be difficult to adapt for the case were we consider vectors instead of
plain scalars. On the contrary, Algorithm 1 can be easily adapted to deal with vectors
instead of scalars.

3.1.2 Upper bound for the {1, K} subcase

To study the upper bound of the approximation ratio of our algorithm, let us consider a
simpler subproblem. In the latter, the X sequence has values in {1, K} with K > 1. This
means that the permutation we want to find is equivalent to choosing where to place
the 1 values. We also slightly restrict the values of the Y sequence so that its values are
all positive. We call this restricted problem the {1, K}-Gasoline Problem. Interestingly,
we prove for this subproblem that the greedy algorithm achieves a 2 approximation
ratio.

Proposition 3.1.4. Algorithm 4 is a 2-approximation for the {1, K}-Gasoline Problem.

The Iterative Rounding can be considered as an improved Greedy algorithm, we
thus conjecture that the same type of result apply for the Iterative Rounding (Note that
the next conjecture is of course included in the strongest Conjecture 1.2.1).

1. ONE DIMENSION VERSION 21

Algorithm 4 : Greedy algorithm for the {1, K}-Gasoline Problem

s—0
i<—0
while there is both 1 and K values available in X do
if s <0 then
5: Choose value K for x;
s«—s+K-y;
else
Choose value 1 for x;
s—s+1-y;
10: end if
i—i+1
end while

forke{i,...,n} do
Choose remaining value for xj
15:_end for

Conjecture 3.1.1. Algorithm 1 is a 2-approximation for the {1, K}-Gasoline Problem.

To prove the previous proposition, we will use a more elaborated lower bound on
the optimum. We will denote it v, and we define it as follows

V=, e (Z% 0=k

b—a<#K

Lemma 3.1.1. The value v is a lower bound on the optimal value of any instance of the
{1, K}-Gasoline Problem.

Proof. Consider the two indices a and b for which the maximum is obtained in the
definition of v, and an optimal permutation 7t*. By definition of the optimum value,
we have

b

OPT > S, —sb—Zyl Z X7+(i)

i=a i=

>Z:yZ ZK—V |

i=a+1

This lower bound encompasses the p lower bound we previously considered. In-
deed, if yx is the maximum value of the Y sequence we obtain u = y; = Z;‘zk yi— (k-
k)K < v. It is more precise because it can handle cases where some part of the Y se-
quence is significantly more "dense" than the X sequence can be, inducing a mandatory
increase in the optimal value of the instance.

Consider j the minimal index for which the sequence output by the greedy algo-
rithm is constant. The step j of the Greedy algorithm is thus the moment of the last

22 CHAPTER 3. APPROXIMATION RESULTS

"real" decision made by the algorithm, because only one type of value in X is still
available in further steps. This remark defines two different phases in the execution of
the algorithm: first decisions can be made, and after the step j no decisions are really
done. We will bound the values a and for both phases, ensuring that the Greedy
algorithm has a approximation factor of 2.

Proof of Proposition 3.1.4. Letus consider an instance (X, Y) of the {1, K}-Gasoline Prob-
lem, and denote by (x?)1<i<x the X sequence after applying the permutation computed
by the Greedy algorithm on (X,Y). Let be j the minimal index for which (x);<i<n is
constant. Consider also a non-negative index i < j contained in the first phase where
both 1 and K values are available to choose.

By the definition of the algorithm, if s;,_; < 0, the algorithm will choose to assign a
K value for x7. This means that §; = s;_1 +x; < K < p. Consider now the maximal index

p < i so that s, is non-negative (exists because so = 0). We have then s, —s; = Z};:p Yk —

X, < Z;@P yx—(i—p+1)K < v. This means, because s, is supposed non negative, that
S;i = —V.
If s;_1 > 0, the algorithm will assign the value 1 to x;. Then, we have

si=si1+1-y; <siq. (1)

Consider the minimal index p <i so that s, > 0 (remark that p > 1 because sy = 0).
Then, by definition sp—1 < 0 and x;, = K. We thus obtain s, = s,-1+K—-y, <p—1and
using Equation (1) recursively, sy < u—1 for all p < k <i and in particularly, s; < pu—1
ie. S; < u. Finally, we have s; =s;_1 +1—y; > —y; > —u. This means that for all i <j,
we have S; <v <OPT and s; > —v > —OPT.

Now, let us tackle the phase when only one type of values is still available in X.
Suppose that the type of remaining values is 1. Then, we clearly have that (s¢);j<k<n
is decreasing and sy < p—1 for all k > j, i.e. Sy < p. Furthermore, for all j <k <,
sk > s, = 0. Consider now the type of remaining values to be K. First, let p be the index
so that s, = minj<x<u(sx). By considering again a maximal index k < p with s; > 0, we
obtain that sy > —v. Now, let us consider g > j the index so that S; = max;j<x<u(Sk)
and k > j the minimal index so that s; < 0 (exists because s, = 0). We have then that
Sqg—sk = Zf:q yi—K(k—q) <v,s0S; <v. Finally, for this second phase we have for all
i>j,S <v<OPTands; >—-v >OPT. This means that for all i <n, S; < OPT and
s;i 2 —OPT, so we also obtain Bgreedy < OPT and aGreedy = —OPT. We can thus conclude
that ﬁGreedy — QGreedy < 20PT. O

This result is also interesting to understand further from where the complexity of
the Gasoline Problem arises. As stated before, the Greedy algorithm can be arbitrarily
bad for approximating the unrestricted problem, even if we consider only 3 values
instead of 2 for the X sequence. There is thus a real change in the complexity of the
problem when restricted to this version.

3.2. GENERALISED VERSION 23

3.2 Generalised version

This section will quickly describe the results that can be stated for the generalised
version of the problem. As the workload of the thesis has been mostly focused towards
finding results for the 1D case first, the majority of the results of this section derives
from results stated in the previous section.

Concerning the lower bound on the approximation ratio of the Iterative Rounding
algorithm, a simple argument can be used to prove the next proposition based on the
instances described to prove Proposition 3.1.1.

Proposition 3.2.1. The Iterative Rounding algorithm for the Generalized Gasoline problem
has an approximation ratio greater or equal than 2.

For a recall, the notation xgl) is still used to denote the I-th coordinate of the i-th
element of the sequence X, and is adapted to other sequences of numbers.

Proof. Consider a dimension m € N for the values of X and Y, and let k be a positive
integer. Consider the following instance

0 xrifl=1,
X. =
! 0 otherwise;

0 _ y;ifl=1,

Yi o otherwise;

with (x7); and (y;); being the sequences of the instance (X,Y) defined in the proof of
Proposition 3.1.1 for the value k. The analysis performed in that proof is also applicable
on this one for the first dimension of the x; and y; values. Furthermore, because all
other values are equal to 0, only the first dimension contribute to the increases in the
objective value, thus ensuring that the approximation ratio of this instance is the same
as the approximation ratio of the instance (X, Y) for the 1D version of the problem. 0O

Considering the conclusions of the experiments made for the high dimension ver-
sions of the problem that confirms Conjecture 1.2.2, one can imagine that this instance
is also sufficient to tighten the approximation factor if the conjecture holds.

No specific result on the upper bound for the Generalised Gasoline problem have
been looked for, since no results in the general case for the 1D Gasoline problem were
proved. Indeed, the behavior of the objective seems to be quite different both for /p and
[1 norms. In the first case, we consider only the max stock value of any dimension and
the minimum stock value also for any, which means those extrema can be obtained for
two different dimensions of the problem, and thus the analysis of the approximation
guarantees cannot be directly applied. This is the same for the /> norm, for which we
sum the discrepancy on each dimension, which differs even more from the objective
used in the 1D version of the problem.

4

Conclusion

In this thesis, some approximation algorithms have been studied to understand their
behavior for several variants of the so called Gasoline problem. After defining those
variants, namely the “plain” Gasoline problem, the {1, K} subcase and the Generalised
Gasoline problem, we described a new heuristic called Iterative Rounding algorithm to
tackle those problem. Its definition is simpler than the currently known best approxi-
mation algorithm for the Gasoline problem, and the Iterative Rounding algorithm can
also be applied to the generalised version of the problem unlike the latter.

For understanding better the behavior of the algorithm and try to gain insight on
a possible analysis of its approximation guarantees, experiments were conducted to
design bad instances in term of approximation gap yielded by the Iterative Rounding.
Confirming previous conjectures on this algorithm claiming that its approximation fac-
tor is 2, a Local Search technique produced random instances hitting an approximation
factor around 1.9. After observing the instances obtained through those experiments,
a construction of a family of instances for the “plain” version has been described,
yielding the negative result that the Iterative Rounding could not have a lower approx-
imation factor than 2. On the positive side, some guarantee for the Greedy algorithm
was proven for the {1, K} subcase. Finally, some results on the generalised version of
the problem are deduced from the work on the “plain” version.

Some clear followups to this thesis can be identified. Indeed, the mostimportant one
is to prove some guarantee on the Iterative Rounding algorithm. The {1, K} subcase
seems promising, as a part of the proof presented for the Greedy algorithm might
be reused for the Iterative Rounding. Other interesting questions can be formulated
after the work presented in the thesis. For instance, it could be interesting to find
other subcases of the Gasoline problem that can be approximated with a constant
factor, like for the {1,K} variation. The same question can also be generalised to the
multidimensional version of the problem. One last question deals with the lower
bound instances for the generalised Gasoline problem. As stated during the thesis, the
change of structure in the definition of the problem might allow to find new instances
that could yield approximation factors greater than 2, despite the experiments results
that tends to indicate that the Iterative Rounding keeps for the generalised version of
the problem the same general behavior and approximation factor than for the “plain”

26 CHAPTER 4. CONCLUSION

version. Indeed, tweaking the Iterative Rounding to get better approximation could
also be imagined. The lower bound instances described in this thesis can give insights
on the weaknesses of the algorithm, and thus trying to mitigate those could lead to a
better approximation algorithm.

Bibliography

Banaszczyk, Wojciech (May 2012). “On series of signed vectors and their rearrange-
ments”. In: Random Structures & Algorithms 40, pp. 301-316.

Bansal, Nikhil et al. (2022). “Prefix Discrepancy, Smoothed Analysis, and Combinatorial
Vector Balancing”. In: 13th Innovations in Theoretical Computer Science Conference
(ITCS 2022). Ed. by Mark Braverman. Vol. 215. Leibniz International Proceedings in
Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl — Leibniz-Zentrum fiir
Informatik, 13:1-13:22. 1sBN: 978-3-95977-217-4.

Beck, J6zsef and Tibor Fiala (1981). ““Integer-making” theorems”. In: Discrete Applied
Mathematics 3.1, pp. 1-8. 1ssN: 0166-218X.

Carlier, J. and A.H.G. Rinnooy Kan (1982). “Scheduling subject to nonrenewable-
resource constraints”. In: Operations Research Letters 1.2, pp. 52-55. 1ssn: 0167-6377.

Kellerer, Hans et al. (1998). “The Stock Size Problem”. In: Operations Research 46.3, S1-
S12. 1ssN: 0030364X, 15265463.

Lau, Lap Chi, R. Ravi, and Mohit Singh (2011). Iterative Methods in Combinatorial Opti-
mization. Cambridge Texts in Applied Mathematics. Cambridge University Press.

Lovész, Laszl6 (1979). Combinatorial Problems and Exercises. AMS/Chelsea publication.
North-Holland Publishing Company. 1sBn: 9780821869475.

Matousek, Jifi (1999). “Combinatorial Discrepancy”. In: Geometric Discrepancy: An II-
lustrated Guide. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 101-135. 1sBn:
978-3-642-03942-3.

Newman, Alantha, Heiko Roglin, and Johanna Seif (Apr. 2018). “The Alternating Stock
Size Problem and the Gasoline Puzzle”. In: ACM Trans. Algorithms 14.2. 1ssn: 1549-
6325.

Rajkovi¢, Ivana (Mar. 2022). “Approximation Algorithms for the Stock Size Problem
and the Gasoline Problem”. Master’s thesis.

Spencer, Joel (1977). “Balancing games”. In: Journal of Combinatorial Theory, Series B 23.1,
pp- 68-74. 1ssN: 0095-8956.

— (1985). “Six Standard Deviations Suffice”. In: Transactions of the American Mathemat-
ical Society 289.2, pp. 679-706. 1ssn: 00029947

	Acknowledgement
	Abstract
	Introduction
	Problem statement
	Previous results
	Related work

	Iterative Rounding algorithm
	Definition and remarks
	Comparison to the Greedy algorithm
	Numerical experiments
	General behavior
	Local Search
	Generalised problem

	Approximation results
	One dimension version
	Lower bound
	Upper bound for the {1,K} subcase

	Generalised version

	Conclusion
	Bibliography

