Meurtre au LIMOS : Enquêter avec la théorie des graphes

Fête de la science 2025

Lucas Lorieau Nicolas Schivre

16 octobre 2025

• Un meurtre a eu lieu au LIMOS : 8 suspects ont été identifiés.

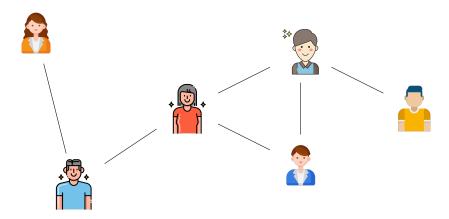
16 octobre 2025

- Un meurtre a eu lieu au LIMOS : 8 suspects ont été identifiés.
- Chaque suspect dit être passé une et une seule fois sur la scène de crime.

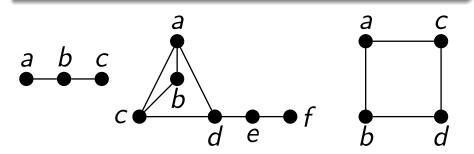
- Un meurtre a eu lieu au LIMOS : 8 suspects ont été identifiés.
- Chaque suspect dit être passé une et une seule fois sur la scène de crime.
- Pourtant, il aurait fallu que le meurtrier vienne deux fois (pour préparer le meurtre et cacher les preuves): quelqu'un ment, mais personne ne sait qui...

- Un meurtre a eu lieu au LIMOS : 8 suspects ont été identifiés.
- Chaque suspect dit être passé une et une seule fois sur la scène de crime.
- Pourtant, il aurait fallu que le meurtrier vienne deux fois (pour préparer le meurtre et cacher les preuves): quelqu'un ment, mais personne ne sait qui...
- On vous a invité au laboratoire pour tenter de résoudre l'affaire à l'aide de la théorie des graphes!

Les graphes : un outil de modélisation



Les graphes : un outil de modélisation



Définition formelle

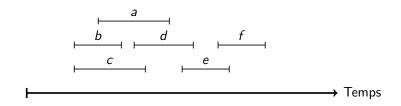
Définition

Constitué de sommets (les suspects) et des arêtes ("se sont croisés").

Les intervalles

Intervalle

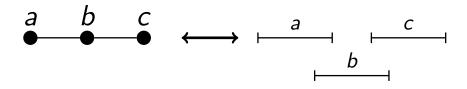
Constitué d'un début et une fin (on leur rajoute souvent un petit nom).


$$\begin{array}{c} a \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \end{array} \qquad \begin{array}{c} a \\ \hline \\ \hline \\ \hline \\ \hline \end{array}$$

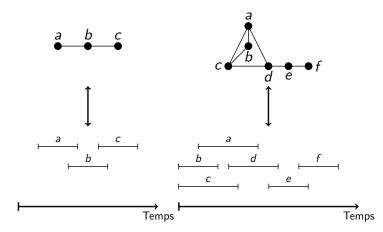
Les intervalles

Intervalles multiples

On superpose verticalement les intervalles lorsqu'ils s'intersectent.

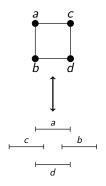


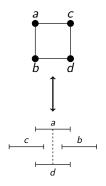
Définissons un graphe à partir d'intervalles

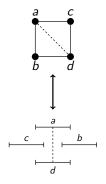

Graphe d'intervalles

Chaque intervalle correspond à un sommet, et deux sommets sont reliés si les intervalles s'intersectent.

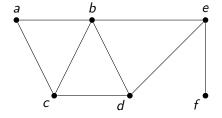
Des exemples de représentations équivalentes







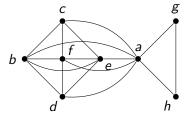
16 octobre 2025

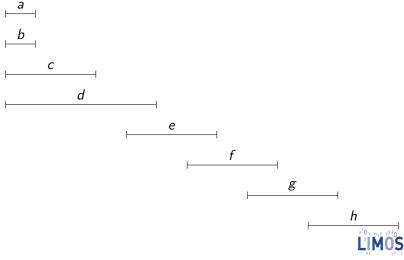

16 octobre 2025

A vous!

Première page : Les graphes d'intervalles

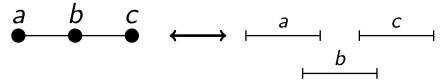
Correction




16 octobre 2025

Correction

Correction



Clermont Auvergne

Le lien avec l'enquête

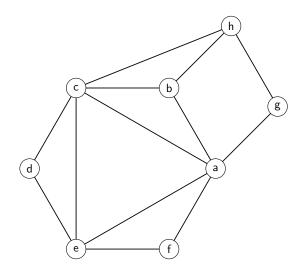
Modélisation des visites

Les suspects disent qu'ils sont venus une seule fois sur la scène de crime : leur visite correspond à un intervalle de temps!

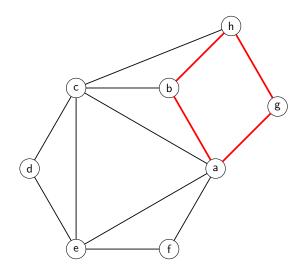
Détection du menteur

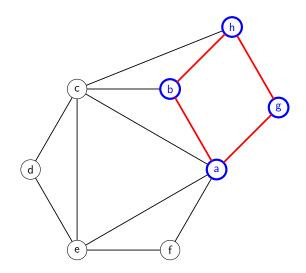
On verra apparaître des parties qui ne correspondent pas aux graphes d'intervalles qui feront intervenir le menteur!

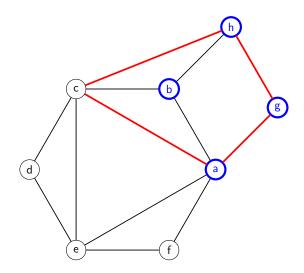
Témoignages des suspects

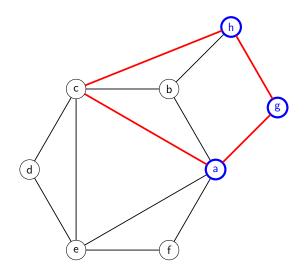

- Alice dit avoir rencontré Bob, Carole, Eve, Farid et Gontrand.
- Bob dit avoir rencontré Alice, Carole et Héloïse.
- Carole dit avoir rencontré Alice, Bob, Donald, Eve et Héloïse.
- Donald dit avoir rencontré Carole et Eve.
- Eve dit avoir rencontré Alice, Carole, Donald et Farid.
- Farid dit avoir rencontré Alice et Eve.
- Gontrand dit avoir rencontré Alice et Héloïse.
- Héloïse dit avoir rencontré Bob, Carole et Gontrand.

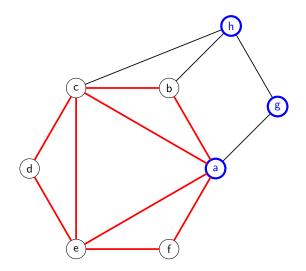
Étudions les témoignages

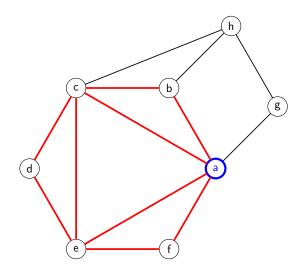

	Alice	Bob	Carole	Donald	Eve	Farid	Gontrand	Héloïse
Alice		Х	x		Х	×	×	
Bob	×		х					Х
Carole	×	Х		Х	Х			Х
Donald			х		Х			
Eve	×		х	Х		×		
Farid	×				Х			
Gontrand	×							Х
Héloïse		Х	Х				Х	

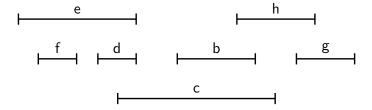


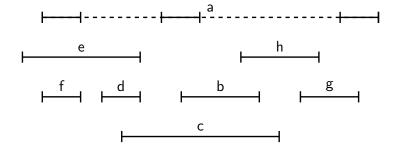












• Les graphes : un outil polyvalent et central en informatique

- Les graphes : un outil polyvalent et central en informatique
- Notion de classe de graphes : des familles aux propriétés intéressantes

16 octobre 2025

- Les graphes : un outil polyvalent et central en informatique
- Notion de classe de graphes : des familles aux propriétés intéressantes
- Raisonnements sur les graphes : utiles pour tirer des conclusions à partir d'une information globale

- Les graphes : un outil polyvalent et central en informatique
- Notion de classe de graphes : des familles aux propriétés intéressantes
- Raisonnements sur les graphes : utiles pour tirer des conclusions à partir d'une information globale

Claude Berge (1926-2002)

